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We combine ab initio molecular electronic Hamiltonians with a cavity quantum electrodynamics model for dissipative
photonic modes and apply mean-field theories to the ground- and excited-states of resulting polaritonic systems. In
particular, we develop a restricted Hartree-Fock theory for the mean-field ground-state and a non-Hermitian configura-
tion interaction singles theory for mean-field excited-states of the molecular system strongly interacting with a photonic
mode, and apply these methods to several paradigmatic polaritonic systems. We leverage the Psi4Numpy framework to
yield open-source and accessible reference implementations of these methods.

I. INTRODUCTION

The interaction between molecular excitations and
nanoconfined photons can produce the requisite strong
interactions for polaritonic chemistry1–29 . Motivated by a
desire to provide a realistic picture of the molecular structure
under the influence of strong photonic interaction, there has
been a recent surge in activity focused on merging ab initio
molecular electronic structure theory with cavity quantum
electrodynamics (ab initio CQED) to provide an accurate and
predictive model of polaritonic chemistry9,24,27,30–35. Such
approaches can provide access to potential energy surfaces,
couplings, and other properties of interest for simulating
the structure and reactivity of polaritonoic chemical sys-
tems. Here we present a simple ab initio QED method for
treating ground- and excited- polaritonic states with explicit
inclusion of photonic lifetimes via a non-Hermitian cavity
quantum electrodynamics - configuration interaction singles
approach (NH-CQED-CIS). We implement this approach
in the coherent state basis which results from solution
of the CQED-Hartree-Fock (CQED-HF) equations. We
endeavor to provide a detailed picture of the key equations
and algorithmic considerations for both the CQED-HF and
NH-CQED-CIS approach, and also provide reference imple-
mentations through the Psi4Numpy project36. We apply both
methods to the analysis of polaritonic structure of several
paradigmatic systems.

II. THEORY

We start with the Pauli-Fierz Hamiltonian in the dipole ap-
proximation in the length gauge, written in atomic units, fol-
lowing24,27,31:

Ĥ = Ĥe + Ĥp + Ĥdse + Ĥep, (1)

where

Ĥe =
Ne

∑
i

T̂e(xi)+
Ne

∑
i

NN

∑
A

V̂eN(xi;XA)+
Ne

∑
i

Ne

∑
j

V̂ee(xi,x j)+VN,N ,

(2)
with T̂e(xi) denoting the electronic kinetic energy operator for
electron i, V̂eN(xi;XA) the (attractive) coulomb operator for
electron i and nucleus A, V̂ee(xi,x j) the (repulsive) coulomb
operator for electrons i and j, and VN,N is the total (repulsive)
coulomb potential between all of the nuclei. Within the Born-
Oppenheimer approximation, VN,N is a constant, the nuclear
kinetic energy is neglected, and the electron-nuclear attrac-
tion depends parametrically on the fixed nuclear coordinates.
The photonic contribution is captured by the complex energy

Ĥp = ω̃ b̂†b̂, (3)

and the photon-molecule intereaction contains a bilinear cou-
pling term,

Ĥep =−
√

ω̃

2
(λ · (µ̂−〈µ〉))

(
b̂† + b̂

)
, (4)

and a quadratic dipole self energy term,

Ĥdse =
1
2
(λ · (µ̂−〈µ〉))2 . (5)

In the above, b̂† and b̂ are the bosonic raising/lowering oper-
ators for the photonic degrees of freedom, and ω̃ = ω− i γ

2 is
a complex frequency of the photon with the real part ω be-
ing related to the energy of the photon, and the imaginary part
γ being related to the dissipation rate of the photonic degree
of freedom18,25,37. The term 〈µ〉 represents the ground state
molecular dipole expectation value which has cartesian com-
ponents ξ ∈ {x,y,z}. A given ξ component of the dipole op-
erator has the form µ̂ξ = ∑

Ne
i µ̂ξ (xi) +∑

NN
A µ

ξ
nuc(xA), where

µ̂ξ (xi) is an operator that depends on electronic coordinates
and within the Born-Oppenheimer approximation, we treat
µ

ξ
nuc(xA) as a function of the nuclear coordinates rather than

a quantum mechanical operator. Note that the shift of the
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Hamiltonian by 〈µ〉 results from the transformation to the
coherent state basis24. To compute 〈µ〉ξ , we can use a sin-
gle Slater determinant approximation to the ground electronic
state,

