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ABSTRACT 

Ultraviolet-visible (UV-Vis) absorption spectra are routinely collected as part of high-

performance liquid chromatography (HPLC) analysis systems and can be used to identify 

chemical reaction products by comparison to reference spectra. Here, we present UV-

adVISor as a new computational tool for predicting UV-Vis spectra from a molecule’s 

structure alone. UV-Vis prediction was approached as a sequence-to-sequence problem. 

We utilized Long-Short Term Memory and attention-based neural networks with Extended 

Connectivity Fingerprint diameter 6 or molecule SMILES to generate predictive models 

for UV-spectra. We have produced two spectrum datasets (Dataset I, N = 949 and 

Dataset II, N = 2222) using different compound collections and spectrum acquisition 

methods to train, validate, and test our models. We evaluated the prediction accuracy of 

the complete spectra by the correspondence of wavelengths of absorbance maxima and 

with a series of statistical measures (the best test set median model parameters are in 

parentheses for Model II), including RMSE (0.064), R2 (0.71), and dynamic time warping 

(DTW, 0.194) of the entire spectrum curve. Scrambling molecule structures with 

experimental spectra during training resulted in a degraded R2, confirming the utility of 

the approaches for prediction. UV-adVISor is able to provide fast and accurate predictions 

for libraries of compounds.   
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INTRODUCTION 

Molecules absorb ultraviolet (UV) and visible (Vis) light with excitation of their electrons 

to higher energy molecular orbitals. The intensity of absorption varies as a function of 

wavelength, with greatest absorption corresponding to wavelengths having the energies 

of allowed electronic transitions. This variation, the absorption spectrum, 1 underpins UV-

Vis spectroscopy, a commonly used technique to characterize and quantify a variety of 

analytes, including solutions of macromolecules, conjugated organic compounds, and 

transition metal ions 2.  

Because the UV-Vis spectrum of a compound is sensitive to its structure, UV-Vis 

spectroscopy can be used to identify molecules with reliability comparable to that of low-

resolution MS-MS4. Thus, UV-Vis spectroscopy is useful as a rapid, inexpensive, and 

non-destructive confirmatory tool in chemical synthesis and purification and natural 

product isolation. Routine analysis of compounds by high-performance liquid 

chromatography (HPLC) often involves a photodiode array (PDA) detector that measures 

UV-Vis spectra continuously during a chromatographic separation. UV-Vis spectroscopy 

is also used to monitor chemical reactions in situ, such as in flow reactors 3. However, 

identification of a compound from its UV-Vis spectrum requires comparison to an 

experimental or predicted reference spectrum. 

Development of dyes for biotechnology, genomics, immunoassays, and drug 

discovery utilizes different chromophores and makes frequent use of the UV-Vis 

absorbance spectra of molecules. A predicted spectrum for novel dyes would accelerate 

this process with value in automated molecular design and synthesis and analytical 

research. 
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The UV spectrum of a compound is also valuable for predicting other important 

optical and chemical properties, such as phototoxicity, which must be evaluated for 

potential drugs prior to Phase III clinical trials 4. The ability to accurately predict UV 

spectra at the earliest stages of drug discovery, before compound synthesis, would be 

highly beneficial and cost-effective, versus embarking on a compound that might later be 

identified with this toxicity liability. Recent efforts have compiled data on compounds 

known to be phototoxic in in vitro assays, used for machine learning with quantum 

chemical descriptors producing accuracies between 83-85% 4. Predicting the UV-Vis 

spectrum of a compound before synthesis and experimental testing also offers 

advantages in terms of avoiding molecules that interfere with high throughput assays 5 

and benefits in terms of cost of manufacture and speed. 

Ab initio time dependent-density functional theory (TD-DFT) calculations are often 

used to predict electronic absorption spectra 1 or the wavelengths of maximum 

absorbance (λmax) for compounds to aid in numerous applications 4,6-13. Such quantum 

chemistry approaches have been developed for decades with only modest success in 

spectrum prediction (Table S1). Hence, efficient and accurate UV spectrum prediction is 

still an unsolved problem. Alternative approaches to predicting a UV-Vis spectrum from 

molecular structure alone without resorting to quantum mechanical calculations would 

offer a quicker, and potentially more informative route for large collections of molecules. 

