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Abstract  

Due to the strong relationship between desired molecular activity to its structural core, screening of 

focused, core sharing chemical libraries is a key step in lead optimization. Despite the plethora of 

current research focused on in silico methods for molecule generation, to our knowledge, no tool 

capable of designing such libraries has been proposed. In this work, we present a novel tool for de 

novo drug design called LibINVENT. This is capable of rapidly proposing chemical libraries of 

compounds sharing the same core while maximizing a range of desirable properties. To further help 

the process of designing focused libraries, the user can list specific chemical reactions that can be used 

for the library creation. LibINVENT is therefore a flexible tool for generating virtual chemical 

libraries for lead optimization in a broad range of scenarios. Additionally, the shared core ensures that 

the compounds in the library are similar, possessing desirable properties and can be also synthesized 

under the same or similar conditions. The LibINVENT code is freely available in our public 

repository: https://github.com/MolecularAI/LibINVENT. The code necessary for data preprocessing is 

further available at: https://github.com/MolecularAI/LibINVENT-dataset. 
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Introduction 

With the recent advances in deep learning techniques, such techniques are becoming increasingly 

popular tools in a range of areas – from automated vehicles to medicinal chemistry1,2. This is especially 

true for drug discovery where the symbiosis between machine learning models and human experts has 

the potential to significantly speed up the process of early drug discovery3. Due to their generalization 

abilities, deep generative models have become the core engine in most recent de novo design tools4,5. 

Despite the progress in the field of deep learning such tools are still in the early stages of development 

as they are adapting to satisfy the more specific needs of drug design6. 

 One of these specific requirements is in the lead optimization stage when aiming to use focused libraries 

of small molecules to identify a promising lead compound7,8. Generally, the purpose of lead optimization 

is to retain the favorable properties of the compound while optimizing properties which still prevent the 

compound from becoming a drug candidate9. Since the desired activity is normally tied up to a given 

scaffold10, this use case boils down to retaining a certain molecular core and varying only specific 

moieties to satisfy the complex demands for the properties of the candidate molecule7. In practice this 

can be addressed by screening very focused libraries that share the same core11. As an ideal scenario 

when synthesizing such a library, it should be possible to introduce the proposed moieties via the same 

or similar reactions to ensure that the reactions can be carried out under the same conditions. Related 

investigations have been conducted on a much smaller scale in the works on matched molecular pairs12 

and fragment linking7; the explorations have however neither been previously extended to library 

generation nor to considered chemical reactions.  

For the purpose of this paper, we define a chemical library as follows: 

Definition 1: Given a scaffold s, library is a set of molecules with conditions:  

1. All include substructures  

2. All molecules are accessible by the same sequence of synthetically relevant chemical 

transformations. 
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In this paper, we propose a solution based on de novo generative model capable of addressing the use 

cases outlined above. The model is built on the REINVENT13 framework where a pretrained prior with 

a knowledge of general chemical syntax is focused via reinforcement learning to generate compounds 

optimized for a specific, user defined task. In this work,  we extend the objective from a single compound 

design to a library design. Specifically, the model can suggest moieties to decorate an input scaffold 

with a variable number of attachment points for these decorations. In addition, the model can be put in 

a reinforcement learning (RL) scenario in order to learn to maximize a user defined set of objectives. 

The resulting ideas will therefore be focused according to specific lead optimization goals. In contrast 

with prior work on scaffold decoration, these goals may include a set of reactions assigned to each 

attachment point of the scaffold so that the model learns to produce moieties attachable to that specific 

attachment point in agreement with the given reactions. This way of generating chemical libraries gives 

the user a significant level of control over the output, enabling them to focus the model’s creativity and 

leverage prior knowledge14. Satisfying condition 2 of the library definition further means that the 

generated library is more suitable for automation in the design and execution stage by reducing the 

number of reagents and reactions required in synthesis, provided that the specified reactions are selected 

to be amenable to automated synthesis. It further allows the chemist to optimally select reactions with a 

desired profile, which includes but is not limited to considerations of efficiency, literature coverage, or 

safety. Thus, the number of DMTA (design-make-test-analyze) cycles required in the drug discovery 

process decreases, improving the productivity of the incorporation of a generative model in the lead 

optimization pipeline. 

The original REINVENT algorithm13 proposes compounds optimized for solving a specific user-defined 

objective and the recent GraphINVENT extends this to work to molecular graphs15. The algorithm 

introduced here, called LibINVENT, takes the work further and closer towards utilization of chemistry 

automation platforms by building focused, easy synthesizable libraries. Related models have appeared 

in the literature over the recent years, focusing both on scaffold decoration itself or on the usage of 

reinforcement learning to guide the decorative process14,16,17. The major enhancement LibINVENT 

brings to these methods lies in the volume and diversity of its output within a focused chemical space. 
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Crucially, the fact that the generated libraries can be produced from the same starting scaffold using 

specific chemical reactions facilitates the uptake of the ideas in a wet lab environment and contributes 

to the possibility of automation of the drug design process. By focusing on the design and synthesis of 

libraries instead of single molecules the learning in each Design-Make-Test-Analyze cycle can be 

increased and accordingly there is a need for fewer cycles to reach a clinical candidate. 

General workflow 

This section gives a high level overview of the individual steps of data preparation, model training and  

the usage of the algorithm to optimize various user-defined objectives. Figure 1 shows an overview of 

the workflow.  Specific technical details will be further discussed in the Methods section. The motivation 

for the choices made in both data preparation and model design is further explained in the Discussion. 

The model is a recurrent neural network (RNN) which takes a scaffold as an input and returns complete 

compounds obtained by attaching decorations to the input scaffold. There are two stages in the training: 

firstly, a general model is trained to learn the syntax of the SMILES language. We will henceforth refer 

to this model as the prior and stress that the training of the prior is not specific to a particular task and 

thus only occurs once. The second step corresponds to the general usage of this model which is 

analogous to REINVENT: the prior is focused to solve a user defined objective. In the case of 

LibINVENT, this is achieved through reinforcement learning and might involve a requirement for 

specific chemical reaction types.  Starting from a scaffold of interest, the general prior thus rapidly 

adapts to propose a focused chemical library consisting of thousands of compounds sharing a scaffold 

and chemical properties. Importantly, the generated compounds are collected during the RL process and 

not after, meaning that the model is typically no longer used after completing the RL run.  
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a: Dataset preparation and prior training. This is only performed once. 

b: Production of a focused library in a reinforcement learning loop. 

 

Figure 1: The general workflow of the model. In the first stage (a), a generative decorator is trained on 

the pre-processed data. This model, called prior, is subsequently used in a reinforcement learning loop 

to generate a library for any user defined task, as illustrated in (b). It serves both as an initialization of 

the agent and a regularization component in the scoring function. 
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Data preparation  

Compounds from the publicly available ChEMBL Database, version 2718, represented by SMILES 

strings, were used to train the prior model. This choice of representing the chemical compounds by 

sequences of characters has several advantages and is common in the cheminformatics literature20. 