〈µ〉ξ = |〈Φ0|
Ne

∑
i

µ̂
ξ (xi)+

NN

∑
A

µ
ξ
nuc(xA)|Φ0〉

= 〈Φ0|
Ne

∑
i

µ̂
ξ (xi)|Φ0〉+ 〈Φ0|Φ0〉

NN

∑
A

µ
ξ
nuc(xA) (6)

=
Nocc

∑
i

µ
ξ

ii +
NN

∑
A

µ
ξ
nuc(xA),

where µ
ξ

ii = 〈i|µ̂ξ |i〉 denotes the ξ -component of the occu-
pied molecular dipole integrals and ∑

NN
A µ

ξ
nuc(xA) is the ξ -

component of the nuclear dipole moment defined by the nu-
clear coordinates and atomic charges in the molecule. As
we will see in the following section, solving the CQED-RHF
equations will entail iterative updates to 〈µ〉 with the CQED-
RHF orbitals.

A. CQED-RHF

As our first step in solving for the energy eigenstates of
Eq. 1, we follow Ref. 24 and 27 and introduce a product wave-
function between an electronic Slater determinant (which in
practice may be initialized using a canonical RHF wavefunc-
tion) and a zero-photon number state,

|R〉= |Φ0〉|0〉. (7)

To develop CQED-RHF theory, we examine the expectation
value of Eq.1 with respect to Eq. 7,

〈R|Ĥep|R〉+ 〈0|Ĥp|0〉+ 〈Φ0|Ĥe + Ĥdse|Φ0〉
= 〈Φ0|Ĥe|Φ0〉+ 〈Φ0|Ĥdse|Φ0〉, (8)

where we see that the terms involving Ĥp and Ĥep vanish, and
the expectation value of Ĥe is analogous to the ordinary RHF
energy. To evaluate the expectation value of Ĥdse, we can first
expand Ĥdse in terms of the dipole operator (with electronic
and nuclear contributions) and dipole expectation values as
follows:

Ĥdse = ∑
ξ ,ξ ′

∑
i, j>i

λ
ξ

λ
ξ ′

µ̂
ξ (xi)µ̂

ξ ′(x j)

− 1
2 ∑

ξ ,ξ ′
∑

i
λ

ξ
λ

ξ ′Q̂ξ ξ ′(xi)

+(λ ·µnuc−λ · 〈µ〉)∑
ξ

∑
i

λ
ξ

µ̂
ξ (xi) (9)

+
1
2
(λ ·µnuc)

2− (λ · 〈µ〉)(λ ·µnuc)+
1
2
(λ · 〈µ〉)2

In the above expansion of Ĥdse we have specifically indicated
that the product of electronic dipole operators contains 2-
electron contributions when i 6= j, and 1-electron quadrupole

contributions when i = j. The quadrupole contributions arise
from the fact that µ̂ξ (xi)µ̂

ξ ′(xi) = −Q̂ξ ξ ′(xi). Furthermore,
a one-electron term arises that contains the electronic dipole
operator scaled by λ ·µnuc−λ · 〈µ〉, where again 〈µ〉 will be
iteratively updated during the QED-RHF procedure.

To solve the CQED-RHF equations, the additional one-
electron terms above will be added to Hcore and the additional
two-electron terms above will be included in the density-
matrix dependent terms in the Fock operator:

Fµν = Hµν +Gµν (10)

where

Hµν = hµν −
1
2 ∑

ξ ,ξ ′
λ

ξ
λ

ξ ′Qξ ξ ′
µν

+(λ ·µnuc−λ · 〈µ〉)∑
ξ

λ
ξ

µ
ξ

µν (11)

and

Gµν = (2(µ ν |λ σ)− (µ λ |ν σ))Dλσ

+

(
∑
ξ ξ ′

λ
ξ

λ
ξ ′
(

2µ
ξ

µν µ
ξ ′

λσ
−µ

ξ

µλ
µ

ξ ′
νσ

))
Dλσ , (12)

leading to the total QED-RHF energy being

EQED−RHF = (Fµν +Hµν)Dµν +VN,N +dc (13)

where

dc =
1
2
(λ ·µnuc)

2− (λ · 〈µ〉)(λ ·µnuc)+
1
2
(λ · 〈µ〉)2 . (14)

For clarity, we briefly outline the CQED-RHF algorithm
below:

1. Compute kinetic, nuclear attraction, electron repulsion,
dipole, and quadrupole integrals in AO basis

2. Perform canonical RHF calculation

3. Initialize D and 〈µ〉 from canonical RHF wavefunction

4. Augment core Hamiltonian with the dipole and
quadrupole terms in Eq. 11

5. Augment the Fock matrix by contracting products of
dipole integrals over current density matrix in Eq 12

6. Compute SCF energy through Eq. 15

7. Diagonalize Fock matrix and update density matrix

8. Check for convergence, if not converged, return to step
5.
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B. Non-Hermitian QED-CIS in the CQED-RHF basis

A mean-field description of the excited states of the molec-
ular system strongly interacting with photonic degrees of free-
dom may be obtained through a configuration interaction sin-
gles (CIS) ansatz for the excited-states. Here we formulated
a non-Hermitian version of such an ansatz, NH-CQED-CIS,
that incorporates the dissipative features of the photonic de-
grees of freedom. In our presentation, we formulate NH-
CQED-CIS in the coherent state basis using the orbitals that
result from the CQED-RHF approach outlined above.

The polaritonic energy eigenfunctions for state I in the
NH-CQED-CIS ansatz can be written as a linear combination
of the CQED-RHF ground-state and products of all possible
single excitations out of the CQED-RHF ground state. The
CQED-RHF ground state involves the product of an electronic
Slater determinant with the photon vacuum state, single exci-
tations can occur as electronic excitations from an occupied
orbital i to a virtual orbital a, the raising of the photon number
state from |0〉 → |1〉, or both. We therefore write the NH-
QED-CIS wavefunction for state I as

ΨI = c0
0|Φ0〉|0〉+ c1

0|Φ0〉|1〉+∑
i,a

c0
ia|Φa

i 〉|0〉+∑
i,a

c1
ia|Φa

i 〉|1〉.

(15)
where the coefficients c denote the contribution of a given
term to the wavefunction, where we have denoted the elec-
tronic excitations in the subscript and the photonic excitations
in the superscript of these coefficients. These coefficients, and
the corresponding energy eigenvalues for a given NH-CQED-
CIS state I may be obtained by diagonalizing the Hamiltonian
matrix built in the basis of the CQED-RHF and singly-excited
states from Eq. 15. We use a spin-adapted basis of singly ex-
cited electronic states, such that |Φa

i 〉= 1√
2

(
|Φaα

iα 〉+ |Φ
aβ

iβ 〉
)

.
There are three classes of matrix elements that contribute to
the Hamiltonian matrix; we write these matrix elements after
shifting the total Hamiltonian matrix in Eq. 1 by ECQED−RHF .
Matrix elements involving the CQED-RHF electronic Slater
determinant |Φ0〉 and photonic states |s〉 and |t〉, where s, t ∈
{0,1} involve only the (complex) photonic energy,

〈s|〈Φ0|Ĥ−ECQED−RHF |Φ0〉|t〉= ω̃ tδst . (16)

Matrix elements coupling |Φ0〉|s〉 to |Φa
i 〉|t〉 involve only the

Ĥep contributions:

〈s|〈Φ0|Ĥ−ECQED−RHF |Φa
i 〉|t〉=

−
√

ω̃
√

t +1δs,t+1 ∑
ξ

λ
ξ

µ
ξ

ia (17)

−−
√

ω̃
√

tδs,t−1 ∑
ξ

λ
ξ

µ
ξ

ia.

Matrix elements coupling different singly excited electronic
and/or photonic states involve all terms of the Hamiltonian,

including the usual CIS terms:

〈s〈Φa
i |Ĥ−ECQED−RHF |Φb

j〉|t〉
= (εa− εi +dc + ω̃ t)δi jδabδst

+δst (2(ia| jb)− (i j|ab))

+2δst ∑
ξ ,ξ ′

λ
ξ

λ
ξ ′

µ
ξ

iaµ
ξ

jb

−δst ∑
ξ ,ξ ′

λ
ξ

λ
ξ ′

µ
ξ

i jµ
ξ

ab

+
√

t +1 δs,t+1δi jδab

√
ω̃

2
λ · 〈µ〉

+
√

t δs,t−1δi jδab

√
ω̃

2
λ · 〈µ〉

−
√

t +1 δs,t+1δi jδab

√
ω̃

2 ∑
ξ

∑
k

λ
ξ

µ
ξ

kk (18)

−
√

t δs,t−1δi jδab

√
ω̃

2 ∑
ξ

∑
k

λ
ξ

µ
ξ

kk

−
√

t +1 δs,t+1δi j

√
ω̃

2 ∑
ξ

λ
ξ

µ
ξ

ab

−
√

t δs,t−1δi j

√
ω̃

2 ∑
ξ

λ
ξ

µ
ξ

ab

+
√

t +1 δs,t+1δab

√
ω̃

2 ∑
ξ

λ
ξ

µ
ξ

i j

+
√

t δs,t−1δab

√
ω̃

2 ∑
ξ

λ
ξ

µ
ξ

i j.

