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Highlights: 

Natural Products from Bahia Semi-Arid region (NatProDB, Brazil’s biome) was studied. 

In silico pharmacokinetic and toxicological (ADMET) properties selected compounds with 
potential antiviral activity against SARS-CoV-2 Mpro. 

Site prediction and Druggability analysis of SARS-CoV-2 Mpro were combined with Molecular 
Docking Virtual Screening and Molecular Dynamics Simulations choosing Natural Products 
ligands. 

This rational design approach elected VE0DIA0AF (b01) and VE0PPA0AF (b02) as potential 
inhibitors of SARS-CoV-2 Mpro (3Clpro). 
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Abstract 
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), receives global attention due to the serious threat that 
affect public health. Since December 2019, its incidence affecting millions of patients 
and its rapid dissemination on a worldwide scale have led the searching for its 
treatment. To discover hit compounds that can be used alone or in combination with 
repositioned drugs, we initiated a structure-assisted drug design program including 
Virtual Screening, Docking, pharmacokinetic and toxicological analysis (ADMET) and 
Molecular Dynamics Simulation (MD) from Natural Products Database of the Bahia 
Semi-Arid region (NatProDB). We also aimed to identify novel scaffolds that target the 
SARS-CoV-2 Main Protease (Mpro, 3Clpro) since this protein plays a pivotal role in 
mediating viral replication and transcription, which makes it an attractive drug target for 
coronaviruses. Here, we selected 10 molecules that could be studied in vitro to lead 
discovery in response to this infectious diseases. The best SARS-CoV-2 Mpro 
complexes interactions revealed that some enzyme sites were accessed thereby 
confirming that this method can be employed as a suitable starting method for the 
identification of novel SARS-CoV-2 Mpro inhibitors. Two compounds (b01 and b02) 
suggest a better potential for interaction with SARS-CoV-2 main protease (Mpro) and 
could be further studied. 
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1. Introduction 
 

Although coronaviruses (CoVs) have been known since 1940 [1], reports of 

humans infections causing mild respiratory infections occurred in the 1960s. In 

December 2019 [2-6], a new viral respiratory disease initiated from Wuhan, China has 

been spread globally. This virus was named SARS-CoV-2, because its genomic RNA is 

about 82% identical to the coronavirus that causes Severe Acute Respiratory Syndrome 

(SARS-CoV). The disease caused by SARS-CoV-2 is called COVID-19 [4]. On March 

11, the World Health Organization (WHO) declared this COVID-19 outbreak pandemic 

[3-5] and data indicated that the cumulative number of cases reported globally now 

exceeds 183 million and the number of deaths is almost 4 million 

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019, accessed 

09/06/2021). 

Therefore, the rapid discovery of safe, effective, and broad-spectrum anti-

COVID-19 drugs is urgent. Currently, there is no specific therapy for COVID-19 

patients and treatment are limited [7], despite more than 80 clinical trials employing 

distinct drugs: chloroquine, hydroxychloroquine, arbidol, remdesivir, favipiravir, 

lopinavir, ritonavir, oseltamivir, methylprednisolone, bevacizumab [1, 8]. Due to its 



relevance to viral replication, the Mpro enzyme, which plays a central role in mediating 

viral replication and transcription [4, 7, 9-11], was the main target investigated in this 

study and the compounds identified here will be evaluated in future assays. 

Natural Products research and development (R&D) potentially plays a pivotal 

role in innovative drug discovery [12] like an important source of new drugs [12-14] 

and a great inspiration to generate compounds libraries [15]. Medicinal plants have been 

employed by humans for thousands of years to treat illnesses, health disorders [13] and 

identifiying some plants useful as antiviral drugs. Plants produce a high diversity of 

secondary metabolites with interesting biological activities and their natural products 

and natural-product-inspired agents have attracted significant attention because they 

have played an integral role in the treatment of many different conditions like viral 

infection, especially SARS-CoV-2 [13, 16-21]. 

Natural products (carolacton, homoharringtonine, emetine, and cepharanthine) 

and natural product-inspired small molecules (ivermectin, GS-5734, EIDD-2801, and 

ebselen) are potential anti-SARS-CoV-2 agents that have attracted significant attention 

due to their broad-spectrum antiviral activities [21]. However, they need to be subjected 

to detailed tests especially in animal models and if successful, in clinical trials [13]. 

A good starting point to find new antiviral natural products would be traditional 

medicinal plants, such as those from Asia, Africa or America that have been employed 

to treat infections [13]. Brazil hosts about 20% of all world biodiversity, being 

considered the country with the most endemic species worldwide [22]. The Natural 

Products Database of the Bahia Semi-Arid region (NatProDB, http://natprodb.uefs.br/) 

contains naturally occurring compounds with a wide chemical diversity. These 

compounds are yet to be fully explored for the discovery of bioactive molecules [23]. 

Thus, we searched for new molecular entities that could be potent inhibitors of SARS-

CoV-2 Mpro in the NatProDB database. 

