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Abstract 

Voltammetry is a foundational electrochemical technique that can qualitatively and quantitatively 
probe electroactive species in solutions and as such has been used in numerous fields of study. 
Recently, automation has been introduced to extend the capabilities of voltammetric analysis 
through approaches such as Bayesian parameter estimation and compound identification. However, 
opportunities exist to enable more versatile methods across a wider range of solution compositions 
and experimental conditions. Here, we present a protocol that uses experimental voltammetry, 
physics-driven models, binary hypothesis testing, and Bayesian inference to enable robust labeling 
of analytes in multicomponent solutions across multiple techniques. We first describe the 
development of this protocol, and we subsequently validate the methodology in a case study 
involving five N-functionalized phenothiazine derivatives. In this analysis, the protocol correctly 
labeled solutions each containing 10H-phenothiazine and 10-methylphenothiazine from both 
cyclic voltammograms and cyclic square wave voltammograms, demonstrating the ability to 
identify redox-active constituents of a multicomponent solution. Finally, we identify areas of 
further improvement—such as achieving greater detection accuracy—and future applications to 
potentially enhance in situ or operando diagnostic workflows. 
 
 
Keywords: Cyclic voltammetry, Cyclic square wave voltammetry, Analyte identification, 
Bayesian inference, Physics-based modeling, Phenothiazine 
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1. Introduction 

Voltammetry is a foundational technique in electrochemical science that enables both 

qualitative and quantitative characterization of electroactive species—such as analytes (i.e., redox-

active compounds)—for a variety of applications.1–10 Examples include tracking the transient 

behavior of solutions in electrochemical systems8,11–13 and labeling compounds within a sample.14–

17 When the composition of an analyte solution (i.e., the solvent, supporting salt, and redox-active 

species), along with the electrode surface morphology, are known prior to and remain constant 

throughout the experiment, established fundamental relationships can often be leveraged to discern 

both physical and electrochemical properties in the system of interest,3,5,7,18 enabling mechanistic 

insights into electrochemical and chemical reactions of electroactive compounds.19–24 However, in 

cases where the solution composition is unknown or evolves during the experiment, voltammetric 

analysis has primarily relied on qualitative visual methods, like peak appearance / disappearance 

and location.14,15 Such approaches have practical utility,14,15,17 but quantitative treatments are 

hampered because—unlike other techniques (e.g., nuclear magnetic resonance (NMR), Fourier 

transform infrared spectroscopy)—the output signal is not correlated to the molecular structure or 

connectivity.20 Accordingly, additional analyses are typically required to identify constituent 

components, resulting in workflows that may be time-consuming and expensive.1,8,11,25–29 In many 

cases, the standard techniques employed provide incomplete or misleading information, as 

necessary preparatory steps modify solution compositions, such as dilution with deuterated 

solvents for proton NMR analysis11 or product purification via column chromatography for mass 

spectrometry studies.25 In addition, it is not trivial to capture transient electrochemical processes 

with ex situ measurements.27,28 Advances in voltammetric methods may enable streamlined 

component identification workflows by reducing the materials, equipment, and time intensity of 
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sample characterization, as these techniques can more readily probe analyte solutions in their 

native environment.8,30 

To capitalize on the inherent advantages of voltammetry, black-box—that is, physics-

agnostic—classification protocols for voltammetric labeling (i.e., identifying electroactive 

compounds from voltammograms) have been reported. These findings suggest that automation can 

be leveraged to characterize compounds in solutions by identifying and incorporating features that 

are challenging or impossible to ascertain from qualitative inspection.29–34 While the prior 

literature shows promise, opportunities exist for further improvement. For example, protocols can 

identify compounds less accurately when the training and testing data are obtained under different 

supporting salt concentrations,31 potentially necessitating a separate training dataset for each 

condition tested. Further, other approaches do not evaluate all species combinations in a 

multicomponent sample and thus may be less effective when a larger number of possible 

compositions is considered.32,33 For example, Dean et al. labeled a solution containing a mixture 

of Cd, Hg, and Pb cations among other single-component samples,32 but as the authors only 

considered this single combination, it is uncertain whether their protocol would retain accuracy if 

all combinations of the metal cations studied (e.g., Cd-Cu-Pb, Hg-Cu-Pb, etc.) were exhaustively 

considered. Finally, we note that regressive methods—such as partial least squares—may 

simultaneously estimate the concentrations of multiple constituents in a sample, which 

theoretically enables them to consider all possible species combinations, but their prediction error 

(either systemic or random) leaves ambiguity as to whether a compound is present at low 

concentrations or absent.34 As such, there is a continued need to advance robust and flexible 

methods to identify compounds in solutions. 
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Existing approaches can be augmented to address these areas by incorporating physics-based 

modeling and by evaluating the presence of each compound individually using binary hypothesis 

testing35—i.e., each is present or absent. While the coupled reaction-transport phenomena that 

govern voltammetric responses are well-known,5,19 these processes are not yet widely considered 

in automated voltammetric labeling methodologies, which may partially explain why prior 

protocols are challenged when evaluated at different analyte and supporting salt 

concentrations.31,32 By incorporating physical phenomena into model formulations, 

voltammograms may be accurately simulated across a range of species concentrations using 

multiple experimental techniques with a single set of electrochemical and transport descriptors. 

Further, the number of possible compositions for a multicomponent solution scales 

combinatorically with the total number of species, potentially rendering exhaustive evaluation 

infeasible for larger sets. However, labeling scales linearly with the number of components if the 

presence of each compound is individually assessed to characterize the overall sample. Thus, 

automated labeling protocols may potentially enable analysis of more complex multicomponent 

systems. 