Recently, course-grained models have been developed for predicting absorption spectra 

for optoelectronic polymers using recurrent neural networks 14. However, machine 

learning approaches to predicting the UV-Vis spectra for small molecules has not been 

described. 
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A challenge in the application of machine learning to prediction of UV-Vis 

absorption spectra is the paucity of available training data. There are few open-source 

databases of UV-Vis absorption spectra, and most focus only on λmax rather than the full 

spectrum within a useful wavelength range. The currently available databases with UV-

Vis spectra include the Max Weaver dye library 15, NIST Chemistry Webbook 16, 

PhotochemCAD 17, UV/Vis+ photochemistry database 18 and the DSSC Database 19 

ranging from hundreds to several thousand molecules 20. Few of these databases provide 

full spectra for use in machine learning, and most are biased toward specific classes of 

molecular structures, particularly dyes. PhotochemCAD provides spectra of ~339 entries 

for download; however, the wavelength range over which the spectra are measured 

varies, making compilation for machine learning purposes difficult 17. 

These technical needs motivated us to develop our own datasets of spectra for a 

diverse collection of small molecules (Figure 1A, Supplemental datasets I and II). We 

have now used these data with multiple machine learning approaches to reliably predict 

spectra for new molecules (UV-adVISor). We have used multiple measures to compare 

predicted to experimental spectra, including root mean square error (RMSE), R2, mean 

absolute error (MAE), RMSE of derivative spectra, and dynamic time warping (DTW), 

which is a distance measure technique that allows a non-linear mapping between two 

signals by minimizing the distance between them 21. Altogether, our approach does not 

require time-intensive quantum chemistry calculations and provides accurate, multiple-

wavelength spectrum predictions (across a complete spectrum rather than just the λmax), 

comparable to or better than currently used models. 
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RESULTS  

Overview of UV-adVISor. UV-adVISor is a new tool to enable a scientist to obtain 

predicted UV-Vis absorption spectra for input molecules using standard structure 

representations such as SDF 22 and SMILES. 23 The tool uses a machine learning 

algorithm built from a Long Short-Term Memory (LSTM) network architecture to predict 

relative absorbance at wavelengths within a trained range (Figure 1). To cover a wider 

range of applicability, we have trained two models, each with a different dataset which 

covers different chemical property space (Figure 1B). Dataset I was generated from a 

compound collection combining an internal chemical inventory and a commercial 

compound library. Spectra for these compounds were obtained with a PDA detector 

interfaced with a HPLC, elution time of each sample compound being judged by its initial 

detection with an in-line mass spectrometer. Dataset II was generated from a 

commercially obtained (MicroSource Spectrum) collection of drugs. Spectra for these 

compounds were obtained with a spectrophotometer using a multi-well plate format. 

Generating two datasets using two distinct methods allowed us to demonstrate the wider 

applicability of UV-Vis based models, as UV-Vis spectra can often be distinct based on 

conditions such as the solvent composition and the pH. The spectra in both data sets 

were baseline corrected (minimum value in wavelength range offset to 0) and normalized 

(maximum value in wavelength range set to 1). For each model, we used 70% of the 

compounds for training, 15% for validation, and 15% for testing. Our first set of models 

used LSTM layers to read SMILES sequences or an ECFP6 fingerprint (Figure 1C, left). 

We also used a second model architecture, taking advantage of recent advancements in 

using encoder-decoder architectures 24,25 with an attention mechanism for language 
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translation (Figure 1C, right). This second network architecture is motivated by 

approaching spectrum prediction as a sequence to sequence (Seq2Seq) translation 

problem between a chemical structure (represented by SMILES string) and a wavelength 

sequence output. The final models are readily accessible through a web interface 

(https://www.collaborationspharma.com/uvadvisor), where the user can input a structure 

in 2D or SMILES format, and UV-AdVISor outputs the predicted spectrum as a graph or 

in .csv format. 
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Figure 1. A. Overview of the experimental workflows for generating data with PDA or 

plate reader. B. t-distributed stochastic neighbor embedding (t-SNE) plot of chemical 

structure overlap between compounds generated by HPLC and spectrophotometer. 

Compounds that are structurally similar are close together in 2D space. No compounds 

are duplicated between the two datasets. C. Two LSTM architectures used for spectrum 

prediction. Left: LSTM model composed of LSTM layers followed by dense layers for the 

output, which takes in a SMILES string or ECFP6 as input. Right: Architecture of our 

Seq2Seq model with attention, which uses bi-directional LSTMs for the encoder and 

Luong attention and takes in SMILES strings.  
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UV-adVISor Enables Accurate Spectrum Predictions. Models generated using 

Extended Connectivity Fingerprint Diameter 6 (ECFP6) 26,27 molecular representations as 

inputs to the LSTM network produced hiqh-quality predictions of spectra for test 

compounds. Representative examples from the model using Dataset I are shown in 

Figure 2. The full data set is available in Supplemental data File 1. Many of the predictions 

accurately render absorption maxima, minima, and shoulders and good approximations 

of relative absorption across the wavelength range of the spectra. The best predicted 

spectrum had a RMSE of predicted versus measured spectra of 0.005 (SRI-1053215). 