Medicinal chemistry approaches have seen a great technological advancement 

over the years and have contributed immensely to the discovery of promising 

molecules. However, many compounds discovered by these techniques have shown 

unsatisfactory absorption, distribution, metabolism, excretion and toxicity (ADMET) 

properties in in vivo tests [24]. To overcome these pharmacokinetic and toxicological 

(PK & T) issues some in silico methods were developed and are freely available over 

http://natprodb.uefs.br/


the web, namely Pred-Herg4.2 [25-26], http://labmol.com.br/predherg/; Aggregator 

Advisor [27], http://advisor.bkslab.org/; FAF-DRUGS [28], http://fafdrugs4.mti.univ-

paris-diderot.fr/ and pKCSM [24], http://biosig.unimelb.edu.au/pkcsm/. Thus, in this 

study, we explore ADMET properties using two distinct tools QikPropTM and DerekTM 

intending to reduce the selection of false-positive ligands and obtain hits that can be 

subjected to in vitro tests against the SARS-CoV-2 Mpro enzyme. 

For this reason, we propose to employ a structure-based Drug Design (SBDD) 

approach against the main sites on SARS-CoV-2 main protein (Mpro) through different 

computer-aided methods. 

2. Materials and Methods: 
 

Molecular Modelling calculations, estimation, and visualizations of SARS-CoV-

2 Mpro binding affinities were carried out using SeeSAR version 9.2 software package 

(BioSolveIT GmbH) with HYDE visual affinity assessment [29-31] carried on a 

personal computer with 4 logical processors of an Intel® Core TM i5-6200U, 2.3 GHz 

processor using Windows 10 Home operational system. 

2.1 SARS-CoV-2 Mpro protein preparation: 
 

The high-resolution X-ray crystallographic structure of SARS-CoV-2 Mpro 

(1.31Å) was obtained from the Protein Data Bank (PDB ID: 5R82, [32]) and was 

imported into the SeeSAR version 9.2 (BioSolveIT, Sankt Augustin, Germany, 2018, 

www.biosolveit.de/SeeSAR). The structures were then prepared using the Protein 

Editor tool as implemented in the BioSolveIT Suite. Briefly, raw PDB structure was 

processed by automatically assigning bond orders, adding hydrogens, adding missing 

side-chains, creating possible disulfide bridges, deleting waters, and generating hetero 

protonation states at pH 7.4. Residues with alternate positions were locked in the 

conformations with the highest average occupancy. Small ligand (6-(ethylamino) 

pyridine-3-carbonitrile - RZS) and dimethyl sulfoxide (DMS) originating from 

crystallization buffer were removed. The hydrogen-bonding networks were optimized 

automatically, by sampling water orientations and optimization of hydroxyls, Asn, Gln, 

and His residue states using Protein Editor.  

http://labmol.com.br/predherg/
http://advisor.bkslab.org/
http://fafdrugs4.mti.univ-paris-diderot.fr/
http://fafdrugs4.mti.univ-paris-diderot.fr/
http://biosig.unimelb.edu.au/pkcsm/
https://www.rcsb.org/structure/5R82
http://www.biosolveit.de/SeeSAR


2.2 Site prediction and Druggability analysis of SARS-CoV-2 Mpro: 

2.2.1 SeeSAR 

The protein structure prepared as described above were exported as PDB files 

and inserted on the “Binding Site” tool using BioSolveIT Suite. The site predictions and 

druggability analysis were determined by applying the Difference of Gaussian (DoG) 

Site pocket finder [33-34]. DoGSite provides the functionality to detect potential 

binding pockets and subpockets of a protein of interest [34]. Subsequently, it analyzes 

the geometric and Physico-chemical properties of these pockets and estimates 

druggability with aid of a support vector machine (SVM) [34]. Thus, binding pockets 

and their druggability were extracted and analyzed employing the default parameters. 

2.2.2 PockDrug 

PockDrug predicts pocket druggability on both pockets guided and not guided 

by the ligand proximity [35] using different estimation methods based on 36 

physicochemical and 16 geometrical descriptors to characterize each estimated pocket 

[36]. The prepared PDB file was uploaded to the PockDrug server 

(http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?page=Home) and assessed 

for binding sites, their 6 pocket descriptors [Volume of convex hull (Å3); Kyte scale of 

residues’ hydrophobicity [37]; Frequency of polar residues; Frequency of aromatic 

residues; Oxygen atoms frequency from Tyr residues in pocket [38]; Number of pocket 

residues] and corresponding average druggability probability and its associated standard 

deviation. For a probability greater than 0.5, pockets are considered as druggable 

according to the published data [35]. Local pocket properties, size, shape, and 

hydrophobicity were extracted for all identified sites and annotated to pocket numbers. 

2.2.3 FTMap 

FTMap identifies binding hot spots of macromolecules (regions of the surface 

with major contributions to the ligand-binding free energy) using a computational 

mapping approach [39]. It uses small organic molecules as probes to sampling the 

protein surface and it scores them using the interaction energy [40]. Protein sites that 

bind different probes indicate this region as binding hot spots [39]. The prepared PDB 

file was uploaded to the FTMap server (https://ftmap.bu.edu/) and examined for the 

number of probes per cluster found according to the published protocols [41-43]. 

http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?page=Home
https://ftmap.bu.edu/


Similar to Borrel and cols [35], in this study, the predicted pocket of interest 

from the entire set of candidate cavities detected was selected as the one that best 

overlaps the crystallographic ligand-binding site and presented the best druggability 

index on all three programs. 