Firstly, despite losing a certain level of chemical information11, this representation is significantly more 

memory efficient than the use of molecular graph data while implicitly retaining the molecular graph 

structure. Moreover, the SMILES strings are compatible with the chemical reactions expressed using 

the SMARTS language. This is crucial in the context of this work which focuses on incorporating 

knowledge of chemical pathways directly into the generative model.  

As is standard for computational applications in drug discovery, the first step of the data preparation 

process involves data purging and sanitisation19. The purpose of purging is to remove undesirable 

compounds and outliers from the dataset6. This among others includes molecules containing rare 

SMILES tokens or elements which the model is unlikely to be able to learn and thus merely pollute the 

model’s vocabulary, molecules with extremely large or low molecular weights or salts, which are neither 

drug-like nor chemically friendly. Approximately 25 % of the compounds present in the database have 

been removed at this stage. For details on the implementation and filter criteria, as well as the exact 

numbers of molecules present in the datasets, see the supporting information.  
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The second pre-processing step necessary to train a scaffold decorating model is compound slicing. 

There are many ways of slicing a molecule to obtain scaffold-decoration pairs for training a decorator 

model20. Recently, exhaustive slicing of single-bonds according to RECAP21 rules has been 

explored16,17.  While this approach appears natural at a glance, it is not always effective for a wet lab 

chemist attempting to synthesize the proposed compounds22. While the default RECAP rules, which 

include 11 bond cleavage types (amide, amine, ester, urea, ether, olefin, quaternary nitrogen, aliphatic 

carbon with aromatic nitrogen, lactam nitrogen with aliphatic carbon, aromatic carbon with aromatic 

carbon and sulphonamide), are aiming to slice the molecules and identify preferred structural motifs 

they still leave some cleaving possibilities out. The ability to follow real chemical reactions when 

decorating the scaffold is crucial; our experiments demonstrate that training on data sliced according to 

RECAP rules does not teach the prior to understand these chemical principles. This means that the model 

is unable to satisfy reaction requirements when designing chemical libraries. 

Practical synthesis and chemical considerations should thus be taken into account when slicing the 

molecules to ensure that the reverse process (forward synthesis) is synthetically valid23. In their recent 

paper, Horwood and Noutahi24 propose incorporating chemical synthesis routes directly into the model 

Figure 2: An example of a sliced molecule resulting in a scaffold with two attachment points and the 

corresponding decorations. 
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by designing a de novo generator based on chemical reactions. Given starting reactants, their model 

proposes drug-like molecules by selecting other appropriate reactants as well as specific reactions used 

to transform and connect the molecules into a resulting compound. This novel approach significantly 

improves the synthesizability of the proposed molecules; it however still lacks the ability to design 

libraries as well as the degree of flexibility and generality desirable in de novo generators. Specifically, 

training has to occur on a dataset relevant to the final task at hand and there is limited capacity for 

knowledge transfer and extension to more specific tasks without retraining. 

In this work, an alternative data pre-processing approach, to the one used by Arus-Pous et. al.25, is 

proposed to build a knowledge of chemical reactions directly on the training dataset comprised of the 

filtered ChEMBL database. 37 hand crafted reaction based rules are used to slice the training compounds 

into scaffolds and decorations so that each split is a result of a known, easily implementable chemical 

reaction.  A complete list of the reaction SMIRKS can be found in the tutorial section of our LibINVENT 

Dataset public repository; the Supporting Information moreover provides details on the exact steps taken 

and the numbers of compounds, scaffolds and decorations used at each step. We demonstrate that the 

reaction based slicing method enables the generative model to propose decorations according to the 

chemical reactions used in training. The output therefore benefits from high validity and better 

likelihood of being synthetically feasible. An illustration of the process is provided in Figure 2. 

Model training 

The prior model is trained using the teacher forcing algorithm26 to maximize the conditional likelihoods 

of the generated compounds given the scaffolds. Even a single pass through the dataset teaches the 

model to generate chemically valid SMILES strings; the optimal state balancing the coverage of 

chemical space and overfitting is however reached after approximately eight epochs. At each epoch, a 

different randomized representation of the training and validations SMILES is used as this further 

prevents overfitting27. As mentioned previously, it is crucial to note that this training only needs to 

happen once since the prior can be reused for a wide range of tasks without additional transfer learning 

stages often required in previously introduced models28.  The resulting prior model is provided in our 

public GitHub repository along with the code and data necessary to reproduce the training. 
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Case specific usage: Focusing a prior via Reinforcement Learning 

Case specific usage of the model involves focusing the prior on a specific task. This finetuning is 

efficiently achieved by setting up a reinforcement learning loop in which the prior iteratively proposes 

compounds and receives task-specific rewards for its output. During the run, all high scoring compounds 

are stored in a virtual chemical library which we will refer to as resulting dataset; the production of the 

library therefore begins instantaneously once a RL run is set up and continues throughout the training 

of the RL agent. 

The rewards are shaped by a scoring function defining desirable chemical or structural properties to 

guide the model towards producing compounds of interest8. However, since the objective is to explore 

a rather narrow space of solutions (molecules) designed for a given scaffold, this may lead to a mode 

collapse29. To achieve a stable RL process we introduce a mechanism that relies on Diversity filters (DF) 

previously described by Blaschke et al.13. Diversity filters and prior likelihoods of the proposed 

compounds can be included when calculating the reward. Diversity filters penalize the RL agent for 

repeatedly generating the same compound, which significantly reduces the risk of mode collapse 

towards a single high scoring solution (molecule). The prior likelihood serves as an additional 

regularizer, anchoring the agent to the previously learnt chemical space and ensuring that the SMILES 

syntax is not forgotten30.  

Another reward modifying factor are the reaction filters (RF). The introduction of reaction filters to the 

learning process means that the proposed libraries can be synthesized using selected reactions, 

facilitating the creation of focused libraries. RFs are designed to be selective, so that a reaction or a set 

of reactions can be specified for each attachment point of the scaffold. This gives the user significant 

control over the output of the model and enables leveraging prior chemical knowledge.  The full practical 

implementation of the RL procedure is described along with its mathematical background in the section 

Focusing the prior via reinforcement learning. A number of reaction definitions is further published in 

our public repository. 
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We emphasize that focusing the pretrained prior using reinforcement learning makes the LibINVENT 

decorator model widely applicable in a variety of real world scenarios with a range of reactants. Libraries 

containing thousands of high scoring, synthesizable molecules can be obtained within minutes or tens 

of minutes while the more expensive training of the prior model does not need to be repeated for new 

libraries.  

Methods 

Model architecture 

The architecture of the model is analogous to the scaffold decorator introduced by Arús-Pous et al.16. 

The decorator model uses an encoder-decoder architecture where both the encoder and decoder are 

RNNs with three hidden layers of dimension 512 and the embedding is of size 256. During training, 

dropout at rate 0.1 has been used. 

We refer to the collection of tokens recognized and used by the model as the vocabulary. This is 

composed of all the SMILES characters present in the pruned training dataset and enriched by the special 

‘END’ and ‘START’ tokens determining the beginning and ending of a SMILES string. The length of 

the vocabulary corresponds to the dimension of the multinomial distribution over which the tokens are 

sampled. For details of the tokens included,  see supporting information. 