Physical models and binary hypothesis testing can be readily adopted to identify compounds 

with Bayesian inference, which is used to infer the state of a system by recursively combining 

previous information of a process with new observations. While prior knowledge can come from 

arbitrary sources, Bayesian inference provides a quantitative basis to integrate information from 

previous observations, resulting in informed estimations; it is also an apt framework to conduct 

binary hypothesis testing.35 With the voltammetric labeling presented in this work, the results for 

each compound can be combined to estimate the overall makeup, which, in turn, can be used to 

inform subsequent studies that may involve different techniques. Bayesian methods are also a 



5 
 

powerful framework to evaluate physics-informed models across multiple disciplines,35–38 

including electrochemistry;39–43 for example, researchers have shown that parameters for 

electrochemical reactions can be reliably estimated using sensitive voltammetric techniques, 

mathematical optimization, and Bayesian inference.44 However, to the best of our knowledge, 

Bayesian inference has not been used for voltammetric labeling. 

As such, this work seeks to develop a simple yet versatile protocol that builds on previous work 

by combining experimental voltammetric data, physical modeling, binary hypothesis testing, and 

Bayesian inference to simultaneously identify multiple analytes in a solution. This protocol is 

validated with a case study involving a set of five phenothiazine derivatives and two voltammetry 

techniques: cyclic voltammetry (CV) and cyclic square wave (CSW) voltammetry. Specifically, 

we demonstrate that the protocol can differentiate between analytes even when the testing and 

training datasets are obtained with different experimental techniques. Consequently, this 

methodology may reduce the training data needed to probe samples across different solution 

compositions, environmental conditions, and experimental techniques, enabling accelerated in situ 

or operando labeling. This protocol can also enable fewer and more targeted follow-up ex situ 

techniques that may be integrated with previous estimations through the Bayesian framework, 

reducing the time and resources needed to fully characterize more diverse samples. To enable 

further development and expansion of this protocol, we provide MATLAB® code on our GitHub 

page (https://github.com/afentonjr/BayES-Lab) that constructs a compound library from CSW 

voltammograms and, using that library, labels analytes from previously unexamined experimental 

data. 
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2. Methods 

2.1 Overview 

To accurately label analytes with voltammetry, a library cataloguing compounds must first be 

developed and subsequently proven effective in the identification of analytes from previously 

unseen experimental data. Accordingly, the experimental acquisition methods and the library 

development are respectively detailed in Sections 2.2 and 2.3. Once a high-fidelity library is fully 

constructed, it can be fit to new experimental data to label analytes. This labeling process, in turn, 

involves two major steps. The first (Section 2.4) is a regressive step that fits catalogued species to 

an experimental voltammogram, where all analytes in a library are fit to yield a vector of best-fit 

concentrations; each vector entry corresponds to a single catalogued compound. The second step 

(Section 2.5) involves using the same experimental dataset to label the multicomponent system 

being probed; in this instance, each analyte in the library is evaluated to determine its probability 

of being present using binary hypothesis testing and Bayesian inference. To increase accessibility 

and degree of implementation, the code used for both library construction and analyte 

identification, along with subroutines, are available on GitHub: 

https://github.com/afentonjr/BayES-Lab. 

 

2.2 Experimental 

All chemicals were used as received, and all experiments were conducted in a glovebox 

(MBraun Labmaster, H2O < 5 ppm, O2 < 1 ppm) filled with argon (Airgas, purity of ca. 100 %, 

catalog number AR UHP300). The glovebox temperature was measured to be 25.5 °C and 25 °C 

on two occasions using a glass thermometer (VWR®, ± 2 °C). All the phenothiazines, the 

tetrabutylammonium hexafluorophosphate (TBAPF6, Sigma Aldrich, ≥ 99 %, 86879), and the 
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dichloromethane (ACROS OrganicsTM, 99.9 %, AC610931000) were opened and stored in the 

glovebox. All materials were directly added from their container to a 10 mL volumetric flask with 

a plastic spatula to ensure the mass of material in the solution matched the balance reading (Mettler 

Toledo, Balance XS64, 61 g capacity with ±0.1 mg readability). Every solution studied contained 

1 mM of each analyte, along with 0.1 M TBAPF6 in dichloromethane. Ferrocene (Sigma Aldrich, 

98 %, F408) was used as an internal standard for the reference electrode45 at a concentration of ca. 

1 mM. The working electrode was a glassy carbon disk electrode (CH Instruments, 3 mm dia., 

CHI104) polished with 0.05 μm alumina powder (Buehler MicroPolish Powder, 4010075) in 

deionized water (18.2 MΩ cm). The reference electrode was either a Ag/Ag+ electrode using a 

non-aqueous reference electrode kit (MF-2062) filled with 0.1 M AgPF6 (Sigma Aldrich, 98 %, 

208361) in acetonitrile (Fisher, Certified ACS, A21-1) or, when the first reference electrode was 

unavailable, an aqueous Ag/AgCl (3 M NaCl) electrode (BASi, MF-2052) brought into the 

glovebox and stored in vial containing propylene carbonate (Gotion, 99.99 %) without any 

supporting salt during experiments. The counter electrode, in turn, was a Pt coil electrode (BASi, 

99.95 %, MW-1033). When not in use, the Ag/Ag+ reference was stored in the glovebox in the 

same fill solution, and the Ag/AgCl reference was stored outside the glovebox in a solution of 1 

M KCl. 

Five phenothiazines (Figure 3)—synthesized and purified as described in the SI by the Odom 

Research Group at the University of Kentucky—were catalogued to create the library used for 

validating the labeling protocol (Section 3): 10H-phenothiazine (i.e., unsubstituted phenothiazine, 

PT), 10-methylphenothiazine (MPT), 10-ethylphenothiazine (EPT), 10-isopropylphenothiazine 

(iPrPT), and 10-phenylphenothiazine (PhPT). Two separate solutions, both containing only a 

single phenothiazine at a concentration of 1 mM, along with 0.1 M TBAPF6 in dichloromethane, 
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were examined to estimate the electrochemical and transport parameters for the corresponding 

analyte in library development. Three solutions each containing a mixture of 1 mM PT and 1 mM 

MPT (also with 0.1 M TBAPF6 in dichloromethane) were used to test the identification protocol. 