2.3 Molecular Docking on SARS-CoV-2 Mpro: 

Docking experiments were performed on previously prepared SARS-CoV-2 

Mpro structure with the SeeSAR version 9.2 through sampling their spatial coordinates 

on the best interaction sites which were defined by the DoG Site pocket finder [33-34] 

and druggability analysis from SeeSAR, PockDrug and FTMap. Then, the docking 

library was loaded, which includes a set of NatProDB ligands previously filtered from 

QikPropTM and DerekTM, plus E64, a well know cysteine protease inhibitor as a positive 

control.  

Docking calculations were done for each compound generating 20 poses which 

one has their binding affinity estimated from µM into SARS-CoV-2 Mpro site. The 

best poses were selected based on their estimated affinity from the HYDE score 

function, while also considering the Torsion angle values to the binding conformation of 

protein-ligand [29, 33, 34, 44]. HYDE’s empirical score function (equation (1)) rely on 

intrinsically balanced terms of atom specific desolvation, hydration and hydrogen bond 

(H-bond) (i.e., free of weighting parameters) based on logP atomic increment system 

[45]. The binding affinity of a ligand described as the quotient of ΔG and the non-

hydrogen numbers of atoms in the compound (equation (2)) [46]. 

ΔGHyde = Σatom i [ΔGi Dehyd
n + ΔGi h -bonds]      (1) 

LE = ΔG ⁄ N          (2) 

Where ΔG = -RT ln Ki, N = number of non-hydrogen atoms.  

The selection of the best poses was based on their visual HYDE scores while 

also considering a statistics-based torsional analysis [44]. SeeSAR version 9.2 enables 

an interactive assessment of torsions and energies (in kJ/mol) including the desolvation 

(dehydration, −TΔS) and enthalpic (interaction, ΔH) contributions to binding for both 

protein and ligand. Furthermore, it also quantitatively reports the energy contributions 

for all heavy atoms (with a united atom approach for bounded H-atoms) and allows a 

semi-quantitative estimation of the thermodynamic profile for all tested compounds. 



Analysis, comparisons, visualization of the predicted binding pose predictions and all 

images were done by educational Pymol version 2.4.1 [47]. 

2.4 SARS-CoV-2 ligand preparation: 

The Natural Products Database of the Bahia Semi-Arid region (NatProDB, 

http://natprodb.uefs.br/) contains 555 molecular structures publicly available [23]. All 

these molecules were automatically employed to perform an ADMET property analysis 

by QikPropTM and DerekTM. 

2.5 ADMET analysis by QikPropTM and DerekTM: 

The predictions described below were made on a computer with 6 logical 

processors of an Intel® Core TM i5-9400, 4.10 GHz processor using Windows 10 

Professional operational system. 

QikProp program provides ranges to compare the physically significant 

descriptors and important ADMET properties of a specific compound with those of 

95% of approved drugs. Predicted human oral absorption on 0 to 100% scale (HOA%), 

predicted apparent Caco-2 cell permeability in nm/sec (QPPCaco), predicted apparent 

Maden Darby Canine Kidney cell permeability (QPPMDCK), predicted brain/blood 

partition coefficient (QPlogBB), predicted octanol/water partition coefficient 

(QPlogPo/w) among many others. The program analyzes the chemical structure as 

fragments or a whole and supports predictions about the structure in three dimensions. 

In addition, flags 30 types of reactive functional groups that can cause false positives in 

high-throughput screening (HTS) assays [48-49].  

Derek Nexus is an “expert rule-based” system for the prediction of toxicity [48-

50] that uses a virtual base of molecules with reported toxicity alerts, for example, 

mutagenicity, genotoxicity, teratogenicity, carcinogenicity and hepatotoxicity for 

comparison with the potential toxic group present in each query molecule [51]. The 

program generates an alert based on literature evidence and describes the potential 

toxicity for the complete structure [52]. 

2.6 Molecular Dynamics (MD) Simulations on SARS-CoV-2 Mpro-NatProDB 

complexes: 

http://natprodb.uefs.br/


The SARS-CoV-2 Mpro systems apo, holo and five complexed with better 

docked NatProDB compounds were submitted to Molecular Dynamic (MD) simulations 

using GROMACS 5.1.4 [53-59] available on National Center for High-Performance 

Computing in São Paulo (CENAPAD-SP) employing the following parameters: 1 atm, 

310 K, pH 7.4, GROMOS54A7 force field updated [60], PME [61] for electrostatic 

treatment with cut-off = 1.0 nm in a dodecahedral box solvated with water model SPC/E 

[62] with periodic boundary conditions (PBC). Na+ and Cl- ions were added to maintain 

the physiological salt concentration (0.15M) and to neutralize the residual system 

charge at pH = 7.4. At first, the system was energy minimized (steepest descent 

/conjugate gradient) until forces reached ≤ 10 kJ.mol-1.nm-1 followed by a pre-

equilibrium simulation step (heavy atoms position restrained for 1 ns). 

Finally, 100 ns of the unrestrained simulation was performed for all SARS-CoV-

2 Mpro systems where atomic coordinates were recorded every 10 ps for later analyses 

in a NPT ensemble with V-rescale thermostat [63] and Berendsen barostat [64] with 

SETTLE [65] algorithm for solvent bonds a LINCS [66] for other bonds. The 

crystallographic ligand (RZS) and NatProDB compounds had their topology coordinates 

built in the Automated Topology Builder (ATB) version 3.0 server 

(http://compbio.biosci.uq.edu.au/atb/, [67-69]. 