Validation set 

As in any machine learning model, a good validation set is required in order to fairly evaluate the 

performance31. The objective of the prior model training is to learn to decorate scaffolds so that the 

resulting compounds lie in the drug-like chemical space spanned by the training dataset. This nature of 

the modelling objective affects the choices made when preparing the validation set. While it is common 

to randomly hold out a portion of the training data and use these for evaluations32, the sliced dataset used 

here does not lend itself well to this approach. To be able to fairly judge the generalization ability of the 

model on previously unseen scaffolds, it is necessary to ensure that the validation scaffolds are not 

present in the training dataset. Optimally, even compounds structurally similar to these need to be 
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removed from the training set to validate the performance of the model fairly33. At the same time, the 

general distribution of the validation scaffold properties should mimic that of the training set to evaluate 

how well the model learns to follow the data distribution. 

With these considerations in mind, the training-validation split was handcrafted by selecting one scaffold 

with each number of attachment points at random. Since the compounds in the dataset were sliced up to 

four times the maximum possible number of attachment points is four. Then, all scaffolds sharing a 

Murcko scaffold34 with one of the four compounds used for defining the seed for the validation set have 

been removed from the data set and used for validation. The choice to consider only the molecular cores 

consisting of ring structures stripped of side chains is motivated by the fact that  the removed sets of 

compounds resemble the concept of ‘chemical series’ as used by medicinal chemists10. Removing entire 

chemical series based on a specific Murcko scaffold thus naturally reduces the bias in model evaluation 

and objectively tests its generalization ability.  

Table 1: The held out validation scaffolds picked from the data and their Bemis-Murcko forms based 

on which the remainder of the held out scaffolds was chosen. 

Library scaffold Bemis-Murcko scaffold 

 

 

[*]N1CCN(c2ccccc2OC)CC1 

 
 

[*]CCCOc1cc2nccc(Oc3ccc(N[*])cc3F)c2cc1OC 
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[*]N1CCN(c2cc([*])nc([*])n2)CC1 

  

[*]Cn1c([*])c([*])c2cc(C(=O)[*])ccc21 

 

 

We have selected the dopamine receptor D2 (DRD2) as the biological target of interest. This is a 

commonly used target in molecular generative models studies by our30,35,36,25 and other groups24,37,38 in 

this field and allows access to large publicly available SAR datasets. 

We remove all compounds sharing a scaffold with compounds found in the dataset obtained by slicing 

the DRD2 scaffolds according to the set of reactions previously used to slice ChEMBL39. These 

compounds are neither included in the validation nor in the training set. in this way, the training and 

validation sets are kept independent and the subsequent external validation on DRD2 remains unbiased. 

Representative scaffolds for the held out compounds used for validation are shown in Table 1 along with 

their Bemis-Murcko representations. The resulting validation set excluding the DRD2 data contained 

241,137 unique entries. The training set contained the remaining 23,080,572 entries. These numbers 

show that the consideration of Bemis-Murcko scaffolds filters out a non-negligible number of 

compounds very similar to the original held out scaffold. At the same time, the size of this dataset means 

that despite the validation representing only about 1 % of the data, sufficient information is still included 

in order to assess the generative ability of the decorator. 

Up until now, all SMILES have been canonicalized to ensure uniqueness. However, using different 
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SMILES representations during training of deep learning models, leads to improvements of 

generalizability, both in activity modelling40, representation learning41 and SMILES generation. Before 

training the generative model, a different randomized representation of the training dataset is obtained 

for each epoch of teacher forcing training. The same is applied to the validation set. 

Pretraining the prior via teacher forcing 

As mentioned before, the training process of LibINVENT resembles the training of REINVENT 2.013. 

First, teacher’s forcing42 is used to train the prior model capable of creating chemically valid compounds 

containing a given scaffold. In our case, the prior is an RNN taking a scaffold as an input and returning 

relevant decorations to connect to all available attachment points of the scaffold, much like the model 

recently introduced by Arús-Pous et al25. The number of resulting molecules corresponds to the batch 

size. 

The generation process can be seen as a sequential conditional likelihood maximization problem. The 

output of the model represents a probability distribution over the token space containing all the possible 

SMILES tokens present in the training dataset enriched by the ‘START’ and ‘END’ tokens, given the 

scaffold and previously generated tokens in the decoration. The objective function to be maximized can 

thus be written as: 

J(θ|𝑆 = 𝑠) = ∏ {P(𝑋1|𝑆 = 𝑠, θ) × ∏ 𝑃(𝑋𝑖 = 𝑥𝑖|𝑋𝑖−1 = 𝑥𝑖−1, … , 𝑋1 = 𝑥1, 𝑆 = 𝑠, θ)

𝑇

𝑖=2

}

𝑑𝑒𝑐𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

(1) 

Here, θ represents the network parameters to be determined, 𝑋𝑖 , i = 1, … , T are the random variables 

corresponding to the tokens while the 𝑥𝑖 are the observed (or in this case previously generated) tokens. 

Analogously, S and s refer respectively to the random variable corresponding to the input scaffold and 

the specific scaffold itself. In this work, the scaffold is given a priori and the distribution is therefore 

deterministic. Finally, T is another random variable determining the length of the decoration SMILES 

string. In practice, we do not sample its distribution. Instead, the process ends when the ‘END’ token is 

sampled. 

The implementation and training details are described in the supporting information. 
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Focusing the prior via reinforcement learning 

Motivation 

Due to the vastness of chemical space, it is typically not sufficient to be able to produce drug-like 

molecules; indeed, depending on the specific design objective, exploration of a narrower chemical 

subspace is many times desirable, especially in lead oprimization43. Specific focusing is thus a crucial 

step in developing a generative model capable of proposing compounds useful in a context like lead 

optimization. To achieve this, the parameters of the pretrained prior network need to be modified to 

target a narrower chemical subspace. At the same time, it has been observed that deviating too far from 

the prior can have catastrophic consequences where the model loses its knowledge of valid SMILES 

syntax43,44. 

In order to focus the model, a RL agent is initialized as a network with weights and architecture identical 

to those of the pretrained prior. To define the task, a reward function is constructed to guide the agent’s 

learning, taking SMILES strings as input and returning scores in the range [0, 1]. The function rewards 

compounds with desirable properties, promotes varied output through diversity filters and specifies 

desired reactions to be used via reaction filters. Then, standard policy iteration RL is applied: In 

successive iterations, the agent proposes decorations for the scaffold and updates its parameters in a 

gradient ascent fashion based on the rewards these decorations receive. During the training, all 

syntactically valid compounds (SMILES strings) with a score exceeding a user defined threshold are 

stored in the resulting dataset and made available to the user at the end of the run. A successful run 

results in a constantly increasing dataset since the model produces new relevant outputs at each step 

during the run. In an optimal scenario, the resulting dataset increases linearly with the number of steps, 

with the gradient corresponding to the batch size. This motivates the following definition of a yield 

metric used to evaluate the degree of success of the runs: 
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yield =
|resulting dataset|

Batch size×Number of steps
(2) 

The consideration of yield as opposed to the raw number of molecules produced is important since the 

produced numbers ultimately depend on the selected batch size. A model trained with a batch size of 32 

returns twice as many compounds at each epoch as one with batch size 16. The important question, 

however, is how many of the 32 compounds are relevant and unique. 