Qualitatively, we assess RMSE values of less than 0.10 as “excellent”, values less than 

0.20 as “good”, and anything at or above 0.25 as a “poor” prediction (Figure 2B).  We 

obtained comparable prediction accuracy, as judged by RMSE (Table 1), with a model 

that used 2048 bit or 1024 bit ECFP6 descriptors (see Methods). The median RMSE for 

both sets of predictions is ~0.17. However, further compression of the fingerprint resulted 

in substantial degradation of the prediction quality (median RMSE = 0.21). Using 

tokenized SMILES as the molecular representation produced predictions of quality 

comparable to those produced with the uncompressed ECFP6 (median RMSE = 0.17). 

Using a Seq2Seq model resulted in the best predictive model (as judged by median 

RMSE = 0.15). Training the model with scrambled data, in which the compounds are 

paired randomly with spectra from the dataset, resulted in poor predictions as one would 

expect. The average median RMSE for predictions made with LSTM models trained with 

three randomly scrambled sets using 2048 bit ECFP6 was degraded to 0.25. Comparison 

of this performance metric with the that of the trained model with the correctly paired 
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spectra and compounds confirms that the model has successfully learned structure-

spectrum relationships. 
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Figure 2. A. Comparison of different molecular descriptors to predict UV spectra for 

different representative molecules from Dataset I. B. Illustration of structures and 

spectra with varying qualities of prediction judged by RMSE. 

A

 

   

B 
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Table 1. Summary of Dataset I training (N = 649) and test set (N= 150) information for 

UV-Vis spectrum prediction using LSTM or Seq2Seq with attention (Scrambled average 

of N= 3, ± standard deviation). 

 

Model Median RMSE Median DTW Median R2 Median 

RMSE 

derivative 

Median 

MAE 

Compressed 

ECFP6 

0.206 ± 0.141 0.705 ± 1.468 0.420 ± 1.446 0.016 ± 0.009 0.123 ± 0.115 

1024 bit 

ECFP6 

0.169 ± 0.132 1.029 ± 1.232 0.626 ± 1.166 0.013 ± 0.010 0.119 ± 0.106 

2048 bit 

ECFP6 

0.169 ± 0.143 0.760 ± 1.395 0.546 ± 1.266 0.015 ± 0.010 0.121 ± 0.112 

SMILES 0.166 ± 0.140 0.710 ± 1.187 0.629 ± 1.207 0.025 ± 0.015 0.106 ± 0.118 

Seq2Seq 0.154 ± 0.144 0.558 ± 1.268 0.680 ± 1.230 0.018 ± 0.020 0.091 ± 0.12 

Scrambled 

Average  

0.250 ± 0.134 1.162 ± 1.429 0.124 ± 1.434 0.019 ± 0.009 0.170 ± 0.113 
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UV-adVISor trained on different data sources. Dataset I was produced on an 

HPLC-PDA system, modeling the type of analytical system used in a typical organic 

chemistry lab. Dataset II was directly read on a UV-Vis spectrophotometer, representing 

a faster data collection methodology, but without the chromatographic separation afforded 

by the HPLC-PDA system. Machine learning models trained using Dataset II were also 

found to provide accurate predictions (Supplemental dataset 2), suggesting UV-adVISor 

is widely applicable to a variety of different detection methods. As with Dataset I, the 

median RMSE was comparable using the 2048 bit ECFP6 descriptor or the 1024 bit ECFP 

descriptor (Table 2). Using either descriptor, the median RMSE of the predictions was 

substantially lower than predictions using the model trained with Dataset I, (0.06-0.08 vs 

0.17), reflecting a closer match, on average, between predicted and observed spectra for 

Dataset II. The average median RMSE for predictions made with models trained with 

three randomly scrambled sets from Dataset II was 0.1, also substantially lower than the 

scrambled RMSE for Dataset I, which was 0.25.  

 

 

 

 

 

 

 



 14 

Table 2. Summary of Dataset II training set (n) and test set (n) information for UV-Vis 

spectrum prediction using LSTM or Seq2Seq with attention. (Scrambled average of N= 

3, ± standard deviation). 

 

 

Inspection of the datasets reveals that Dataset II, while derived from a diverse set of 

compounds, appeared to have a relatively low diversity of spectrum profiles in the training 

and test sets, with a large number of spectra having few or no features above ~240 nm. 