The 3D-Root Mean Square Fluctuation (RMSF) analysis converted RMSF data 

to B-factor from rmsf module of GROMACS 5.1.4 [53-59]. The hydrogen bond analysis 

was made on GROMACS hbond module [70] and HbMap2Grace program [71] 

available on http://lmdm.biof.ufrj.br/software/hbmap2grace/index.html and Molecular 

Surface Area (Å2) (Table 1) by SurfinMD program [72] accessible on 

http://lmdm.biof.ufrj.br/software/surfinmd/index.html. 

 

 

2.7 Hydrogen bond capacity analysis 

Hydrogen bonds have been calculated between the number of donors/acceptors 

and distance/angle among them and there are few discussions about this relationship in 

drug discovery. Hydrogen bond capacity was quantitatively described [73-74] through 

an empirical definition. Wang et al [75] described the hydrogen bond occurrence 

http://compbio.biosci.uq.edu.au/atb/
http://lmdm.biof.ufrj.br/software/hbmap2grace/index.html
http://lmdm.biof.ufrj.br/software/surfinmd/index.html


probability from MD simulation results and based on their definition, we calculated the 

hydrogen bond capacity (Hbondcapac.) as defined by: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. = 〈𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻〉
∑𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻�      (1) 

Where <Hbond> is the average hydrogen bond number during the MD 

simulation, ∑HBD, HBA is the sum of hydrogen bond donor (HBD) and acceptor 

(HBA) of the molecule. 

All steps performed in this study are described in the Figure 1. 

 

Figure 1: Virtual Screening steps applied in this study to identify new compounds from 
NatProdB with antiviral activity against SARS-CoV-2 Main protease (SARS-CoV-2 Mpro, 
PDB ID: 5R82). Pharmokinetic via Qikprop (#stars, CNS, HOA% and Caco-2 permeability); 
Toxicity alerts for chemical groups via DEREK; Docking simulations via GOLD program; and 
Molecular dynamics via GROMACS. 

3. Results and Discussion: 

In previous work, we analyzed the NatProDB compounds [76] interactions with 

a Trypanosoma cruzi enzyme. Here we decided to analyze these data in further detail 

employing additional distinct ADMET in silico methods: QikPropTM and DerekTM [77]. 

https://www.rcsb.org/structure/5R82


3.1 ADMET analysis by QikPropTM: 

ADMET prediction was performed through the QikPropTM module. This tool 

predicts some relevant properties (e.g., water/gas log Ps, log S, log BB, overall CNS 

activity, Caco-2 and MDCK cell permeabilities; log Khsa for human serum albumin 

binding and log IC50 for HERG K+-channel blockage) based on the full 3D molecular 

structure over twenty physical descriptors [78]. 

At first, we collected 555 molecules from the NatProDB and using the filter 

#star to calculate the number of properties that are outside the range for comparing a 

particular molecule’s properties with those of 95% of known drugs, via QikPropTM [78-

80]. Although it is acceptable to have at least 5 outside properties per hit, in this study, 

all hits with #star values ≥ 1 were eliminated following the E64 (positive control), 

yielding 376 compounds. 

Subsequently, we evaluated the predicted activity on the central nervous system 

(CNS) which ranges from -2 (inactive) to +2 (active) [78-80]. We define that only 

compounds with values < 0 were kept (203 hits) since the antiviral action mechanism 

proposed in this study does not necessarily require an effect on the CNS. 

Next, the human oral absorption [50] were predicted for remaining compounds 

using the values of a percentage ranging > 80% (high and desirable) to ≤ 25% (low 

absorption) as standard criterion [78-80]. Aiming to search for good absorption 

potential, molecules with values ≥ 60% were maintained since E64 presented 14,41%, 

obtaining 201 candidates. 

To assess the apparent permeability on Caco-2 cell membrane, Boehringer-

Ingelheim scale (nm /s) was employed. Compounds with low permeability presented < 

5 nm/s and high permeability showed values > 500 nm/s [78-80]. In this process, only 

molecules with values above 100 nm/s were considered and yielded in 153 molecules 

with major pharmacokinetics desirable properties for top-10 hits (Supplementary Table 

1). 

3.2 Toxicological analysis by Derek NexusTM 

For toxicity analysis predictions, we seek to identify and eliminate molecules 

that exhibited any toxicity alert for specific chemical groups, in the early stages of the 

process for developing prototype drugs, making it possible to optimize costs and time 



during research. (carcinogenicity, mutagenicity, genotoxicity, skin sensitization, 

teratogenicity, nephrotoxicity, hepatotoxicity, irritation, respiratory sensitization and 

reproductive effects)[77]. 

 Thus, the evaluation of chemical groups of the remaining 153 NatProDB 

compounds resulted in 47 candidates with low toxicological potential and adequate 

pharmacokinetic profiles for an oral route, i. e.: good intestinal absorption, high cellular 

permeability and low excretion. Therefore, promising antiviral candidate drugs. 