Mathematical Background 

The starting point for a mathematical description of the RL procedure is defining a state space 𝑆𝑡 and 

the corresponding action space 𝐴𝑡(𝑠𝑡) as well as rewards 𝑟𝑡  ≔ 𝑅(𝑎𝑡) for all 𝑠𝑡 ∈ 𝑆𝑡 , 𝑎𝑡 ∈ 𝐴𝑡. In the 

context of molecule decoration, an action is a proposed decoration (or decorations) for the scaffold while 

the state contains information about all previously proposed decorations and the rewards assigned to 

these, i.e. 𝑠𝑡 = ∑ 𝑟τ
𝑡−1
τ=1 . Note the reward function R is fixed throughout the training. 

At each step, the RL agent randomly samples an action (i.e. proposes a decoration) according to its 

policy πθ. The aim is to find the value of the parameters θ leading to an optimal policy πθ∗ maximising 

the expected cumulative rewards across the whole run. In other words: 

θ∗ = argmaxθ ∑ 𝔼A∼πθ
(R(A)|St=st)

T

t=0

(3) 

The expected value is maximized at each time step in a greedy manner. The RL objective function at 

each step can therefore be written as:  

J(θ) = 𝔼𝐴∼πθ
(𝑅(𝐴)|𝑆𝑡, θ), (4) 

where the expectation is taken over the distribution of the actions.  

Gradient ascent methods are typically used to maximize the objective. Exploiting the fact that 

∇ log 𝑓(𝑥) =
∇𝑓(𝑥)

𝑓(𝑥)
, the gradient of eq 4 at step t + 1 can be written as: 
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∇θ𝐽(θ) = ∑ 𝑅(𝑎)∇θ log π(𝐴 = 𝑎|𝑆𝑡 = 𝑠𝑡 , θ)

𝑎∈𝐴𝑡+1

. (5) 

Equation 5 is the basis of many popular RL algorithms such as REINFORCE45. If the goal is to maximize 

cumulative rewards across N training epochs, it suffices to add an extra summation over all the timesteps, 

which results in a similar expression – the key feature of which is the fact that it is sufficient to compute 

the gradients of the log likelihoods to obtain a gradient ascent update step.  

Without further regularization or adjustments, these methods are known to suffer from high variance 

and instability46. In the case of molecular generation, however, the aim is to produce a large number of 

varied, interesting molecules24. This means that a certain level of variance is desirable to promote 

exploration of the chemical space and prevent mode collapse towards a single, high scoring solution. 

Our experiments show that with an appropriate choice of the reward function, high variance does not 

hinder the models from producing relevant output.  

Policy Iteration Rewards 

A crucial requirement for a successful set-up of a RL run is a good definition of the reward. In our case, 

this has to guide the agent in the right direction to solve the specific practical task and promote diversity. 

Similar to Blaschke et al.13, we investigate rewards assembled from a combination of two elements: A 

scoring function S(𝑎) ∈ [0, 1] quantifying how well the proposed compound solves the task and prior 

likelihood π θ𝑝𝑟𝑖𝑜𝑟
(𝑎) = π(𝑎, θ𝑝𝑟𝑖𝑜𝑟). Since the agent and prior share architecture, their likelihood 

functions differ only in the values of the parameters θ. 

The Scoring Function 

The S(𝑎) itself is composed of multiple weighed elements which are summed or multiplied; the final 

score is then normalized to lie in the unit interval [0, 1]. A range of components is supported, from 

molecular descriptors such as molecular weight, topological polar surface area (TPSA), pretrained 

predictive models,  docking47 and ROCS similarity48. As mentioned previously, diversity and reaction 

filters may be imposed to further restrict the space of relevant output and promote diversity. 
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Diversity filter works by penalizing the model for producing an identical compound multiple times in a 

single batch. This is beneficial in preventing the agent from repeatedly proposing the same, high scoring 

compound multiple times, which can lead to mode collapse49. A well selected diversity filter therefore 

balances exploration and exploitation of the chemical space. 

Finally, reaction filters are a feature giving the user greater control over the generated compounds. Two 

types of reaction filters are implemented: general filter determining what reactions should occur to 

decorate the scaffold, and a selective filter assigning the specific reactions to the individual attachment 

points. Reaction filters use retrosynthetic reaction definitions compatible with RDKit50. Any valid 

reaction definition can be applied here. However, we provide together with the code repository a list of 

37 predefined reactions that were used for the generation of training data. For each attachment point the 

user can provide simultaneously a variable number of reactions within the same run. Reaction filters 

serve as penalty component. However, if any of the listed reactions is satisfied, for the given attachment 

point, the score is not penalized. This requires chemical understanding of the nature of the problem to 

avoid the situation where a non-feasible reaction is required for a given attachment point; it is 

nevertheless a novel and efficient way of generating libraries of similar drug like compounds which are 

readily synthesizable.  

Different Reward Strategies 

The motivation for the use of the prior likelihood in the reward function is identical to the one of 

Olivecrona et al.44. The pretraining ensures that the model is capable of generating valid SMILES of 

drug-like molecules. This serves as an anchor; it is desirable to discourage the agent from deviating too 

far from its prior state since a strong focus on maximizing the score alone can lead to either a mode 

collapse or to a loss of the generative ability altogether. Once the agent moves to a parameter space 

which does not lead to valid SMILES syntax, it does not receive any rewards at all and cannot continue 

learning through gradient ascent.  

Based on the discussion above, we follow previous work in defining the augmented log likelihood 

log π𝐴(𝑎) = log πθ𝑝𝑟𝑖𝑜𝑟
(𝑎) + σS(𝑎). Here, σ is a constant hyperparameter scaling the output in the same 

range. We note that log likelihood is a monotonic increasing function taking values in (−∞, 0), which 
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means that the reward is a monotonic increasing function in (−∞, σ). In experimental setups, this 

likelihood is shown to serve well as a directional guide, leading the agent to more focused and interesting 

chemical spaces. The intuitive rationale for this is that the augmented likelihood balances the prior 

anchor with the task-specific objective. 

Finally, four different RL learning strategies are proposed based on four different reward functions:  

1. R(𝑎) = S(𝑎). This method, henceforth referred to as MASCOF (Maximize Scoring Function), 

is a simple implementation of the standard REINFORCE algorithm where the scoring function 

directly serves as the reward 45. This standard approach to solving a RL problem by maximizing 

the scoring function without anchoring it to the prior is a natural first step and can be seen as a 

baseline for the other methods. Our experiments however demonstrate that the RL agent 

struggles to remain in the valid chemical space without the anchor. Similar observations have 

been made in the past, typically arguing that the initial sparseness of rewards leads to the model 

struggling to begin learning49.  

2. R(𝑎) = log πA(𝑎). Since the augmented likelihood attempts to balance the prior likelihood and 

the scoring function, it can be seen as a reward itself. We call this method MAULI (Maximize 

Augmented Likelihood. 

3. R(𝑎) = log πA (𝑎) − log πθ (𝑎). This approached, dubbed DAP (Difference between 

Augmented and Posterior), can be shown to be equivalent to the strategy introduced by 44. Their 

work frames the RL slightly differently, focusing on loss minimization of the square loss 

between the augmented and posterior log likelihoods: ℒ(θ) = (log πA (𝑎) − log πθ (𝑎))
2
. 