For each prepared solution, two voltammetry techniques were conducted—CV and CSW 

voltammetry—using either a VMP-3 potentiostat (BioLogic) or a VMP-300 potentiostat 

(BioLogic) using EC-Lab® software and processed with Microsoft Excel and MATLAB® R2020a. 

Cyclic voltammograms were obtained at 25, 50, 100, 200, 500, and 1000 mV s-1, with all 

voltammograms corrected for resistance-driven potential distortions using the BioLogic protocol 

“iR determination with electrochemical impedance spectroscopy” (the “ZIR” protocol).46 For the 

“ZIR” protocol, the working electrode potential was set to its open-circuit value. A sinusoidal 

potential with a 20 mV amplitude and a 100 kHz frequency was applied, a delay of 10 % of the 

period duration was added before the measurement, and the reported resistance was averaged over 

four measurements. The resistance was compensated either 100 % or 85 % by the software during 

the experiment, with the remaining percentage manually post-corrected; in some cases, the 

solution resistance was not fully compensated during acquisition to avoid possible oscillations in 

the potentiostat.46 For all voltammetry experiments, the bandwidth was manually adjusted via trial 

and error to minimize noise in the current acquisition. The potential bounds varied for each analyte; 

the most negative and initial potential was set to be approximately 400-500 mV negative of the 

ferrocene redox potential. The most positive (and the turnaround) potential of the voltammetric 

experiment, in turn, was set to be between 200-400 mV positive of the redox potential of the 

phenothiazine(s) probed. More specifically, the most positive potential was set far enough away 

from the phenothiazine redox potential as to minimally influence the voltammogram shape3 but 

not so far as to access the second electron transfer event of the phenothiazine to a considerable 
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extent8 or to oxidatively decompose the solution or the electrode. Generally, the upper bound was 

found via visual inspection using CV at a 50 mV s-1 scan rate. After each cyclic voltammogram 

was obtained, no electrochemical experiments were conducted for either 5 min (50-1000 mV s-1) 

or 10 min (25 mV s-1) before the next to allow the boundary layer to reset. 

CSW voltammograms were obtained using the same potential bounds as those in the cyclic 

voltammograms. The step height was 10 mV, the pulse height was 50 mV, and the pulse duration 

(per half-period) was 100 ms, resulting in an effective scan rate of 50 mV s-1. The potential was 

held at the initial, most negative (i.e., reductive) potential for 2 s before the initial positive 

(oxidizing) sweep, and the reported current for each potential step was calculated by averaging the 

raw current over the last 30 % of the step. Six CSW voltammograms were obtained at these same 

conditions for each solution tested. The “ZIR” protocol was performed the same way as that with 

CV, and each CSW voltammetry experiment was separated by a 5 min wait. Following the initial 

suite of CV and CSW voltammetry tests, 1 mM of ferrocene was added, and the experiments were 

repeated to calibrate the potential axis to that of a known redox event.45 For library development, 

two separate solutions of every phenothiazine (five phenothiazines, so 10 solutions in total) were 

tested, each containing approximately the same analyte concentration of 1 mM. This procedure 

resulted in 12 CSW voltammetry datasets with the same potential waveform and two CV datasets 

for all six scan rates for each phenothiazine; only the CSW voltammograms were used to construct 

the library. For protocol validation, three solutions of the phenothiazine mixture were examined, 

resulting in 18 CSW voltammograms acquired using the same potential waveform and three cyclic 

voltammograms at six different scan rates. 
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2.3 Library development 

In this work, library development involves generating a characteristic set of electrochemical 

and transport descriptors (vide infra) for each analyte by first acquiring experimental data, 

subsequently simulating modeled voltammograms, and then comparing the two using both 

weighted least squares regression and Bayesian inference. We note that this approach is not the 

only viable method, but it does possess favorable properties as compared to other options. For 

example, literature data mining47 could be used, but the natural language processing necessary to 

implement this method is non-trivial. 

 

2.3.1 Experimental data acquisition 

We elected to use CSW voltammetry to acquire the data for library construction because it can 

be more accurately modeled; its waveform minimizes background electrochemical signals while 

amplifying Faradaic processes,20,42,48 offering an advantage over CV.4,49 For this reason, square 

wave (SW) voltammetry—that is, CSW voltammetry without the reverse sweep—has been 

employed in many studies involving qualitative analyses.14,15,17 Further, CSW voltammetry can 

more readily discern various electron transfer mechanisms (e.g., an electron transfer followed by 

the homogeneous degradation of the product50) than SW voltammetry by virtue of the reverse 

sweep. We also conduct repeats of experiments for statistical rigor and to calculate the 

experimental standard deviation (vide infra). As mentioned in Section 2.2, each analyte studied in 

this work was catalogued using data from two solutions; for each, six CSW voltammograms were 

acquired using the same potential waveform, resulting in 12 total experimental CSW 

voltammograms for each analyte in the library. 
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2.3.2 Model development 

The theoretical models used in this work are necessary both for parameter extraction and 

analyte labeling and as such are discussed here. For each compound in the library, two models 

(diffusion rate-limited and kinetic rate-limited one-electron transfers) were simulated using the 

one-dimensional transient diffusion equation with an electrochemical reaction on a planar, 

impermeable, and ideal (non-fouling) electrode surface. The reaction considered is Equation (1). 

 R O e−+  (1) 

In Equation (1), a phenothiazine ( R ) oxidizes to a radical cation ( O ) in a one-electron transfer; 

the mass conservation equations are expressed in Equation (2). Note that all values are non-

dimensional unless otherwise noted. 
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In Equation (2), lower-case ic  is the dimensionless concentration of species i  ( 1
,i i R bulkc C C−= ⋅ , 

where upper-case iC  is the dimensional concentration and ,R bulkC  is the dimensional concentration 

of R  far from the electrode, both in units of mol m-3), 2
R etD rτ −= ⋅  is dimensionless time ( iD  is 

the diffusion coefficient of species i  in units of m2 s-1, t  is dimensional time in units of s, and er  

is the electrode radius in units of m), 1
ex rξ −= ⋅  is the dimensionless length ( x  is the distance from 

the electrode in units of m), and Od  is the ratio of diffusion coefficients 1
O RD D−⋅ . 