The polar molecular surface (PSA) area is a property based on polar atoms 

surface that was shown to correlate with passive molecular transport through 

membranes, therefore, allows the prediction of transport properties of drugs [81-82]. Its 

desirable value ranges from 7.0 to 200.0 Å2 [78-80]. Molecule 6 had the highest PSA 

index of 107.35 Å2, while compound 10 had the lowest value at 46.80 Å2. This indicates 

good permeability of the selected molecules through the lipid membrane. It is 

noteworthy that a PSA value < 75 Å2 has been associated with an increased risk of 

adverse effects when combined with high lipophilicity (logP greater than 4) and only 1 

march that situation, which was excluded [81]. 

A drug bound to protein is inactive, and it is only the free drug that can bind 

with a receptor providing pharmacological action [83]. The free drug concentration is 

affected by binding on human serum albumin, therefore, this pharmacokinetic property 

was also predicted for the compounds [51, 84]. This was evaluated by its logarithmic 

constant and has recommended range from -1.5 to 1.5 [78-80]. 

 Values outside the standard range may indicate non-enzymatic glycosylation of 

HSA, interference on drug binding potency and influence the distribution and excretion 

of molecules affecting the duration and intensity of the biologic effects [84-86]. All 

molecules selected showed satisfactory values and better than the E64, the smallest in 

the series, LogKHSA = -1.31 (Table S1). 

Finally, the hERG encodes the inward rectifying voltage-gated potassium 

channel in the heart (IKr) which is associated with cardiac repolarization. Inhibition of 

the hERG current induces QT interval prolongation and could represent fatal ventricular 

arrhythmia called Torsade de Pointes [87]. In fact, recent studies pointed out that some 

medications such as hydroxychloroquine and azithromycin have facilitated the risk of 

fatal arrhythmias in patients with COVID-19 infection [88-90]. 

https://www.lhasalimited.org/products/ICH-M7-assessment-using-derek-nexus.htm
https://www.lhasalimited.org/products/skin-sensitisation-assessment-using-derek-nexus.htm


 In our study, molecules that presented QPlogHERG values below -5 (2 = -5.14; 

4 = -5.53 and 5 = -6.48) will require greater attention and further in vitro analysis 

should be done to validate their pharmacological safety in the treatment against 

COVID-19. 

3.3 Site prediction and Druggability analysis of SARS-CoV-2 Mpro: 

We noted that all programs correctly identified the SARS-CoV-2 Mpro active 

site (Figure 2A-C) and additionally indicated that this site is druggable e. g.: 

druggability probability > 0.5 in PockDrug [35] and a strong primary hot spot with ≥ 16 

probes clusters and hot spots were connected with a center-to-center distance < 8 Å in 

FTMap [92, 39]. These agree with all experimental SARS-CoV-2 Mpro structures [4, 

7, 9, 93, 94] where distinct ligands were tested and crystallized. 

After the protein preparation step, pockets predictions and druggability analysis 

of the SARS-CoV-2 Mpro were done using three different methods: Difference of 

Gaussian (DoG) [33, 91], PockDrug [35], FTMap [92]. the main pockets determined 

into this protein shown below (Figure 2) 

Other sites were also signed as druggable in our analysis: SeeSAR (II and III- 

Figure 2A); PockDrug (green, yellow and grey sites- Figure 2B) and FTMap (yellow- 

Figure 2C). Since two SARS-CoV-2 Mpro sites are located on the same locations and 

were specified by distinct methods (II, yellow surface and yellow mesh; III, green 

surface and yellow mesh – Figure 2), we hypothesized that these two regions could be 

explored in further studies.  

 



 

Figure 2: 3D structure of SARS-CoV-2 Main protease (SARS-CoV-2 Mpro, PDB ID: 5R82, 
blue cartoon). A) Binding sites (surface and pink sticks) found by SeeSAR version 9.2 
(BioSolveIT GmbH) in the active site (I) is colored in pink (25 residues), site II (19 residues) in 
yellow and site III (15 residues) in green. This image was generated by SeeSAR program. B) 
Main pockets (color surfaces) predicted by PockDrug server [35]. The active site (I) is colored 
in pink (volume = 1,892 Å3, druggability score = 0.63 ± 0.09), site II (volume = 643 Å3, 
druggability score = 0.35 ± 0.08) in yellow and site III (volume = 760 Å3, druggability score = 
0.33 ± 0.03) in green. The remaining gray sites presented druggability score = 0.55 ± 0.10 
(upper), 0.98 ± 0.01 (middle) and 0.61 ± 0.04 (lower). C) Main hot spots (mesh and sticks) 
calculated by FTMap server [92]. The active site is colored in pink and was classified as 
druggable (≥ 16 probes) [39]; the 2nd site (yellow) is borderline (13 ≤ probes < 16) and pink and 
yellow sticks show the location of the probe. The B and C images were generated by 
educational Pymol 2.4.1 [47]. 

The probes posed by FTMap reveals that the druggable site (magenta sticks, 

Figure 2C) accommodates polar acyclic compounds (ethanol, dimethylformamide and 

acetamide) and some rings (benzene, benzaldehyde and cyclohexane) and borderline 

site (yellow sticks, Figure 2C) lodges ethanol, methanamine, benzene and cyclohexane. 