While not a standard policy iteration approach, it does perform well in focusing the agent. For 

a full derivation of the equivalence of these two approaches, we refer the interested reader to 

the appendix.  

4. R(𝑎) = −(log πA (𝑎) − log πθ (𝑎))
2

. Noting that the rationale behind the DAP strategy is 

minimization of the difference between the two likelihoods, the fact that the likelihoods are 

unbounded means that with the formulation in 3., the reward may in theory keep increasing 

infinitely as the posterior probability approaches zero. In practice, this is rarely observed. For 
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mathematical rigor, however, we define a final strategy called SDAP (Squared Difference 

between Augmented and Posterior). The negative of the squared loss is used directly as a reward 

function here, meaning that the agent is always encouraged to approach the augmented 

likelihood; maximizing the reward is equivalent to minimizing the square loss. 

 

Experiments 

LibINVENT implements a novel deep learning based drug discovery approach for generation of focused 

chemical libraries, given an input scaffold, by taking into account specific chemical reactions. This 

approach was designed to improve the productivity in the DMTA cycle through proposing a library of 

compounds that can be synthesized though the same chemical reactions. Thus more compounds can be 

synthesized with the same effort in an DMTA cycle and accordingly each DMTA cycle will be more 

informative51. We therefore introduce a range of experiments with the aim to demonstrate the potential 

of our proposed models to improve productivity. Specifically, we focus on promoting diversity of 

output, generating molecules readily synthesizable by a given reaction and determining R-group 

substitutions for lead optimization projects. 

The objectives of the experiments are the following: 

• Determine the optimal learning strategy for the reinforcement learning loop. 

• Demonstrate the ability to follow specified reactions to decorate a given scaffold and contrast 

this with a model trained on a dataset obtained using RECAP rules as opposed to reaction based 

slicing. 

• Demonstrate the ability to decorate scaffolds with various numbers of attachment points. 

A baseline objective for the experiments is the generation of ligands that are optimized against DRD2. 

Two sets of tasks, based on two approaches to steer the model towards the desirable chemical space, 

have been executed.  In the first set of experiments, a QSAR predictive model for the activity of the 

generated compounds is used as a component of the scoring function. This model is subsequently 

replaced by a 3D shape and pharmacophore similarity ROCS52 scoring component to promote 3D 
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similarity of the output to haloperidol, a known DRD2 active ligand. The details of the implementations 

can be found in the supplementary information; our public repository further hold both the trained QSAR 

model and the ROCS input used. In all the experiments, a diversity filter is further added to the scoring 

function to promote variation in the output, along with custom alerts preventing the agent from 

proposing compounds with too large rings and non-drug-like groups. 

Figure 3 displays the testing scaffold. The choice is motivated by it being a good starting scaffold for 

generating DRD2 actives. Further, it has two attachment points, which is common in real world 

applications. While we demonstrate the ability of the Library Design decorator to work with scaffolds 

with up to four attachment points, library synthesis is most commonly executed on fewer attachments 

as this gives a better balance between the flexibility and complexity of the library production step. 

 

Figure 3: The testing scaffold. We note that in SMILES syntax, the decoration points are labelled by 

[*:0] and [*:1], which correspond to R2 and R1, respectively, in the molecular graph. 

Evaluation metrics 

The complexity of the task of molecule generation means that the choice of a metric for model evaluation 

needs to be considered carefully to ensure that all relevant issues are addressed. For library generation, 

it is desirable to produce libraries based on user defined criteria. Within these criteria, however, the 

libraries still differ in size, diversity and scores achieved according to the scoring function. We have 

previously defined the yield metric which helps evaluating what fraction of the generated ideas are 

scored above a given threshold. Nevertheless, this alone is not sufficient to give a fair comparison of the 

libraries.  
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We address the question of diversity of the output via two approaches as appropriate in the given 

scenario. To determine the effect of a change in the scoring function, the overlap between the output 

libraries is evaluated. This would show whether the methods produce significantly different results. 

When testing the effect of specific reaction filters, it may be more interesting to analyze the variation in 

the chemical properties of the proposed decorations for each attachment point. This smaller-scale view 

offers a more fine grained picture of the level of control the user has over the design of their specific 

library. 

Results 

Comparison of the learning strategies 

For each of the four learning strategies, two experiments are set up to contrast their abilities of proposing 

molecules according to a given set of criteria. In the first experiment, only a QSAR predictive property 

is used. The motivation for this experiment is to benchmark the abilities of the models to generate 

compounds when unconstrained by chemical reactions. The results of the experiments are displayed in 

Table 2, which gives an overview of the average results over three individual runs. For a detailed 

breakdown over the runs, refer to the supporting information.  

Table 2: Comparison of the four learning strategies for a QSAR model with no reaction filters. The 

uncertainty boundaries correspond to the largest deviation from the mean observed over the three runs. 

We note these are very low, showing a strong consistency between the trials. The Yield metric is 

calculated as previously defined in eq 2. 

 
Number of 

compounds 

found 

Yield 

Average 

mean score 

in resulting 

dataset 

DAP 10510 ±69 0.821±0,005 0.722±0.005 

MAULI 8573±271 0.670±0,021 0.658±0.015 

MASCOF 4432±50 0.346±0,004 0.657±0.022 

SDAP 4755±153 0.372±0,012 0.695±0.011 
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In a second experiment, a selective reaction filter is added to the scoring function. Attachment point R1 

should be decorated using amide coupling while the second attachment follows the Buchwald reaction. 

The exact implementation and SMIRKS definitions of the corresponding equations can be found in our 

public repository. The results of the experiment are shown in Table 3. 

The numerical results show that, in agreement with past observations44, the DAP learning strategy is the 

most successful one on multiple counts. Firstly, the high average score of the compounds in the resulting 

dataset  for both runs indicates the ability of this model to produce high scoring molecules consistently 

throughout the run. This is further supported by the size of the output and a correspondingly high yield: 

even when selective reaction filters are applied, over 80 % of the proposed compounds had a score 

higher than the threshold of 0.4 chosen as the condition for inclusion in the resulting dataset . Moreover, 

nearly 90 % of the resulting dataset compounds satisfy both of the reaction filters, which gives strong 

support for using this strategy in virtual chemical library creation. 

Table 3: Results for the four learning strategies when a QSAR predictive model and a selective 

reaction filter are employed. 

 

Finally, to understand the training of the four respective strategies, we plot the average scores achieved 

at each step. It is crucial to note that thanks to the pretraining of the prior, it is not expected to observe 

a steeply increasing training curve since the choice of the starting scaffold is task specific and typically 

leads to high scores from the first iteration. The comparison is nevertheless a useful aid in the 

comparison as it explains the process further. 

 
Number of 

compounds 

found 

Yield 
Average mean 

score in output 

Ratio of fully 

satisfied reaction 

filters 

DAP 10454±192 0.817±0.015 0.729±0.008 0.892±0.032 

MAULI 5179±518 0.405±0.012 0.564±0.009 0.230±0.027 

MASCOF 2846±854 0.222±0.067 0.574±0.030 0.297±0.076 

SDAP 4033±302 0.315±0.024 0.622±0.019 0.457±0.136 
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a: No reaction filters. 