III. REFERENCE IMPLEMENTATIONS

We provide reference implementations using
Psi4Numpy36, which provides a simple NumPy inter-
face to the Psi438 quantum chemistry engine. The code
for these reference implementations can be freely accessed
in the hilbert package39,40. Furthermore, to provide a
no-installation option for interested users to experiment
with these implementations, we utilize the ChemCompute
project41 to host the illustrative calculations discussed in
the Results section below. Interested users can navigate
to https://chemcompute.org/register to register for a free
ChemCompute account. Following registration, interested
users can run calculations described in Figure 1 and Table I
in the results section using the link in Ref. 42, and can run
calculations described in Figure 2 and 3 using the link within
Ref. 43.

IV. RESULTS

We apply the CQED-RHF and NH-CQED-CIS approaches
to a few simple paradigmatic polaritonic chemical systems.
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First we examine the ground-state of formaldehyde strongly
coupled to a single photon mode, which has been explored
in by several groups that have been developing density func-
tional theory-based ab initio-QED methods9,35. We optimize
the geometry of lone formaldehyde at the RHF/cc-pVDZ level
and perform all calculations at that geometry. At this level,
the RHF ground-state has a dipole moment oriented purely
along the z−axis with 〈µ〉z = −1.009 atomic units. We ex-
amine the impacts of photon polarization along both the y−,
z− (or both) axes in Figure 1. In particular, we scan values
of the magnitude of |λ | in the range [0,0.2] atomic units in
increments of 0.02 atomic units for three different polariza-
tions: λy = (0, |λ |,0), λz = (0,0, |λ |), and λyz =

(
0, |λ |√

2
, |λ |√

2

)
.

We note that the electric field vector enters explicitly into the
CQED-RHF equations while the photon frequency does not,
so we do not report a specific value of ω̃ for these calculations.

We see, not surprisingly, that the CQED-RHF energy in-
creases monotonically with the magnitude λz, and interest-
ingly, shows the same qualitative behavior (albeit slightly less
dramatically) with increasing magnitude of λy (see top panel
of Figure 1). We first decompose the total CQED-RHF energy
into the canonical RHF contribution,

ERHF =
(
2hµν +2(µν |λσ)Dλσ − (µλ |νσ)Dλσ

)
Dµν ,

(19)
and the Pauli-Fierz contribution that includes the remaining
terms in the CQED-RHF Fock operator traced against the con-
verged CQED-RHF density matrix (with elements Dµν de-
noted above).

Not surprisingly, we see that the Pauli-Fierz contribution
shows the most dramatic scaling with the electric field mag-
nitude, comprising the majority of the energy change, but we
also see that the canonical RHF contribution is modifed by the
electric field, as well. We present a more granular decomposi-
tion of these energetic contributions only for the largest field
magnitude |λ |= 0.2 atomic units in Table I.

∆E (a.u.) % ∆1E % ∆2E % ∆1de % ∆1qe % ∆2de % ∆dc

λy
0.135 -210 213 0 210 -113 0

λz
0.161 -169 172 -23 440 -331 11

λyz
0.148 -185 188 -12 333 -230 6

TABLE I. Change in total CQED-RHF energy (∆E in atomic units)
and % relative changes in different contributions to the total CQED-
RHF energy for three different polarizations of a photonic mode with
magnitude |λ |= 0.2 atomic units.

From Eq. 7, we see that only the photon vacuum con-
tributes to the CQED-RHF wavefunction. However, in Eq.
(17), we see that the CQED-RHF wavefunction can couple to
states which involve singly-excited electronic configurations
and singly-occupied photon states. This coupling can lower
the energy of the lowest energy eigenstate of the CQED-CIS
Hamiltonian relative to the ground-state determined by the
CQED-RHF method.

We illustrate this point through the ground-state potential

−113.88

−113.86

−113.84

−113.82

−113.8

−113.78

−113.76

−113.74

−113.72

−113.7

 0  0.05  0.1  0.15  0.2

E
n
e
rg

y
 (

H
a
rt

re
e
s
)

Electric Field Strength (a.u.)