(Figure S1). To quantify this difference in diversity, we measured the average of the 

standard deviation of each wavelength value for both datasets. Dataset I had an average 

standard deviation of 0.23, while Dataset II had an average standard deviation of 0.08, 

Model Median RMSE Median DTW Median R2 Median RMSE 

derivative 

Median 

MAE 

1024 bit 

ECFP6 

0.064 ± 0.062 0.194 ± 0.642 0.710 ± 0.472 0.008 ± 0.006 0.047 ± 0.075 

2048 bit 

ECFP6 

0.073 ± 0.071 0.196 ± 0.533 0.731 ± 0.577  0.012 ± 0.004 0.046 ± 0.022 

SMILES 0.078± 0.087 0.221± 0.651 0.742± 0.721 0.012± 0.06 0.051± 0.046 

Seq2Seq 0.055 ± 0.071 0.188 ± 0.431 0.699 ± 0.259 0.006 ± 0.007 0.044 ± 0.052 

Scrambled 

Ave 

0.099 ± 0.091 0.232 ± 0.813 0.593 ± .992 0.014 ± 0.005 0.075 ± 0.86 
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indicating a lower diversity of spectra. Second, we used shape-based distance to divide 

the spectra into 25 distinct clusters. Dataset I exhibits a higher inter-cluster diversity 

compared to Dataset II (Figure S1A).  Using the silhouette method 28 (see Methods) to 

determine the optimal number of clusters, Dataset I is determined to have 4 major 

clusters, and Dataset II has 3 major spectrum clusters, consistent with the lower spectral 

diversity of Dataset II (Figure S1B). Because of this lower spectra diversity, the model 

trained and tested with Dataset II has a greater statistical probability of predicting the 

shape of the spectrum when trained with the actual data or the scrambled data (Extended 

data Table 2). This analysis again shows the importance of evaluating the model relative 

to a scrambled dataset, which captures the overall spectrum diversity for a given dataset. 

It also confirms that the model is able to learn structure-spectrum relationships for Dataset 

II. (Table 2). 

Comparison of Measures of Prediction Accuracy. To our knowledge no single 

measure of the difference between predicted and actual UV-Vis spectra has been 

previously adopted as an ideal metric for comparisons. Most comparisons of predicted 

spectra to measured spectra only consider λmax 29, whereas our models predict the entire 

spectrum over a wavelength range. Therefore, we have applied a series of quality metrics 

to evaluate the predictions of UV-adVISor. In addition to RMSE, other commonly applied 

metrics are R2 and Mean Absolute Error (MAE). Applied to Dataset I, Median R2 was 

similar for 1024 bit ECFP6 and SMILES representations (~0.63) and lowest for the 

scrambled average (0.12). Median MAE was lowest for SMILES (0.10) and increased to 

0.17 for the scrambled average for Dataset I (Table 1). A similar trend was observed using 
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Dataset II, with stronger measures of concordance for both authentic and scrambled data 

(Table 2). 

 

In addition, we have applied novel metrics aimed at emphasizing correct prediction of key 

features of a spectrum. DTW is an approach for comparing data series by finding the 

optimal match between the series. Applied to spectra, it allows comparison of spectrum 

shapes when features of the compared spectra are shifted in wavelength 21. Thus, in 

principle, DTW is more robust than measures such as RMSE for comparing spectrum 

shapes and could also be used for shape-based classification 30. We have generated 

DTW for the test spectra in each dataset and found it correlated with RMSE (R2 > 0.6, 

Figure S2). DTW therefore provides an interpretable method to compare predicted and 

observed spectra to assess machine learning prediction quality. For Dataset I, the median 

DTW showed considerable variability between 1024 bit, 2048 bit ECFP6 and SMILES 

representations (0.71-1.03, Table 1). Similarly, for Dataset II the median DTW shows a 

similar spread (0.194-0.232, Table 2) on a narrower scale, suggesting the error is 

generalizable, and therefore the 1024 bit ECFP6 was selected as the more favorable 

model in the latter case. 

  

We have also applied the RMSE between the derivatives of the predicted and actual 

spectra to emphasize correct prediction of absorption maxima and minima (Table 2). This 

measure was the lowest for the 1024 bit ECFP6 and highest for SMILES in Dataset I 

while being intermediate for the scrambled data. In contrast, SMILES and 2048 bit ECFP6 

showed comparable RMSE. SMILES is an end-to-end model; using the encoded SMILES 
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string as an input, whereas ECFP6 are features calculated from the molecule. It is 

possible that the end-to-end learning of SMILES, while requiring more data, is capable of 

learning a similar feature representation as fingerprints given a large enough dataset.  