 

b: Amide coupling and Buchwald reaction filters. 

Figure 4: The average score across a generated batch of compounds per epoch for each of the running 

strategies. The presence of reaction filters increases the superiority of the DAP strategy. Both MAULI 

and MASCOF are incapable of adapting the production to the user defined objective. 

The evolution of the average scores across the runs is displayed in Figure 4. In both scenarios, the DAP 

strategy clearly outperforms the remaining optimization methods, quickly increasing from the starting 

point and then plateauing at the highest level. When reaction filters are introduced, this dominance 

becomes even more significant. As displayed in Figure 5, the DAP strategy is the only strategy capable 

of rapidly adapting to this requirement and satisfying these filters. The SDAP strategy also demonstrates 

learning, but is much slower in adapting to the specific task.  Both MASCOF and MAULI, on the other 

hand, decline slightly from the initial point as they struggle to retain the prior knowledge of the chemical 

space, which is demonstrated by the dropping validity. No evidence of learning to follow the required 

reactions is apparent. 
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a: Validity of generated compounds. 

 

b: Reaction Filter scores of generated compounds. 

Figure 5: The validity of the output and reaction filter scores for each learning strategy when a reaction 

filter is imposed. The DAP learning strategy clearly outperforms the remaining approaches. 

In both of the figures above, the shaded area corresponds to minimum and maximum values achieved 

over the three runs while the solid lines represent the mean. Besides the expected stochasticity arising 

from the randomness in the optimization procedure, the plots indicate that the general behavior of the 

strategies is consistent across runs. This observation is in agreement with the previous analysis of 

numerical data. In the subsequent experiments, we therefore restrict all in depth analysis to a single run 

per model only as the stochasticity does not significantly affect the output, justifying the low levels of 

variance between runs by numerical tables. Moreover, since the analysis above shows a clear dominance 

of the DAP learning strategy, this is our method of choice in all the subsequent experiments. 

Comparison of slicing strategies 

Reaction based slicing used to pre-process the dataset is one of the key aspects of this work. We therefore 

design a second set of experiments aimed at evaluating the effect of pretraining on data sliced according 

to chemical reactions as opposed to RECAP rules when tackling reaction filters. To this end, we use the 

model of Arús-Pous et al. as an alternative to benchmark against16. This model provides a fair 

comparison since its architecture and training procedure are exactly equivalent to our LibINVENT prior, 

with the crucial difference in data preparation. 
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Figure 6: The ROCS shape and pharmacophore query definition for haloperidol.  

Two experiments are conducted with these two priors. In both, the same reaction filters as before are 

imposed, decorating attachment point 1 by amide coupling and attachment point 2 through the Buchwald 

reaction. The difference lays in the scoring function component, which uses a predictive QSAR model 

in the first experiment and replaces it by a ROCS 3D similarity scoring in the second task. The purpose 

of this change is to uncouple the effect of the scoring function from the reaction filter and evaluate the 

effect of the pre-processing method as accurately as possible. The definition of the shape and 

pharmacophore ROCS query based on haloperidol is displayed in Figure 6. 

Table 4: Comparison of reaction based slicing and RECAP slicing rules. We note that the relatively 

low scores for the ROCS component arise from the fact that it is more difficult to satisfy the query 

completely; unlike for a QSAR model, scores nearing 1 are not expected. 

 

Numerical comparison of the experiments is displayed in Table 4. The key difference in the results is 

the ratio of high scoring molecules capable of satisfying the imposed reaction filters. While the model 

Pre-processing 

method 
Model 

Number of 

compounds found 
Yield 

Average mean 

score in  

resulting dataset 

Ratio of fully 

satisfied 

reaction filters 

Reaction 

Based Slicing 

QSAR 10454 0.817 0.729 0.892 

ROCS 10326 0.807 0.597 0.890 

RECAP 

Slicing Rules 

QSAR 8388 0.655 0.506 0.154 

ROCS 8339 0.651 0.462 0.000 
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trained on data sliced according to reaction rules consistently scores very highly and therefore produces 

libraries synthesizable via these two reactions, the model trained on data pre-processed using RECAP 

rules struggles to fulfil these criteria. With the exception of one run, the model fails to learn to follow 

the reaction routes. This gives clear evidence for the positive effect of the reaction based slicing method 

for applications involving specific chemical reactions. 

Figure 7: Comparison of the two preprocessing approaches. For both QSAR and ROCS guided 

learning, model trained using reaction-based slicing is consistently superior in terms of the overall 

score and moreover satisfies both reaction filters.  

 

It can be further noted that the ROCS task appears to be more difficult for the models to learn, not 

surprisingly as the RL agent is asked to learn 3D features with only 2D representation of its input. This 

has also been observed in previous work by Grebner et.al.53 where ROCS was used as a 3D similarity 

scoring component for a RL based molecular deep generative model. As expected, both the yield and 

the ratios of compounds satisfying the reaction filters are not significantly affected by the change 

between QSAR and ROCS scoring components; the difference lies in the average scores achieved by 

compounds in the resulting dataset. As the training plots in Figure 7 show, this is due to the fact that the 

 

a: Average scores. 

 

b: Reaction filter scores. 
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scores start relatively low and gradually increase throughout the runs as the agents learn to satisfy the 

ROCS input.  

 

Figure 8: Example molecular properties of decorations for attachment point 2 when the Buchwald 

reaction filter is imposed. 

To understand the diversity of the compounds proposed by agents trained with these two different 

scoring function components, we further contrast molecular properties of the decorations proposed by 

the respective methods when trained on a dataset obtained using reaction based slicing. Figure 8 

demonstrates that the change in a scoring function component guiding the training affects the proposed 

decorations. On the example of attachment point 2, we see that while the groups proposed by an agent 

trained using ROCS are generally lighter, they tend to contain more rings and have more hydrogen bond 
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acceptors. In some cases, we can further note that the reaction filter have not been satisfied for a share 

of the output – for example in the cases where the Buchwald reaction fails to propose a compound 

containing an aromatic ring. This demonstrates the need for a careful consideration of the scoring 

function design along with the reaction filters to achieve optimal results for a given task. Sample 

compounds proposed by each of the methods are plotted in Figure 9 for comparison. We can observe 

the formation of the amide bonds as required by the reaction filters as well as the previously noted 

tendency of the ROCS guided model to propose decorations with multiple rings. 

 

 

Figure 9: High scoring compounds proposed by a model guided by a QSAR predictive property (left) 

and by a ROCS scoring component (right). All of these compounds satisfy both the amide coupling 

and Buchwald reaction filters. 

The experiments discussed in this section demonstrate the benefit of reaction-based slicing over the 

more traditional RECAP rules. This approach to preprocessing implicitly teaches the decorator model 

to follow chemical reactions and thus increases the probability of learning to satisfy a reaction filter. 

Figure 7 demonstrates that while it is possible for a model trained on compounds sliced using RECAP 

rules to learn to satisfy a reaction filter, the likelihood of this happening is much lower. The models 
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trained using reaction based slicing consistently fulfil reaction filters as well as other user defined 

criteria.  