These coupled dimensionless differential equations are subject to the boundary and initial 

conditions expressed in Equations (3) - (6) for a single electron transfer. Equations (5) and (6) 

are mutually exclusive and should not be simultaneously used; Equation (5) is used for a diffusion 
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rate-limited one-electron transfer, while Equation (6) is used for an kinetic rate-limited one-

electron transfer.19 
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In Equations (3)-(6), 0E Eη = − is the overpotential in units of V ( E  is the applied potential and 

0E  is the formal potential of the redox couple, both in units of V vs. a reference redox event), GR  

is the universal gas constant (8.314 J mol-1 K-1), T  is the absolute temperature in units of K (set 

to 298.15 K based on the measured glovebox temperatures), F  is the Faraday constant (96485 C 

mol-1), 1
0 0 e RK k r D−= ⋅  is the dimensionless heterogeneous rate constant ( 0k  is the dimensional 

analog in units of m s-1), and α  is the transfer coefficient (dimensionless). Equation (3) assumes 

that only species R  is present before the experiment and far away from the working electrode at 

all times, while Equation (4) relates the flux of both species at the electrode surface. Equation (5) 

relates the surface concentration of the species via the Nernst equation (diffusion rate-limited 

electron transfer), while Equation (6) relates the surface flux of O  to the surface concentrations 

via the Butler-Volmer relation (kinetic rate-limited electron transfer). 

These voltammograms were numerically simulated; details on the implementation scheme are 

in the SI (Section S.2.4) based on an established framework.19 Briefly, each voltammogram was 
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simulated with a discretization of 20000 steps in potential per unit volt (i.e., 5 × 10-5 V per step) 

using either MATLAB® R2020a on an Intel® Core™ i7-7500U CPU @ 2.70 GHz 2.90 GHz laptop 

computer or MATLAB® (either R2019b or R2020a) on the MIT Supercloud supercomputing 

resource;51 the former computing resource took ca. 8 s to simulate each voltammogram. Note that, 

as the simulation time scales approximately linearly with total number of discretization steps, the 

speed can be increased by introducing coarser discretization albeit at the expense of accuracy. 

 

2.3.3 Fitting procedure 

The experimental and simulated voltammograms generated according to the procedures 

outlined in Sections 2.3.1 and 2.3.2 are then compared to perform parameter estimation. These 

were fit by simultaneously adjusting the values of all the electrochemical and transport descriptors. 

Specifically, 0E , RD , and OD  (for the diffusion rate-limited electron transfer mechanism) or 0E , 

RD , OD , 0k , and α  (for kinetic rate-limited electron transfers) were introduced to the simulator 

as adjustable parameters—whose values were bounded based on either convention or observations 

from experimental data—to find which parameter set, designated as the vector θ , maximized the 

model likelihood. The likelihood function (Equation (7)) is assumed to be a product of the 

probability distribution functions (PDFs) of the error at each overpotential, which are assumed to 

be normal and independent of each other (i.e., the errors are random and not systemic nor reliant 

on errors at other overpotentials). 
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In Equation (7), ( )( ); , ,f exp mI I η θ σ  is the PDF of the experimentally measured current expI  

(treated as a random variable) parameterized by the modeled current mI  and the experimental 

standard deviation σ  (all in units of A); as such, ( )( ); , ,f exp mI I η θ σ  is equivalent to the PDF of 

the error (i.e., the difference between experimental and modeled currents). mI  is a deterministic 

function of the overpotential vectorη and parameter vector θ ; note that difference currents are 

often used in the place of absolute currents for CSW voltammetry.5,20 σ , in turn, was either 

calculated between the 12 CSW voltammograms (for library construction) or estimated (for 

analyte identification). Bolded terms are vector quantities containing all N  data points in the 

voltammogram, and the index j  refers to the j th entry of each vector. As a result, maximizing 

Equation (7) is equivalent to minimizing the sum of the magnitude of the exponential arguments 

by adjusting θ  for either electron transfer model; namely, 

( )( )21
,

1

ˆ arg max arg min ( , )
N

exp, j m j j j
j

f I I
θ θ

η σ −

=

= = −∑θ θ , where θ̂  is the optimal set of parameters. 

The most likely electron transfer mechanism was then chosen using binary hypothesis testing and 

Bayesian inference (vide infra); this mechanism was then catalogued as a descriptor for the analyte 

being assessed. Optimal parameters corresponding to the selected electron transfer mechanism 

were subsequently recorded as the remaining descriptors, all of which are reported in the SI (Table 

S3). We note that the reported optimal parameter set may be nonunique,3,52 but degenerate sets 

describe similar voltammetric curves, meaning the uniqueness of the parameters is not expected 

to impact the ability of the protocol to differentiate between analytes. The construction of each 

library entry (i.e., individual analytes) was performed on the MIT Supercloud supercomputing 

resource51 using 80 or 100 cores, taking 7-10 days to complete. We note that less intensive 

computational resources (e.g., the local computing resource listed above) may be able to output 



15 
 

sufficient—although perhaps not as accurate—descriptors in a shorter time frame (ca. 1 h) by 

using a coarser time mesh and fewer initial guesses. We do not anticipate the predictive power of 

the library to be adversely affected by such a change provided the same mesh is used throughout 

the entire process. 