 

Based on the assessment of chemists in our group, none of these statistical measures 

adequately evaluates the utility of a predicted spectrum to the chemist’s task of identifying 

a compound or distinguishing a compound from others. We have therefore applied 

functional tests to the quality of spectra predicted with UV-adVISor based on the 

correspondence of peaks, i.e., wavelengths of local absorption maxima, with actual 

spectra. In one such test, the predicted spectrum is judged useful if 1) it has an equal 

number of local absorbance maxima within a defined wavelength range as the actual 

spectrum and 2) each of the peaks is within 15 nm of a corresponding peak in the actual 

spectrum. 

 

For the LSTM model trained with Dataset I (2048-bit ECFP6), 58 of 150 predictions (39%) 

meet these criteria. For the Seq2Seq model trained with Dataset I, 47 of 150 predictions 

(31%) meet these criteria.  In contrast, spectra calculated using models trained with three 

random scrambles of Dataset I afford only 11, 15, and 17 of 150 predictions (7%, 10%, 

and 11%, respectively) that meet these criteria. For the model trained with Dataset II 

(2048-bit ECFP6), 235 of 330 predictions (71%) meet these criteria. Spectra calculated 

using models trained with three random scrambles of Dataset II afford 175, 181, and 184 

of 330 predictions (53%, 55%, and 56%, respectively) that meet these criteria. As can be 

seen from these examples, the fraction of calculated spectra meeting this functional 
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standard is roughly correlated with the median RMSE for the calculated spectra. 

However, at the level of individual spectra, this correlation is weak, because the functional 

criteria do not penalize a predicted spectrum for large deviations of absorption intensity 

from the actual spectrum; whereas, RMSE does penalize such deviations.  

 

Spectrum Predictions for Additional Compounds. After all model test sets were used 

for evaluation, a prediction was performed on a 17-compound external test set (Dataset 

III, Supplementary data). Though there was no overlap of these compounds with Dataset 

I, 8 of the 17 were found in Dataset II. Therefore, we only made predictions using the 

model built with Dataset I. Similar to the test set, both the LSTM model trained with ECFP6 

(1024) and the Seq2Seq model had comparable median RMSE (Table 3) for Dataset III. 

Both models had a higher RMSE and lower Median R2 than the test or Dataset III which 

might be explained by the 17 compounds containing a variety of spectral shapes in 

comparison to the training, test, and validation sets, which had a number of similar 

spectrum peaks. 
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Table 3. Summary of Dataset I external UV-Vis spectrum prediction on 17 compounds in 

dataset using LSTM or Seq2Seq with attention. (median value ± standard deviation). 

 

Model Median RMSE Median DTW Median R2 Median RMSE 

derivative 

Median 

MAE 

1024 bit 

ECFP6 

0.224 ± 0.110 0.872 ± 0.912 0.295 ± 0.525 0.017 ± 0.089 0.139 ± 0.089 

Seq2Seq 

SMILES 

0.236 ± 0.111 0.574 ± 0.748 0.215 ± 0.771  0.020 ± 0.017 0.173 ±0.081 

 

 

UV-adVISor predictions and molecule similarity to training set. Chemical space is 

infinite 31. Therefore, it would be unexpected for machine learning models trained with 

hundreds to thousands of molecules to correctly predict a UV-Vis spectrum for all possible 

new molecules. We discovered that UV-adVISor was capable of predicting near-identical 

spectral curves for some compounds but missed important features for others (Error! 

Reference source not found.).The t-distributed stochastic neighbor embedding (t-SNE) 

plots 32 (See Methods) of structural similarity (based on ECFP6 fingerprints) suggests that 

predictive power is determined by training and test set overlap. Where the density of 

training examples is sparse in relation to the density of the test examples, the MAE of 

predictions is generally higher (Figure 3). This observation suggests that the reliability of 

predictions can be improved with sufficient representation in the training set of the model. 

The additional compounds (Dataset III) were also well distributed in the t-SNE plot for the 
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Dataset I (Figure S3) suggesting they were likely within the applicability domain of this 

model. 