 

Following specific reactions 

Using the optimal learning strategy and the prior model pretrained on data sliced using reaction rules, 

we propose a new set of experiments to demonstrate the effect of selective reaction filters on the 

produced libraries. For each of the attachment points, we select a relevant plausible chemical reaction 

that can serve for introducing desirable moieties. Specifically, sulphonamide coupling is used as an 

alternative to amide coupling for attachment point 1 and the Buchwald reaction of attachment point 2 

may be replaced by a nucleophilic heteroaromatic substitution (SNAr). We experiment with each of the 

four possible combinations of these reaction filters to demonstrate the effect of these filters on the 

produced compounds. For illustrative purposes, a high scoring compound discovered for each of these 

combinations of reaction filters by a QSAR-guided predictive model is plotted in Figure 10. The reaction 

filters have a clear effect on the proposed molecules, enforcing the formations of appropriate bonds. 
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Figure 10: Comparison of compounds proposed by models optimizing for various reaction filters. The 

formations of the amide and sulphonamide bonds can be seen.  

All of the sets of reaction filters are applied to the two different setups of the scoring function as in the 

previous experiments – using either the QSAR predictive model or ROCS similarity component to 

direct the model towards the target chemical subspace of compounds active on the DRD2 dataset. The 

reason for using different scoring functions in this experiment is to demonstrate the effect the scoring 

function has on the output and decouple this with the effect of reaction filters. The numerical results of 

these experiments are displayed in Table 5.  

Table 5: Comparison of varying reaction filters for a QSAR and ROCS model. The Buchwald-Amide 

filter is the easiest to satisfy for both models. 

Pre-

processing 

method 

Reaction filter 

Number of 

compounds 

found 

Yield 

Average 

mean 

score in  

Ratio of fully 

satisfied reaction 

filters 
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The performance of the ROCS model when reaction filters are exchanged is more stable than for QSAR, 

showing similar patterns and an ability to learn to follow different reaction routes. This is presumably 

caused by a lower degree of inductive bias built into the model through this scoring component. The 

consistently lower average scores in the resulting dataset can be attributed to the greater difficulty to 

learn this component in general; it is more difficult to score highly the structural similarity (and match) 

requirements of a ROCS component. This does nevertheless not mean that the model performs badly; 

on the contrary, the high yields show that it is an effective guide towards a desirable area of the chemical 

space. Moreover, the highest achievable scores of the ROCS component are typically lower than for a 

QSAR model and commonly lie around the value 0.8. 

 

Figure 11: Continuous molecular descriptors of decorations of attachment point 1 for each of the four 

reaction filters applied, trained using a QSAR model. This attachment point is decorated by either 

amide or sulphonamide coupling. 

 

resulting 

dataset 

QSAR 

model 

Buchwald-Amide 10454 0.817 0.734 0.892 

Buchwald-Sulphonamide 10083 0.788 0.688 0.847 

SNAr--Amide 9809 0.766 0.585 0.359 

SNAr--Sulphonamide 9228 0.721 0.641 0.577 

ROCS 

model 

Buchwald-Amide 10326 0.807 0.596 0.890 

Buchwald-Sulphonamide 10207 0.797 0.592 0.871 

SNAr--Amide 9837 0.768 0.545 0.551 

SNAr--Sulphonamide 9560 0.747 0.552 0.541 
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To quantify the differences in the properties of the decorations arising from various reaction filters, we 

examine the distributions of key molecular properties of the proposed functional groups for each 

attachment point based on the applied reaction filters. A selection of molecular descriptors of 

decorations generated for attachment point 1, decorated via amide or sulphonamide coupling, is 

displayed in Figure 11. A significant increase in the weight of the proposed decorations, caused by the 

presence of more heavy atoms, occurs when the sulphonamide coupling is introduced. Figure  further 

shows selected discrete properties of the decorations proposed for the second attachment point. In both 

plots, variation in the distributions can be observed across all four combinations of reaction filters; the 

effect of the reaction filters imposed for the given attachment point is nevertheless clearly notable. This 

is to be expected since the agent receives rewards based on the entire compounds proposed but each 

attachment point is strongly influenced by the prescribed reaction.  
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As a final point of comparison of the reaction filters, Figure 13 displays the distribution of selected 

molecular properties for each of the two attachment points using the original reaction filter composed 

of amide coupling and the Buchwald reaction. In general, amide coupling produces somewhat smaller 

and lighter decorations. Moreover, the distributions tend to be less peaked and centered around the mode, 

which is to be expected for this reaction as it is more general. Once again, we further note that not all 

proposed compounds satisfy the Buchwald reaction filter since decorations missing an aromatic ring are 

proposed for attachment point 2.  

Figure 12: Discrete molecular descriptors of decorations of attachment point 2 for each of the four 

reaction filters applied. Note that this attachment point is decorated using either via the Buchwald 

reaction of the SNAr substitution; the differences observed in this plot therefore primarily arise as a 

result of this reaction filter.  
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Scaffolds with varied numbers of attachment points 

So far, all experiments focused on a two-attachment point scaffold. To give a fair picture of the 

decorator’s abilities, we additionally introduce tasks working with scaffolds containing one to four 

decoration points. Since the purpose of this section is primarily proof of concept, we restrict our attention 

to simple experiments aiming to force the model to start growing large enough decorations to satisfy 

molecular weight requirements. Reaction filter is not implemented here for simplicity. The experiments 

nevertheless demonstrate that the decorator is capable of working with these scaffolds to produce unique 

and valid compounds. 

Figure 13: Comparison of the properties of the decorations proposed for each attachment point. The 

first attachment is decorated using amide coupling, the second via the Buchwald reaction. 
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For the purpose of these simple experiments, we use two scaffolds from the DRD2 dataset with one and 

three attachment points. In both cases, the weight requirement on the final compound is for it to lie 

between 450 and 650. These values have been chosen to force the original scaffolds to grow significantly 

without leaving the domain of chemically reasonable compounds in the output since there are no other 

constraints to guide the model. The scaffolds are displayed in Figure 14. 

 

Figure 14: The scaffolds with one and three attachment points used in the final experiment. 

As demonstrated in the plots on Figure 15, the model does not struggle with any of these tasks, rapidly 

adjusting to the requirement and starting to generate compounds in the appropriate molecular weight 

range. Similarly, the validity of the proposed output is consistently over 90 %. These experiments clearly 

show that the use cases of the decorator model include working with scaffolds of varying numbers of 

attachment points. 

Figure 15: Satisfying weight requirements for varying number of attachment points. Both models are 

capable of proposing valid compounds of required molecular weights. 
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Discussion 

We have designed and executed a range of experiments to establish the abilities of the newly proposed 

LibINVENT model. Most importantly, the results clearly demonstrate the model’s superiority in 

learning to follow specific chemical reactions, which is achieved by the introduction of a compliant 

compound slicing strategy. The decorator model has proven to be capable of rapidly designing libraries 

of molecules synthesizable from a given scaffold by following a set of reactions as defined by the user. 