 

2.4 Library-data fitting 

Once a library is constructed, it can be applied to new experimental data—specifically, 18 

CSW voltammograms and 18 cyclic voltammograms (as mentioned in Section 2.2)—to estimate 

how much of each species is present and, ultimately, to label analytes in solutions. To achieve this, 

the information from the library is first combined with the same input waveform used to acquire 

the new experimental dataset to simulate a concentration-normalized current for each analyte 

(Figure 1). These normalized simulated voltammograms are then regressed to the experimental 

data by adjusting the concentration weights to maximize the likelihood function (Equation (7)), 

which is equivalent to the boxed optimization in Figure 1b. This fitting procedure yields a vector 

of best-fit concentrations for all the library constituents, where each vector entry estimates the 

concentration of the corresponding compound. However, this vector can include analytes that are 

not actually present in the sample due, in part, to random errors whose effects are challenging to 

physically quantify (e.g., random heterogeneities generated from electrode polishing39). 

Consequently, it is necessary to evaluate the inclusion of every analyte by assigning to each a 

probability of existence.  
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Figure 1. Procedure used to estimate the concentration of each catalogued library compound in an 

experimental dataset using CSW voltammetry as an example technique. (a) An example two-

analyte library is used to simulate the concentration-normalized difference current ( ;  ,i i A B∆ =ϕ ) 

using the catalogued list of descriptors (θ i ) and the same input waveform used to acquire the 

experimental dataset. (b) The resulting concentration-normalized difference current is compared 

with the experimental data ( ∆ expI ) using weighted linear least squares fitting to estimate the 

concentrations, ,A bestC  and ,B bestC , in the sample. The concentration-normalized difference current 

is linearly proportional to the non-normalized analog, enabling rapid optimization. 
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2.5 Analyte identification 

Once the simulated voltammograms are fit to experimental data, candidate analytes are culled 

by evaluating models for two hypotheses ( 0H  and 1H ): the null hypothesis, in which all analytes 

except the one of interest are included (“exclusion”, 0H ), and the alternative hypothesis, where all 

library entries—including the analyte of interest—are considered (“inclusion”, 1H ). We note that 

this framework is also used to estimate the electron transfer mechanism of an analyte during library 

development (Section 2.3); there, 0H  and 1H  respectively represent a diffusion and kinetic rate-

limited electron transfer (or vice versa). The probabilities for these hypotheses are calculated using 

Bayesian inference; the hypothesis with a probability of greater than 50 % is the accepted state 

based on the Maximum a Posteriori probability (MAP) rule.35 This process is detailed in 

Equations (8) and (9) (for further details, see Equations S1-S4). 

 ( | ) ( )( | )
( )

obs i i
i obs

obs

f O H P HP H O
f O

=  (8) 

In Equation (8) (Bayes’ Rule), P  is a discrete probability, f  represents a PDF, iH  is the i th 

hypothesis, and obsO  is an observation. ( )iP H  is the prior probability (i.e., the probability that 

iH  is true before the observation was made)—assumed to be equal for all hypotheses (50 %) in 

this work— ( )|i obsP H O  is the posterior probability (the probability that iH  is true given the 

observation), and ( )|obs if O H  is the likelihood PDF of observing obsO  given that iH  is true. 

( )obsf O  is the PDF of obsO  occurring across all hypotheses considered. We note that 

1
( ) ( | ) ( )

M

obs obs q q
q

f O f O H P H
=

=∑ , where q  is a counter for M  total hypotheses. 
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In the context of this work, ( )iP H  is the probability that hypothesis i  (either the presence of 

a single analyte or an electron transfer model) is true before evaluating experimental data, 

( )|obs if O H  is a continuous PDF that evaluates for both the goodness of fit and the number of 

model parameters to prevent overfitting, and ( )|i obsP H O  is the probability of hypothesis i  being 

true after considering the experimental data.35 

In analyte identification, there is also a possibility that the measured currents arise from 

background non-faradaic processes independent of the presence of any redox-active compounds. 

As such, the probability of a peak resulting from background noise (expressed as backgroundP ) must 

also be evaluated to yield the final probability (Equation (9)). 

 ( | ) ( | ) (1 )f i obs i obs backgroundP H O P H O P= × −  (9) 

In Equation (9), ( | )f i obsP H O is the final probability reported for a given analyte. Note that this 

formula assumes that ( | )i obsP H O  and backgroundP  are independent of each other. This assumption is 

reasonable, as faradaic events are expected to influence background processes to a negligible 

extent. However, there theoretically may be instances where the presence of an analyte 

significantly impacts the behavior of the background current; such dependencies are not captured 

in scans of an electrolyte solution (only supporting salt and solvent) and thus are not captured by 

Equation (9). In this work, the probability that an identified peak resulted from background 

processes was nearly zero (all the probabilities were zero within the working precision of 

MATLAB® R2020a). Nevertheless, this feature may become important in future scenarios, such 

as samples containing analytes at μM or nM concentrations. 

The probability for each analyte is evaluated individually via binary hypothesis testing 

according to Equations (8) and (9). Analytes with probabilities greater than 50 % are assumed to 
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be present—in line with the MAP rule—and vice versa; the workflow for this process is illustrated 

in Figure 2. 

 

 

 

Figure 2. Schematic of procedure to assign probabilities for all analytes in the library one at a time 

via binary hypothesis testing. X  is the analyte of interest; 0H  and 1H  refer to null (exclusion) and 

alternative (inclusion) hypotheses, respectively; and obsO  is the experimental observation (i.e., the 

experimental voltammogram). 

 

Within the workflow depicted in Figure 2, the first model ( 0H ) represents the exclusion of the 

analyte in question. In it, CSW voltammograms for every catalogued analyte except the species of 

interest are fit to a single experimental dataset. The second model ( 1H ) represents the inclusion of 
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the analyte in question. In it, every analyte is considered; the resulting fit has already been 

evaluated when finding the vector of best-fit concentrations (Figure 1). These two models are then 

compared, and the probability of existence is determined using Equations (8) and (9). This 

procedure is repeated for every analyte under consideration, and the resulting probabilities can 

then be assessed to determine which analytes are present. The process outlined in Sections 2.4 and 

2.5 take ca. 1 min to complete using two cores in MATLAB® R2020a with the local computational 

resource previously mentioned. This process is considerably faster than library construction 

because only a single set of voltammograms is simulated to fit models and data using the linear 

relationship between concentration and current observed in this work (Section 2.4). In comparison, 

library development requires many sets of voltammograms to be simulated because of the highly 

non-linear relationship between the current and relevant electrochemical parameters (Section 2.3). 