This information is helpful for fragment-based drug design. In another further step, grey 

sites predicted by PockDrug (Figure 2B) which had higher druggability scores could 

also be explored. 
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3.4 Molecular Docking simulations 

The docking calculations were done by SeeSAR version 9.2 (BioSolveIT 

GmbH) and focused on the active site of SARS-CoV-2 Mpro to better sampling the 

interaction energy (ΔG) between NatProDB ligands and this enzyme. The hydrogen 

bond and dehydration (HYDE) energy scoring function in SeeSAR provides a range of 

affinities, spanning an upper and lower limit. 

We, therefore, used this descending range as an affinity parameter to compare 

distinct molecules and their interactions on Mpro active site. For the sake of clarity, we 

only show the 10 best docked compounds with higher estimated affinities (EA, µM) in 

Table 2 instead of 46 NatProDB and E-64 molecules previously filtered from ADMET 

analysis (see preceding discussions). 

SeeSAR version 9.2 (BioSolveIT GmbH) analyzes the estimated affinities (EA) 

energies and the best poses selection were based on HYDE scoring function [29, 30, 31] 

and torsional analysis [44]. The docked molecules at the SARS-CoV-2 Mpro active site 

were ordered by their EA on SARS-CoV-2 Mpro-NatProDB complexes and the “top 

10” were selected for further analysis. 

Comparing the docking results presented in Table 1, we noted that NatProDB 

compounds energy ranked on “top 10” were better ranked than the Mpro 

crystallographic ligand (RZS, 255th better energy). These results indicate a good 

interaction between NatProDB and SARS-CoV-2 Mpro residues, mainly on active site. 

Additionally, “top 10” NatProDB compounds presented better energy when compared 

to a positive control (E-64), a well-known cysteine protease inhibitor [98, 99] (562th 

better energy, Table 1). 

 The best-scored poses were selected by visual inspection and since they 

interacted better with Mpro active site residues, we decided to compare their 

interactions analyzing each complex (Mpro- RZS, E-64 and NatProDB) aiming to find 

some structural information that could help on drug discovery against COVID-19 

(Figures S1-S4). 

 



Table 1: Best docking results carried out by SeeSAR version 9.2 (BioSolveIT GmbH) on active site of SARS-CoV-2 Main protease (SARS-CoV-2 Mpro) 
using the Natural Products Database of Bahia Semi-Arid region (NatProDB), E-64 (positive control) and RZS (crystallographic ligand, PDB ID: 5R82). 

 

1 The number of hydrogen bond donors (HBD), acceptors (HBA) and Lipinski’s rule violation were determined from FAFF-Drugs server 
(https://fafdrugs4.rpbs.univ-paris-diderot.fr/) [28, 95, 96]  
2 See note above. Lipinski’s rule was described here: [97]  
3 Molecular Surface Area were obtained from pkCSM server (http://biosig.unimelb.edu.au/pkcsm/) [24]  
4 The Solvent Accessible Surface (Å3) were calculated from MarvinSketch 18.8.0 Geometry plugin (http://www.chemaxon.com) employing the solvent radius 
1.4Å and pH=7.4. 
5 Estimated Affinity (EA) ranges mark the lower and upper bound of the estimated affinities (±2 log-units). 
6 Inter clash type: atomic clashes between protein and docked ligand atoms predicted by SeeSAR9.2. Inter clash type are classified as + (no clashes), 0 (few 
clashes), - (many clashes). 

# Compounds Chemical Structure 

Hydrogen 
Bond 

Donors 
(HBD)1 

Hydrogen 
Bond 

Acceptors 
(HBA) 

Lipinki’s 
Rule2 

Violation 

Molecular 
Surface 

Area (Å2)3 

Solvent 
Accessible 

Surface 
(Å3)4 

Estimated 
Affinity 

Range5 (µM) 

Inter 
clash 
type6 

b01 
VE0DIA0AF 

O

OH

 

1 2 1 134.92 478.2 3.29 – 326.4 + 

b02 
VE0PPA0AF 

OH

OH
OH

OH

OH

 

5 5 0 150.25 481.3 4.42 – 439.6 0 

https://www.rcsb.org/structure/5R82
https://fafdrugs4.rpbs.univ-paris-diderot.fr/
http://biosig.unimelb.edu.au/pkcsm/
http://www.chemaxon.com/


b03 
VE0ISA0AF NH

O

O

OO  

1 5 0 152.87 645.3 7.24 – 719.2 + 

b04 
VE0FKA0AF O

OH

O

OH

O  

2 5 0 150.34 576.2 17.25 – 
1,714.3 + 

b05 
VE0FEA0SF 

OOH

OH O

OH

OH

 

4 6 0 150.17 519.5 18.18 – 
1,806.5 0 

b06 
VE0JDA0SF 

OH

OHO

OOH  

3 5 0 121.72 355.9 20.82 – 
2,068.7 0 



b07 
VE0ZDA0AF 

O

O

O

O

OH

 

1 5 0 151.74 652.2 41.3 – 4,103.0 + 

b08 
VE0NCA0SF 

O
O–

 

1 2 0 72.59 309.2 51.97 – 
5,164.2 + 

b09 
VE0KJA0SI 

O

O

O OH

O

OH

OH

O

 