This enables fine control over the output and makes the model widely and readily applicable in a 

multitude of scenarios. This expands the capabilities of the REINVENT family of generative models 

with the introduction of a dedicated capability to design focused molecular libraries. 

The first task was to determine an optimal learning strategy for setting up the reinforcement learning 

rewards. Four different strategies have been proposed based on arguments discussed in the literature. 

While not immediately intuitive, the DAP learning strategy has proven to be the most successful one. 

The motivation for this reward setup is a “carrot on a stick” scenario. A combination of the prior 

likelihood and the scoring function is used to guide the agent towards a desirable region of the chemical 

space while ensuring that underlying chemical syntax is not forgotten. Two of the remaining strategies, 

on the other hand, attempted to maximize the score or a sum of the score and prior likelihood directly. 

Despite appearing more natural at a glance, this approach does not work as well since the models 

struggle to retain the ability to propose valid molecules as they start focusing on the score too much. A 

possible rationale for this is the notoriously high variance typically observed for policy iteration RL; 

while we note that the generative model requires this variance to explore the chemical space, too much 

variation combined with a lack of anchor to the prior knowledge is detrimental to the performance. The 

final method explored in the paper minimizes the square of the loss used for the optimal DAP strategy. 

This is more mathematically sound as the reward is bounded but does not appear beneficial in practice 

since the edge scenarios where unboundedness of the DAP reward could be an issue rarely arise. We 

therefore confirm the observations of Olivecrona et al. in selecting the DAP strategy as the method of 

choice44.  
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Two different scoring components have been used to guide the model to propose new ligands for the 

DRD2 receptor. A simple QSAR property prediction model has the advantage of a faster execution and 

overall higher score but its stronger inductive bias restricts the model to a narrower domain54. As a result, 

a QSAR based model strongly favors certain decorations and therefore struggles to fulfil some reaction 

routes incompatible with these functional groups. In the second use case scenario, ROCS similarity 

measure was used to demonstrate that various scoring function components may be used to guide the 

model to a desirable chemical space. A certain degree of experimentation or user intuition is often 

required to determine the optimal combination of guidance for the model and freedom to explore to 

obtain the best possible libraries as each of the scoring components introduces its own biases and 

benefits. The results nevertheless confirm that LibINVENT is a flexible tool admitting a wide range of 

inputs and able to return appropriate output. 

An important note regarding the selective reaction filter is that the user is responsible for providing 

correct and valid reactions for correct attachment points in order to get a good result. While a range of 

reaction definitions is provided in the public repository, the reactions prescribed to a given attachment 

point have to be feasible. Reaction filters enable the user to specify a variable number of reaction 

definitions for each attachment point. If an infeasible reaction is required, the model is not going to be 

able to fulfil this reaction filter and always receive a score of 0. Depending on the setup, this can lead to 

a failed run with a very small and irrelevant outputs as the low scores do not guide the agent in the right 

direction. It is therefore essential that the user is aware of this potential pitfall. A consistently low 

reaction filter score, plateauing at a value lower than one, is often an indicator of a wrong reaction 

requirement. 

Normally the idea selection process does not stop with simply generating the final dataset. Since the 

resulting output can contain thousands of entries it is a common practice to apply additional 

postprocessing steps in order to narrow it down to the most relevant molecules. Although we do not 

demonstrate it here, there are many additional profiling calculations (various ADMET properties and 

physics based calculations) that haven’t been included to the RL run due to performance or accuracy 

considerations. These are normally applied afterwards to help the library selection. Once the right 
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candidates for synthesis are identified the building blocks can be queried either for in house availability 

or for adequate retrosynthetic suggestions by tools such as AiZynthFinder 55. 

Since the current work is focused on the development of the generative method and on the general 

guidelines for its optimal application, we did not consider conducting a further downstream 

postprocessing and comprehensive evaluation of its output. However, we do provide an analysis for the 

combination of one specific scaffold (Figure 3), reaction filters (Buchwald and amide coupling), and 2 

different scoring components (QSAR and ROCS scoring) in the Supporting Information (in 

“Comparison with other methods”). This analysis is based on metrics loosely inspired from the screening 

library guidelines from Bayer56. The example shows novelty measured as the percentage of generated 

molecules that are not accessible from commercially available building blocks (aryl halides and 

carboxylic acids in our example). Both scoring components result in generation of novel R1, R2 

substitutions of the scaffold (ROCS: 15.9%, QSAR: 28.6%, Supporting Information: Table 5). It is 

obvious that this metric is dependent on the database of commercially available building blocks. Here 

we used the eMolecules database57. We also compare our generative approach with a traditional 

enumerative approach that would require the construction of a virtual library with all combinations of 

available carboxylic acids and aryl halides and to provide substituents for the given scaffold and 

subsequent filtration of the virtual molecules with the same scoring functions (either QSAR or ROCS) 

used in LibINVENT. We show that even the first step of construction of the virtual library is 

computationally infeasible since its size is in the magnitude of 1012 virtual molecules. The subsequent 

step of evaluating each and every compound from such library, especially with the ROCS scoring 

function, is even more computationally demanding. In contrast LibINVENT does less than 2x104 

evaluations in total for the provided examples and identifies good scoring molecules at above 70% of 

the evaluations made (yield shown in Table 5). In other words, brute force enumeration may lead to 

quite extensive evaluation thus becoming rather impractical. Also, generative methods are shown to 

have a broader chemical space coverage58 thus providing the potential to cover solutions that are not 

reachable through enumeration. 



39 

 

It is important to stress that resulting dataset is primarily a product of the input scaffold, the scoring 

function, the generative model, and the learning algorithm. Given that we propose an optimal learning 

algorithm and a working generative model, the user has the full freedom (and responsibility) to tailor 

the learning objectives and combine with input scaffolds that are of relevance to concrete projects.    

Conclusions 

In order to achieve efficient and natural symbiosis between computational and traditional wet lab 

methods in drug discovery, it is essential to overcome a few prevailing bottlenecks. One of the key issues 

is the low efficiency in incorporating deep learning into the production pipeline caused by complicated 

lead synthesis and an overly diverse output from generative models.  The objective of this work has 

been to provide a method that can help bridging this gap between in silico and in vitro drug design by 

developing a tool taking the needs of real life synthesis into consideration and increasing the productivity 

by reducing the number of DMTA cycles performed 59. 

In this work, we have introduced a flexible tool capable of proposing optimal decorations given a 

scaffold and a set of user-specified objectives. Thanks to the custom chemical reaction definitions we 

can also include in the objectives reaction filters. LibINVENT therefore enables rapid generation of 

focused virtual chemical libraries which can be used for lead optimization and are readily synthesizable 

in vitro. Even when these filters are not specified, still, the output of the model benefits from high 

synthetic accessibility . The design of the reinforcement learning loop further introduces a rapid way to 

focus the model to a desirable part of the chemical space. As the experiments demonstrate, the learning 

is instantaneous and results in the design of varied and focused chemical libraries. 

LibINVENT is a deep learning based tool, capable of following specific reaction constraints in designing 

entire chemical libraries within which the diversity is narrowly focused to a domain determined by the 

user. This makes it readily applicable in a broad range of scenarios. The model is released in our public 

repository along with the corresponding code. 
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