 

3. Results and Discussion 

3.1 Case study description 

This protocol was validated with a case study involving phenothiazines, a class of redox-active 

organic compounds used for overcharge protection in Li-ion batteries25,26,53 and, more recently, as 

analytes for the positive half-cell in redox flow batteries.8,54 For this study, five different N-

functionalized phenothiazine derivatives (PT, MPT, EPT, iPrPT, and PhPT), whose structures are 

depicted in Figure 3, were synthesized. Importantly, these compounds are stable in their neutral 

and singly-charged forms on the CV time scale (ca. 1 min).25 We restrict ourselves to a single core 

for simplicity; different molecular classes are anticipated to be more easily differentiable based on 

variations in exhibited properties. We also anticipate that for more extensive applications (e.g., 

samples without entirely deterministic preparation), additional consideration will be needed to 
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create a manageable library that is not too large by vetting candidate compounds using intuition 

(e.g., excluding infeasible or unlikely species) and using a priori observation, such as eliminating 

a compound from contention if no voltammetric peak is recorded at its predicted redox potential. 

We also note that judicious library selection is important, as the output probabilities for each 

species are dependent on the compounds present in the library. 

 

 

 

Figure 3. Structures and abbreviations of phenothiazines used as analytes in this study. Dashed, 

dotted, or dash-dotted lines indicate the line style used to plot data pertaining to each phenothiazine. 

 

First, the phenothiazine library was constructed according to the procedure in Section 2.3; the 

generation process and library contents are described in detail within the SI (see Section S.2). This 

library was then applied to three identical solutions of known composition (containing 1 mM PT, 

1 mM MPT, and 0.1 M TBAPF6, all in dichloromethane) probed using both CSW voltammetry 



22 
 

and CV. Dichloromethane, used previously for electroanalytical studies,25 is a non-nucleophilic 

solvent and is naturally anhydrous, creating favorable conditions for phenothiazine stability.55 

Additionally, we assumed that, under dilute conditions, the dissolved phenothiazines do not 

interact with each other during the electrochemical experiments, and thus, the voltammetric 

response was a superposition of the two individual species,5 as illustrated in Figure S3. 

Note that the methodology outlined in Figure 2 allows for the identification of all 32 possible 

analyte combinations by evaluating each phenothiazine individually; as such, a successful case 

study will demonstrate that this protocol can deconvolute voltammograms comprised of multiple 

analytes while exhaustively considering all possible combinations. We note that while the 

experimenter knew the composition of the solution (ground truth), the protocol had no knowledge 

of the sample makeup prior to evaluating the experimental dataset; the routine was only offered 

the phenothiazine library, experimental data, and additional parameters not linked to analyte 

identities, such as working electrode radius, voltammetric waveform parameters, etc. 

 

3.2 Protocol validation 

After its construction, we used the phenothiazine library to simulate concentration-normalized 

voltammograms for each derivative, shown for CSW voltammograms in Figure 4a. These were 

fit to the experimental data to yield a vector of concentrations that best fit the data. Figure 4b 

illustrates the data for a representative experimental trial (one of 18 CSW voltammetry trials), the 

corresponding best-fit voltammogram, and the resulting concentration estimates. 

 

 



23 
 

 

 

Figure 4. Generation and fitting of concentration-normalized CSW voltammograms to a single 

experimental dataset. (a) Concentration-normalized CSW voltammograms of the phenothiazines, 

extracted from the library used in this study. Anodic / oxidative currents (denoted by the subscript 

a ) are positive in sign, cathodic / reductive (denoted by the subscript c ) are negative in sign, and 

the initial potential sweep is from negative to positive potentials. This convention holds for all 

voltammograms depicted in this work. (b) Contribution of each phenothiazine to the best total fit 

of the experimental data and the corresponding best-fit concentrations (listed in the same order 

and color scheme as the legend). Note that difference currents are often reported in the place of 

absolute currents for CSW voltammetry.5,20 

 

The vector of best-fit concentrations ( Cbest ) in Figure 4b contained the estimated 

concentrations of each analyte in solution for a single trial. Across six CSW voltammetry and three 

CV trials from a single solution (nine total trials), the concentration estimated for unsubstituted PT 

had a 9.52 % error (Equation S13) with a standard deviation of 27.6 10−× mM (Equation S14), 

and the concentration of MPT had a 8.06 % error with a standard deviation of 11.8 10−× mM—
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further details and discussion are found in the SI (Section S.3). We also note that the estimated 

concentrations of EPT and iPrPT were greater than zero, even though neither were present in 

reality. Specifically, in Figure 4b, the overall best fit was achieved by including EPT and iPrPT 

at estimated concentrations of 0.042 mM and 0.004 mM, respectively. However, in all nine cases, 

the second inferential step successfully excluded compounds not actually present from 

consideration (vide infra). 

Once the best-fit vector of concentrations was estimated for a single dataset (Figure 4b), the 

probability of each phenothiazine being present was calculated according to the procedure outlined 

in Figure 2. For each phenothiazine studied, two models were examined: one considering every 

phenothiazine except the one currently being examined (representing exclusion— 0H ), and 

another considering all five phenothiazines in the library (representing inclusion of the interrogated 

phenothiazine— 1H ). The results from this analysis are depicted in Figure 5. 
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Figure 5. Graphical illustration of the best fits used in the labeling workflow when (a) PT, (b) 

MPT, (c) EPT, (d) iPrPT, and (e) PhPT are excluded from consideration ( 0H , dashed lines) and 

when all phenothiazines are considered in the library ( 1H , black line). Part (f) shows the 2-norm 

of the errors when each phenothiazine is excluded from consideration. Note that in parts (c)-(e), 

the dashed and solid lines are both present but are nearly or fully overlapping. 