3 8 0 148.67 599.8 52.40 – 
5,206.5 0 

b10 
VE0NHA0SF 

NH

N

O

OH

NH

O  

3 6 0 122.04 543.6 53.85 – 
5,350.2 + 

255 
Control 
(RZS) 

- 

N

NH N
 

1 3 0 65.69 350.4 504.29 – 
50,103.8 + 

562 
Positive 
control 
(E-64) - 

O

O

NH

O

NH
NH

NH

NH2

O

 

7 10 1 145.91 638.3 96,164.96 – 
9,455,201.9 0 



These hits occupied the active site in a varied manner and interacted with Mpro 

through hydrogen bonds with catalytic residues (His41 and Cys145) and made 

additional hydrophobic contacts as shown from docking results (Figures S1-S4). The 

main interactions were described by Protein-Ligand Interaction Profiler server 

(https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index) [100] at each pose (Table 

S2) where we noted that the 2 better docked NatProDB compounds (VE0DIA0AF and 

VE0PPA0AF) presented better contacts than the crystallographic ligand (RZS). 

3.5 Molecular Dynamics (MD) Simulations 

To understand the behavior of SARS-CoV-2 Mpro complexes, we analyzed 

them through Molecular Dynamics (MD) Simulations. These data allowed us to analyze 

the time influence on these interactions pattern. First, we analyze the stability of our 

eight systems: apo and complexes: holo (PDB ID: 5R82), E-64 and the five better-

ranked NatProDB compounds (Table S3). From our Root Mean Square Deviation 

(RMSD) data, we note that all systems equilibrated after 40ns (Figure S5 A) then we 

defined our productive phase into time intervals from 40-100ns for all simulations 

(Figure S5 B-C). 

Comparing the Mpro structure fluctuations (3D RMSF) within all complexes we 

distinguished their overall protein folding stability, mainly at active site represented by 

catalytic residues (His41 and Cys145, Figure 3). These data correlate with Mpro 

crystallographic structure where active site residues are well solved in electron density 

maps from 2.1Å resolution [7]. Additionally, we analyzed their secondary structure 

stability by DSSP 3.1.4 module [101-103] installed on GROMACS 5.1.4 [53, 54, 56-

59]. All Mpro complexes maintained their secondary structure stable during our 

simulation time (Figure S6). 

Some regions presented higher fluctuation in Mpro structure, mostly at some 

loops and N-, C-terminals (Figure 3). SARS-CoV-2 Mpro crystal had a long loop region 

of domain II (residues 185 - 200) connecting domain III and this region is highly 

variable as pointed by superposition of 12 Mpros crystal structures [7]. Our MD data 

revealed that these loop on domain II fluctuated higher than other secondary protein 

structures corroborating with this experimental study. Previous results also cited the 

interface region among Mpro protomers composed by domain II residues as unstable [4, 

7, 9] and these data were also visualized in our simulations (Figure 3). 

https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://www.rcsb.org/structure/5R82


 

 

Figure 3: SARS-CoV-2 Mpro structures are shown in B-factor putty mode in PyMOL. The 
highest B-factor in each structure is colored in red and the lowest, in dark blue, as indicated by 
the B-factor scale bar. The thickness of the protein backbone also is proportional to the B-
factors. The catalytic residues (His41 and Cys145) are displayed as sticks. This image was 
generated by educational Pymol 2.4.1 [43]. 

Many studies described Mpro subsites expanding from S6 to S1 with catalytic 

site located on S1 [4, 7, 9, 93]. Based on these results, we analyze the interaction pattern 

on SARS-CoV-2 Mpro of NatProDB derivatives compared with crystallographic ligand 

(RZS) and E-64 . Additionally, we evaluated both the hydrogen bond pattern, through 

GROMACS hbond module [70] and HbMap2Grace program [71], and the molecular 

Surface Area by SurfinMD program [72]. 

The Molecular Dynamics (MD) data for hydrogen bond (H-bond) analysis 

shown that NatProDB compounds made more interactions than RZS and VE0FKA0AF 

and VE0FEA0SF were similar to E-64, which has the highest H-bond number (Table 

S3). Since these interaction patterns could favor their inhibitory behavior, we analyzed 

them in detail. 

Initially, we defined and calculated the hydrogen bond capability for our ligands 

(Table S3), Hbondcapac. during MD simulation. This measure could aid us to quantify 

how “tightly” the ligands interact with Mpro since Hbondcapac. ≥ 1 means that each 

ligand’s hydrogen bond atoms (donors and acceptors) interacted with protein residues. 

+          B-factor scale bar       -     

Loop region 
Active site 



Our results from MD productive phase correlates well with estimated binding 

energy obtained before from docking results (Table 1) i.e., the ligands with best docking 

energies presented higher Hbondcapac. which reveal to us that hydrogen bond is a 

favorable interaction on developing Mpro inhibitors. Additionally, we noted that our 

ligand accessed distinct sub-sites on SARS-CoV-2 Mpro interacting beyond the 

catalytic ones - S1 (Figure 4). 

 The H-bond pattern presented interactions with His41 and Cys145 (catalytic 

residues); Thr25 and 26 from S1’; Gly143 and Ser144 from canonical oxyanion role on 

S1 [7]; Glu166 from S1 and Gln189 and Thr190 from S4 [4, 7, 9, 94]. Since H-bond is 

considered as the “driving force” for Mpro inhibition, we could map and analyze them 

through our MD simulations. 