 

 

Figure 3: A. t-SNE plots of overlap between test and training sets of Dataset I (left) and 

t-SNE of the test set only, colored by Mean Absolute Error (right). B. t-SNE plots of 

overlap between test and training sets of plate-derived compounds (left) and t-SNE of test 

set only, colored by MAE (right). 
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with attention is the ability to visualize the attention mechanism 25. In our Seq2Seq model, 

compounds are represented as tokenized SMILES strings. Upon generation of each 

wavelength value, a corresponding vector of weights over each character in the input is 

generated (Figure 4A). This vector of weights describes what parts of the input the model 

is “paying attention to” at each prediction step. Although caution must be used to not 

make direct inference from attention alone, we can exploit this mechanism to observe 

what part the compound structure the model is paying attention to and derive substructure 

importance from UV-Vis spectra. We chose a spectrum that was predicted with 

reasonable accuracy for example (Figure 4B). Here, we chose two “low points” and two 

“high points” and observed the attention weights for each. At the lowest wavelengths, the 

model’s attention is not focused on any part of the input (Figure 4C, top-left). During the 

first peak, however, the model is focused on the amide group. The second low point on 

the spectrum shows a focus on the thiophene ring, and the λmax indicates attention focus 

on the nitro group. This type of structure-spectrum analysis may also inform efforts to 

develop rules to calculate the λmax based on substructure features 33,34.  
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Figure 4: Exploration of the Seq2Seq model’s attention weights. A. Graphic showing the 

encoder side of Seq2Seq and the generation of an attention weight vector for each 

tokenized SMILES input. B. Example spectra and selected wavelengths at which the 

attention weights are visualized. C. Attention weights for each token SMILES input for 

each of the four chose wavelengths. At each prediction step, the attention weights focus 

on the most relevant SMILES input token as represented by the weight value. 
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DISCUSSION 

In practice, UV-Vis spectra are most commonly used in reference to specific qualified 

standards or spectral libraries. The theoretical prediction of spectra has not achieved 

sufficient accuracy for routine use in chemistry labs, particularly for chemists analyzing 

mixtures of crude reaction products or extractions. In contrast, predictive tools for NMR 

and FT-IR spectra are used by almost all synthetic chemists in identification, 

characterization and structural elucidation of novel compounds (e.g. NMR predictor 

software, ACDlabs) 35. Given that chemists routinely collect UV-Vis spectral data as part 

of standard HPLC analysis workflows, these data are essentially “free” and underutilized 

by them. The ability to accurately predict UV-vis spectra de novo would enable chemists 

to more easily identify compounds of interest without the need for qualified reference 

standards. 

 

The most commonly used method to date for UV-Vis spectrum prediction is TD-DFT 

(Table S1) using CAM-B3LYP functionals. 1  This approach requires quantum chemistry 

software, significant computing resources, and expertise in their use and interpretation. 

Nevertheless, it has been used in hundreds of publications for diverse range of 

compounds. Most of these publications report studies of individual compounds or at most 

a few analogs, and the experimental data for the various studies have been generated in 

a variety of solvents, limiting their value as a spectrum database. Most measure 

agreement between prediction and experiment only at lmax, providing at best, a qualitative 

assessment of agreement for other spectral features. In many cases, the predicted values 

of lmax are significantly different than those observed.  
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Though the limitations of purely theoretical approaches to predicting UV-Vis spectra 

hinder the application of these approaches to compound identification and 

characterization in organic chemistry, chemists routinely use empirical rules to make 

qualitative or partial predictions of compounds’ UV-Vis absorbance behavior. The utility 

of such methods suggests the potential for data-driven approaches such as machine 

learning to prediction of UV-Vis spectra. Key issues that we have addressed to realize 

this objective are the availability of sufficient data for training, validating, and testing ML 

algorithms; the relationship between the content of training data and the reliability of 

predictions; machine readable (i.e., vector) representations of molecular structure that 

capture sufficient detail to generalize structure-spectrum relationships; network 

architectures that output predicted spectra that are continuous across a wavelength 

range; and useful metrics for assessing the predictive power of ML models.  

 

Despite the routine nature of UV-Vis spectrum acquisition, assembly of a sizeable dataset 

from publicly available sources that meets the needs of training and testing for spectrum 

prediction was not possible. Existing publicly available datasets are inadequate because 

they lack full spectra across a consistent wavelength range (rather than lmax only or 

varying wavelength ranges), absorption values across the wavelength range (rather than 

plotted spectra only), consistent solvent environments (solvent composition and pH), or 

a diversity of molecular structures (e.g. the compound sets often being focused on an 

analogous series of compounds such as dyes). Data harvested piecewise from the 
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literature suffered similar deficits. We sought to avoid these limitations in the construction 

of our own datasets.  

 

The library of compounds we used to construct Dataset I comprised an internal collection 

aggregated from a variety of projects with a range of objectives undertaken at SRI. In 

addition to emulating the type of analytical system used in a typical organic chemistry lab, 

the HPLC methodology that we used for collection of Dataset I ensured that the spectra 

we analyzed were of pure compounds. The larger library of compounds in Dataset II from 

a commercial vendor comprised a wide range of drugs and natural products. By using 

these two datasets, we have created machine learning models that relate to a broader 

range of compound classes than literature datasets created primarily using dyes. 