 

In Figure 5, the exclusion model fit ( 0H , dashed lines) estimates whether an analyte of interest 

is present. If its fit is poorer than the inclusion model ( 1H , black line), then the species is likely to 

be present because its inclusion is necessary to better fit the experimental data, and vice versa. 

From this, our preliminary conclusion—which will be evaluated more rigorously—is the protocol 

should label PT and MPT as present and EPT, iPrPT, and PhPT as absent. Figure 5f depicts the 
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2-norm error (Equation (10)) when phenothiazines are excluded from consideration to quantify 

the illustrations in Figures 5a-e. 

 ( )2

, ,
1

2-norm error (A) =
N

exp j m j
j

I I
=

−∑  (10) 

The 2-norm error will also show that the protocol avoids overfitting by selecting models with fewer 

parameters (in this case, the exclusion model) if the error does not significantly increase compared 

to the inclusion model. Quantitative metrics on this balance between model simplicity and error 

are further discussed in the SI (Section S.1). 

To substantiate these preliminary conclusions, the probabilities of each phenothiazine being 

present were calculated using Equations (8) and (9). To demonstrate the repeatability and the 

adaptability of this protocol across different techniques, this procedure was applied to 18 CSW 

voltammetry datasets (all acquired with the same input waveform) and nine CV datasets (three at 

25 mV s-1, three at 50 mV s-1, and three at 100 mV s-1) across three solutions that were 

independently prepared. The probabilities were estimated for all 27 datasets, with the results 

depicted in Figure 6. To illustrate the worst-case scenario, the smallest probabilities for the sets 

of PT and MPT are reported, while the largest are reported for EPT, iPrPT, and PhPT. 
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Figure 6. Bar graph depicting the probability of each phenothiazine residing in the solution being 

examined, in agreement with the phenothiazines known a priori to be present. To illustrate the 

worst-case scenario, the lowest probabilities for PT and MPT are plotted for both CSW 

voltammetry (written as “CSWV” in the figure) and CV data. Similarly, for EPT, iPrPT, and PhPT, 

the largest probabilities are plotted for both techniques. The reported value is the smaller of the 

two plotted probabilities for PT and MPT, and conversely, the larger of the two plotted 

probabilities for EPT, iPrPT, and PhPT. 

 

Higher probabilities indicate that the phenothiazine of interest is more likely to be present, 

whereas the opposite is truth for lower probabilities. As expected from inspection of Figure 5, this 
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methodology found that for all 27 data sets considered, both PT and MPT were in solution while 

the other phenothiazines were not. Further, the accuracy and precision of the final concentration 

estimates (i.e., after culling the library) decreased and increased, respectively. Across the same 

nine trials previously mentioned, PT exhibited an error of 11.86 % (2.34 % increase) with a 

standard deviation of 24.3 10−× mM ( 23.3 10−×  mM decrease), while MPT exhibited an error of 

10.27 % (2.21 % increase) with a standard deviation of 11.6 10−×  mM ( 22.6 10−×  mM decrease). 

As such, the protocol both determines the identities and estimates the concentrations of the 

phenothiazines in the probed samples. 

 

3.3 Discussion 

This case study demonstrates that our methodology can identify multiple analytes and their 

estimated concentrations in solution using different voltammetric techniques. However, based on 

the relative positions of the phenothiazines in potential space, the observant experimentalist may 

conclude that PT is in solution via visual inspection, as its redox potential is ca. 100 mV more 

negative than those of the other phenothiazines. Thus, it may not be surprising that the protocol 

correctly identifies PT. However, the protocol can also differentiate between MPT and iPrPT, a 

distinction more challenging to achieve visually, as their redox potentials are much more similar 

(Table S3). 

Although the protocol was successful in this case study, additional findings point to limitations 

and areas for improvement. We note that the protocol did not correctly label voltammograms at 

faster CV scan rates (200-1000 mV s-1), misidentifying MPT and iPrPT (results illustrated by 

Figure S6 in the SI). This misidentification may arise from multiple factors. First, as already noted, 

the redox potentials of iPrPT and MPT are similar (ca. 30 mV separation), potentially frustrating 
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differentiation using voltammetry and necessitating the use of other techniques that can capitalize 

on contrasting compound properties. For example, the 1H NMR spectrum of iPrPT exhibits a 

multiplet at ca. 4.25 ppm, which is not present in the analogous spectrum for MPT (see Figures 

S10 and S12 for further details). Further, kinetic limitations manifest themselves to a greater extent 

at faster CV scan rates via increased peak-to-peak separation. If an analyte (e.g., iPrPT in this 

study) is predicted to undergo an electron transfer with infinitely fast kinetics, as the diffusion rate-

limited model in this work assumes, the simulated peak-to-peak separation will be independent of 

scan rate; however, this separation will increase for analytes predicted to undergo a kinetically 

rate-limited electron transfer (as is the case with MPT). Consequently, the modeled peak potentials 

for iPrPT will not change while those for MPT will, creating a greater opportunity for the protocol 

to confuse iPrPT and MPT. Relatedly, ohmic-induced potential losses distort voltammograms 

acquired at high scan rates in a similar fashion to that of kinetically rate-limited electron transfers, 

and as such, ohmic-driven distortions can be misinterpreted as kinetic limitations if appropriate 

care is not taken. Finally, increased experimental noise and contribution from background charging 

currents56,57 (see Figure S7) can further convolute the signal and thus analysis. Although data 

quality appears to impact the ability of the protocol to correctly identify analytes, quantitative 

metrics of sufficient data quality for accurate labeling were not identified in this study and are 

expected to be challenging to formulate; they are likely dependent on multiple factors, such as the 

similarity of the compounds in the library and the type of potentiostat used. Overall, this 

misidentification demonstrates that the experimental conditions and the validity of the physical 

models used must be carefully considered. 