 

 

Figure 4: Hydrogen bond stability on SARS-CoV-2 Mpro complexes calculated by 
HbMap2Grace after 100ns of Molecular Dynamics simulation. 

We also calculated the atomic contacts involving SARS-CoV-2 Mpro and 

NatProDB compounds (Figure 5). The contact surface area revealed additional 

interactions with apolar residues on the same sites described before [4, 7, 9]: S1’ 

(Thr25, 26, Leu 27, Cys145), S2 (His41, Thr45, Ser46, Asp48, Met49), S4 (Met165, 

Glu166, Leu 167, Gln189) and S5 (Pro168). 
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Figure 5: Surface Molecular Area (Å2) of SARS-CoV-2 Mpro complexes calculated by 
SurfinMD after 100ns of Molecular Dynamics simulation. 

Another measure to evaluate Mpro interaction with NatProDB ligands is their 

active site occupancy. Ideally, it is expected that potent inhibitors should present 

reversible action mechanisms and tight binding [104]. Since Mpro active site has a well-

defined area (335.9 Å2) and volume (364.1 Å3) [105], we compare these results with our 

MD data. Fpocket program [106, 107] was employed to calculate the volume variation 

throughout the simulation. We noted that active site volume oscillates from 461.8 Å3 of 

E-64 complexes to 262.9 Å3 for VE0FKA0AF (Table S3) which agree well with 

previous data [4, 93, 105] and with the molecular area and volume of NatProDB ligands 

(Table 1). These results could point to us that SARS-CoV-2 Mpro and NatProDB 

ligands shown induced-fit mechanisms correlating with their dynamics and molecular 

interactions at the active site. 

Based on interaction results of complexed after MD simulations, we assume that 

new Mpro sites were pointed: i) V42, C44, T45 and S46, near and ii) Y118 and N119 

(Table S3). The former residues made hydrophobic interactions with alpha-ketoamide 

inhibitors described before [4], FDA approved drugs and medicinal plant compounds 

[105] and ZINC-15 docked compounds [108]. Our results (Figure 6) reinforce the 

importance of these non-polar interactions and opens up a new region (together with 

latter residues) for drug discovery development aiming to search for new Mpro 

inhibitors. 
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Figure 6: SARS-CoV-2 Mpro main residues that interact with best docked NatProDB 
compounds throughout the productive phase of Molecular Dynamics simulation. Mpro is shown 
as a cartoon (blue) with its main interacting residues labeled (blue sticks), VE0DIA0AF is 
shown in green sticks, VE0PPA0AF (cyan), RZS (magenta) and E-64 (orange) and polar 
interactions is depicted as yellow dashed lines. This image was generated by educational Pymol 
2.4.1 [43]. 

Additionally, we calculated the binding free energy of all Mpro complexes 

through MM-PBSA methods. The binding energy (ΔEbinding) calculated by solvent 

accessible surface area shows that all compounds interacted favorable with Mpro (Table 

S3). Since these values are directly correlated to interacting protein residues, we decide 

to discriminate how amino acids presented better contacts with ligands. These residue 

decomposition energy analyses selected residues near the ligand (<5 Å) during the MD 

simulation and which participate actively in complex stabilization (ΔEbinding > ± 5 

kJ/mol) as shown in Figure 7. 

 

 

Figure 7: Residue contributions to the binding energy of SARS-CoV-2 Mpro complexes. The 
main residues with energy interaction (ΔEbinding > ± 5 kJ/mol) were highlighted. For Mpro sub-
site definitions see the text. 
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We noted that ligand interaction with catalytic residues (His41 and Cys145) are 

highly favorable (negative values), as expected for reversible inhibitors. This behavior 

remains for two residues of the new binding site (Arg188 and Gln189), first described in 

this work. Other residues (Val42, Cys44, Ser46 and Glu48) do not interact favorably 

with ligands (positive values- Figure 6). This could be related to their position on Mpro 

site, i.e., their side chains are pointed outwards instead of the active site cavity [4, 9]. 

4. Conclusion 

In this study, some computer-aided drug discovery methods were sequentially 

employed against the main protease Mpro of SARS-CoV-2 (SARS-CoV-2 Mpro) 

aiming to select the most active molecules from the Natural Products Database of the 

Bahia Semi-Arid region (NatProDB, http://natprodb.uefs.br/). From “top 10” docked 

compounds some common scaffolds were selected (secotrachylobanoic acid, 

hexahydronaphthalen-1-yl, indolinedione, benzopyran-4-one) indicating that Mpro 

could privilege the hydrophobic chains and (poly) aromatic rings. The best interactions 

with SARS-CoV-2 Mpro reveals that some enzyme sites were accessed thereby 

confirming that this method can be employed as a suitable starting method for the 

identification of novel SARS-CoV-2 Mpro inhibitors. 

The pharmacokinetic (ADMET) and toxicological analysis confirm that 9 of 10 

best molecules does not have any issues and could be employed in subsequent in vitro 

assays. Finally, this study should point that sequential application of in silico methods 

(ADMET analysis, Docking and Molecular Dynamics) are valuable tools for searching 

the chemical space and selecting the best ligand structures that could be employed in 

experimental tests minimizing the costs of testing many compounds. We also hope that 

natural products from Bahia Semi-arid region choosen here could be safe and effective 

for treating SARS-CoV-2 infection. 
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