 

At the outset, it was unknown how much data would be required for machine learning 

models to learn structure-UV-VIS spectrum relationships to generalize to new molecules. 

We found that surprisingly small datasets can result in accurate predictions for new 

molecules. With less than 1000 molecules, we can obtain good levels of accuracy of 

prediction as judged by median statistics (Tables S2-4). Not surprisingly, it appears that 

the quality of spectrum prediction depends on the overlap between the chemical space 

of the training data and the compounds for which predictions are made (Figure 3). 

Similarly, we find that the accuracy of predictions depends on the similarity of spectral 

profiles between the training compounds and the compounds for prediction. Future work 

will expand our datasets to cover more chemical space, which we anticipate will improve 

the reliability of predictions. Understanding whether models for different solvent 
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conditions are required or whether we can reliably extend datasets to create “generic UV-

Vis spectrum models” will also be important to assess.  

 

The LSTM network architectures we have employed are well-suited to the modeling of 

UV-Vis spectra. The recurrent structure of the LSTM architecture facilitates the modeling 

of spectra as continuous data series. Such models are particularly apt for UV-Vis spectra, 

which are typically smooth functions with broad features. The LSTM models described 

can be generated in minutes, and molecule predictions are processed in seconds. The 

Seq2Seq model with attention provided predictive accuracy comparable to the LSTM 

model that we tested and represents a novel method for visualizing what parts of the 

chemical substructure are most relevant to the prediction at hand. To our knowledge this 

is also the first use of an attention mechanism for probing substructure-UV-Vis prediction 

relevance. While interpretation of the attention weights must be done with care (we 

cannot, for example infer what atom centers contribute directly to what wavelengths), 

attention placed on certain substructures that appear repeatedly for specific wavelength 

peaks may indicate a chemical feature to investigate further. We can reasonably interpret 

the attention placed on each atom as importance to the predictive ability and use this 

information to refine the model by altering the training set. 

 

We have demonstrated that UV-Vis spectra can be predicted from molecular structure 

alone (i.e., without additional physics-based information) represented by either ECFP6 

descriptors or SMILES. The reduction to 1024 bit fingerprints did not result in any 
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significant information loss versus the 2048 bit fingerprints, while ECFP6 compression 

showed dramatic loss based on degradation of statistical measures such as RMSE.  

 

Development of models to predict UV-Vis spectra requires metrics to evaluate the quality 

of predictions. Statistical measures such as RMSE, R2, and MAE are commonly used 

metrics of agreement between predicted and actual values, and we have applied them to 

evaluate our models, to test different input formats, and to test the effect of scrambling 

the structure-spectrum relationship during training. We have also used MAE as the metric 

of loss during training of our models. We find that these measures are generally in 

concurrence. To the extent they differ, RMSE agrees best with our qualitative assessment 

of prediction quality.  

 

Many test set predictions were remarkably close to the observed spectra (e.g., spectra in 

Figure 2 and Figure S4), an agreement reflected in values for RMSE, R2, and MAE. 

However, other spectrum predictions of our models capture important and useful features 

of the observed spectra in ways that are not well-reflected in these common statistical 

measures. For example, a small shift in wavelength of a large absorption peak results in 

a large contribution to RMSE but will often have a small impact on the utility of the 

prediction for distinguishing between two compounds. Similarly, a discrepancy in the 

relative height of a peak in a predicted spectrum from an actual spectrum will degrade the 

RMSE but have a small impact on interpretation. To address this shortcoming of standard 

statistical measures we have applied additional measures of prediction quality to our 

models, DTW and derivative spectrum RMSE.          
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DTW is a distance measure technique that allows a non-linear mapping between two 

signals by minimizing the distance between them 36. This method is flexible, allowing two 

data series that are similar but locally out of phase to align non-linearly. It is a well-known 

solution for time-series alignment 46. To our knowledge, it has not been used previously 

for comparisons of spectra. As a measure of agreement between predicted and actual 

spectra, it accommodates small shifts in wavelength between spectra of similar shape. 

DTW is correlated with RMSE for the predictions made with our test sets (Figure S2). 

Median DTW is also correlated with median RMSE (Tables S2 and S3). 

 

Comparison of derivatives of predicted and observed spectra also allows comparison of 

the overall shapes of spectra, emphasizing agreement in the wavelength positions of 

peaks and valleys, where the value of the derivative is zero irrespective of the magnitude 

of the absorption at those wavelengths. Derivative spectroscopy is frequently used to 

visualize poorly resolved spectral features and to differentiate similar spectra 37. We are 

not aware of its use in quantitative comparison of predicted and experimental spectra. As 

with DTW, the trend in median values for this measure mirrors that of median RMSE.   