Ey
Ez

Ey, Ez

−145.658

−145.657

−145.656

−145.655

−145.654

−145.653

−145.652

 0  0.05  0.1  0.15  0.2

E
n
e
rg

y
 (

H
a
rt

re
e
s
)

Electric Field Strength (a.u.)

Ey
Ez

Ey, Ez

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.05  0.1  0.15  0.2

E
n
e
rg

y
 (

H
a
rt

re
e
s
)

Electric Field Strength (a.u.)

Ey
Ez

Ey, Ez

FIG. 1. (Top) Total CQED-RHF energy, (middle) canonical RHF
contribution to the total energy, (bottom) Pauli-Fierz contribution to
the total energy as a function of |λ | along the y− and/or z− axes.

energy surface of the MgH+ diatomic cation coupled to a pho-
ton that is on resonance with the ground-state singlet (|X〉) to
first excited-state singlet (|A〉) when the MgH+ bondlength is
approximately 2.2 Angstroms23. We consider the molecule to
be oriented along with z axis, which is parallel to the polar-
ization vector of the photon that has magnitude λz = 0.075
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FIG. 2. Ground-state potential energy surface of MgH+ coupled
to a photon resonant with X → A transition. We see that the pho-
tonic coupling raises the energy relative to the lone molecular sys-
tem (as computed at the RHF/cc-pVDZ level). Coupling between
the CQED-RHF wavefunction and singly-excited electronic and pho-
tonic configurations stabilizes the CQED-CIS ground-state relative
to the CQED-RHF ground-state.

atomic units. We compute the potential energy surface of
this system at the RHF/cc-pVDZ, CQED-RHF/cc-pVDZ, and
CQED-CIS/cc-pVDZ level and plot the results in Figure 2.

As a final illustrative example, we consider the upper-
polariton (|UP〉) and lower-polariton (|LP〉) states that emerge
from coupling MgH+ to a photon resonant with the |X〉→ |A〉
transition. We again consider a z-polarized photon with mag-
nitude λz = 0.0125 atomic units. This time, we allow the
photon to have a complex energy where the imaginary part
accounting for the finite lifetime can also be related to the en-
ergy uncertainty of the photon. We consider the real part of the
photon energy to be 4.75 eV, and we consider the imaginary
part to be either 0 eV or 0.22 eV as shown in the top and bot-
tom panels of Figure 3, respectively. In addition to computing
these polariton surfaces at the CQED-CIS/cc-pVDZ level, we
also fit a 3-level model Pauli-Fierz Hamiltonian from ordinary
CIS/cc-pVDZ potential energy surfaces:

H =


EX + (λ ·〈µX 〉)2

2 0 0

0 EX + ω̃ + (λ ·〈µX 〉)2

2

√
ω̃

2 λ ·µXA

0
√

ω̃

2 λ ·µXA EA +
(λ ·〈µA〉)2

2 .


(20)

The polaritonic surfaces obtained from diagonalizing Eq. (20)
are referred to as the ’Model LP’ and ’Model UP’ surfaces in
Figure 3. We see with a pure real photon energy, the |LP〉 and
|UP〉 surfaces experience a strong splitting in the region where
the |X ,1〉 state (the ground-state plus a photon) crosses the
|A,0〉 state (the first excited-state without a photon). However,
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FIG. 3. Polaritonic surface of MgH+ coupled to a photon with (top)
h̄ω̃ = 4.75 eV and (bottom) h̄ω̃ = 4.75−0.22 eV with λz = 0.0125
atomic units. We see evidence of strong coupling via splitting of
the surfaces where the |X ,1〉 and |A,0〉 states are resonant, when the
photon energy is pure real, and we see the splitting vanish when the
imaginary part of the photon energy is large compared to the interac-
tion energy.

for the strongly dissipative photon, we see that both the model
and CQED-CIS curves closely approximate the CIS curves
for the lone molecules, which signals that this system is not in
the strong-coupling regime because of the lossiness associated
with the photon25.
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V. CONCLUSIONS

We combined ab initio molecular electronic Hamiltoni-
ans with a cavity quantum electrodynamics (CQED) model
for dissipative photonic modes and apply mean-field theo-
ries to the ground- and excited-states of resulting polaritonic
systems. In particular, we developed a restricted Hartree-
Fock theory for the mean-field ground-state and a non-
Hermitian configuration interaction singles theory for mean-
field excited-states of the molecular system strongly inter-
acting with a photonic mode, and applied these methods to
several paradigmatic polaritonic systems. We leveraged the
Psi4Numpy36 framework to yield open-source and accessible
reference implementations of these methods.
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