To increase prediction accuracy, experiments should seek to acquire high-quality (i.e., high 

signal-noise) data, and the limitations of first-principle models should be actively considered. The 



30 
 

results from this study indicate that cyclic voltammograms should be acquired at a scan rate of ca. 

100 mV s-1 or slower. CSW voltammetry, in turn, did not exhibit analogous limitations, and its 

threshold waveform inputs are not presently known. Moreover, despite the advantages physical 

models impart, the experimental conditions of the system being probed as compared to the training 

set must be evaluated; if there are significant deviations, modified or more detailed physical 

models may be needed. For example, at faster CV scan rates, double-layer capacitance can 

appreciably affect the observed current and thus may need to be considered in the physical model,5 

while such effects may not significantly impact CSW voltammetry.20 More generally, it may not 

be possible to identify analytes with similar redox potentials using data from a single 

voltammogram; to this end, complimentary techniques (e.g., UV-Vis spectroscopy, NMR, or 

additional sensitive voltammetric techniques40,58) could be integrated with the Bayesian workflow 

to increase labeling accuracy in these instances. Such expanded frameworks will be contemplated 

in due course. 

 

4. Conclusions 

In this work, a protocol combining voltammetry experiments and simulations, binary 

hypothesis testing, and Bayesian inference has been developed to improve the ability to accurately 

identify analytes in solutions compared to only experiment alone, using experiment combined with 

simulation, and using black-box (physics-agnostic) machine learning methods. The procedure was 

outlined and applied to a test case involving five phenothiazines probed with two voltammetry 

techniques; there, solutions containing PT and MPT were correctly labeled across various 

techniques (CV and CSW voltammetry). These results demonstrate that a voltammetric labeling 

protocol can characterize a multi-analyte solution using different techniques, demonstrating a 
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degree of versatility not yet observed in existing voltammetric identification protocols. Future 

work will aim to improve the detection accuracy of this methodology by integrating the results of 

additional techniques in an automated fashion. 

Overall, this protocol serves as a first step in extending the limits of electrochemical analysis 

via integration of probabilistic principles with high-quality experimental data (potentially in situ 

or operando) and simulations. While the compositions of the solutions examined in this study were 

known and unchanging, our protocol may ultimately examine more complex and dynamic systems. 

If validation on these transient systems are promising, this protocol can be used in relevant fields 

that would benefit from enhanced in situ voltammetric labeling; examples include identifying 

electroactive decay products of degraded analytes during organic redox flow battery operation59 

and labeling potentially complex liquid product mixtures arising from carbon dioxide reduction,60 

both almost in real-time. 
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6. Glossary 

Latin variables 

C  Vector of concentrations (mol m–3) 
bestC  Vector of best-fit concentrations (mol m–3) 

best,no XC  Vector of best-fit concentrations, excluding species X  (mol m–3) 

i,bestC  Best-fit concentration for species i  (mol m–3) 

iC  Concentration of species i  (mol m–3) 

,i bulkC  Concentration of species i  in the bulk (mol m–3) 

ic  Dimensionless concentration of species i   
iD  Diffusion coefficient of species i  (m2 s–1) 

Od  Ratio of diffusion coefficients 1
O RD D−⋅  

E  Applied electrode potential (V vs. reference redox event) 
0E  Formal redox potential for a species of interest (V vs. reference redox event) 

F  Faraday constant (96485 C mol–1) 

( )f  Continuous probability distribution function, or abbreviation for likelihood 
function 

expI  Vector of experimental currents (A)* 
exp, jI  j th data point of the experimental current vector (A) 

iI  Current of species i  (A) 

mI  Vector of modeled currents (A) 
m, jI  j th data point of the experimental current vector (A) 

i  Indexing counter 
j  Indexing counter 

0K  Dimensionless heterogeneous rate constant 
0k  Heterogeneous rate constant (m s–1) 

N  Number of data points in a voltammogram 
( )P  Discrete probability mass function 

backgroundP  Probability that the current signal arises from non-faradaic processes 

( )fP  The probability a compound is present in solution when considering background 
processes 

q  Indexing counter 
GR  Universal gas constant (8.314 J mol–1 K–1) 

er  Working electrode radius (m) 
T  Temperature (K) 
t  Time (s) 
x  Axial distance from the planar electrode surface (m) 
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Greek variables 

α  Dimensionless charge transfer coefficient 
η  Vector of overpotentials (V) 
η  Scalar overpotential (V) 

jη  Overpotential at the j th data point (V) 

θ  Generic vector of electrochemical and transport parameters or concentrations 
(multiple units) 

iθ  Vector of electrochemical and transport parameters for species i  (multiple units) 

θ̂  
Vector of optimal electrochemical and transport parameters or concentrations 
(multiple units) 

ξ  Dimensionless position 
σ  Vector of the standard deviations for the experimental current (A) 

jσ  Standard deviation of the experimental current at the j th data point (A) 
τ  Dimensionless time 

aϕ  Anodic concentration-normalized difference current (A m3 mol-1) 

cϕ  Cathodic concentration-normalized difference current (A m3 mol-1) 

iϕ  Vector of concentration-normalized difference currents for species i  (A m3 mol-1) 
ϕ  Matrix of concentration-normalized difference currents for all species (A m3 mol-1) 

*Note that the inclusion of “∆ ” before any form of the current or concentration normalized current indicates a 
difference current or the normalized analog (A or A m3 mol-1). 

 

Latin symbols 

A  Toy analyte used to demonstrate the protocol methodology 
a  An anodic (oxidative) process 
B  Toy analyte used to demonstrate the protocol methodology 
c  A cathodic (reductive) process 

iH  i th hypothesis 
M  Total number of hypotheses 
O  Oxidized form of a redox couple 

obsO  An observation 
R  Reduced form of a redox couple 
X  A generic analyte 
Y  A generic analyte 
Z  A generic analyte 
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