 

Functional tests for assessing the quality of spectrum predictions provide a practical and 

intuitive measure of predictive success. The test we have described, correspondence of 

peak wavelengths between predicted and experimental spectra, emphasizes the peak 

positions over other spectrum features. Though this approach is similar to the typical 

analysis of results of TD-DFT predictions, which judges success by prediction of lmax 
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values only, the measure we have applied adds the rigor of requiring that no peaks are 

predicted that are not in the actual spectrum.   

  

CONCLUSION 

The machine learning technique embodied in UV-AdVISor allows very large compound 

libraries to be scored more quickly than previous methods. Thus, it will enable chemists 

to more rapidly and reliably identify compounds with desirable UV-Vis spectra. It could 

have applications for new compound discovery (e.g. prediction of dye colors), organic 

chemistry reaction monitoring, phototoxicity prediction, and numerous other important 

chemistry applications 6-13. We have also shown that alternative spectrum comparison 

measures such as DTW may help in assessment of observed and predicted spectra. 

These scores may be used in the future as elements of machine learning algorithm cost 

functions. Future work will include evaluation and optimization of machine learning 

algorithms 38-40 as well as applying additional algorithms for selection of training and test 

sets. The algorithms used herein are also likely applicable to NMR and MS spectrum 

prediction. Generation of spectra for significantly larger training sets (tens to hundreds of 

thousands of molecules) will assist in broadening the scope of these computational 

models and be useful in training recurrent neural network models to assist in the de novo 

design of molecules 41,42 with a particular spectrum of interest for specific applications 

requiring ideal physicochemical or UV-Vis properties.  
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METHODS 

Compound libraries. Absorbance spectra were acquired for a diverse set of 

compounds from SRI’s internal collection (393 compounds) and a collection of 

compounds purchased from OTAVA Chemicals (MMP2 Targeted Library, 596 

compounds). Compounds were diluted to 200 µM with methanol or DMSO and arrayed 

in 96-well plates for analysis by HPLC with spectrum acquisition. The MicroSource 

Spectrum screening compound library of 2222 compounds (MicroSource Discovery 

Systems, Inc., Gaylordsville, CT, USA) was a generous gift from Dr. Ethan Perlstein, 

(Perlara).  

 

UV-Vis Spectrum Acquisition. Compounds for Dataset I were analyzed by HPLC 

using a Thermo Dionex Ultimate U3000 UPLC system equipped with a Thermo LCQ Fleet 

ion trap MS, a DAD-3000RS diode array detector (DAD), and a C18 column. The mobile 

phase was water-acetonitrile-0.1% formic acid, with an acetonitrile gradient. 

 

The retention time for the compound of interest in each chromatographic run was 

determined from the extracted ion chromatogram (XIC). The XIC was scanned for the 

largest peak at the expected mass. When found, the peak was fit with a Gaussian and 

was accepted if it met constraints for lineshape (Gaussian FWHM < 0.1) and elution time 

greater than the void volume of 1.2 min. This process eliminated compounds that had no 

mass response or potential co-elution with sample impurities. It resulted in inclusion of 

spectra for 949 compounds from the starting set of 989. For each accepted 
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chromatogram, an empirically determined time-offset was applied to extract the UV-Vis 

spectrum (200 nm to 800 nm) for that compound from the DAD data.  

 

Background due to HPLC mobile phase absorption was subtracted from each spectrum. 

Due to the gradient in acetonitrile concentration, the background spectrum depended on 

the elution time of the analyzed compound. To assess the background at the relevant 

elution time for each compound, the minimum signal at each wavelength was extracted  

from the set of all spectra collected at that elution time for a given plate of compounds. 

The minimum signal from the set was taken to be the background without contribution 

from analytes or compound-specific impurities. The resulting inferred background 

spectrum for the relevant elution time was subtracted from the measured spectrum of 

each compound. The background-subtracted spectra were truncated (220 nm to 400 nm) 

and scaled by setting the minimum absorbance to zero and normalizing to a maximum 

absorbance of 1.0.     

Compounds for Dataset II were obtained as 10 mM solutions in 100% DMSO. Each 

compound was diluted 50-fold (to 200 µM and 2% DMSO) with water and transferred to 

black, clear-bottom Greiner UV-STAR microplates. The UV absorption of each compound 

was read in a SpectraMax iD5 Multi-Mode Microplate spectrophotometer from 230nm to 

400nm in 1 nm increments. The resulting spectra were scaled by setting the minimum 

absorbance to zero and normalizing to a maximum absorbance of 1.0.     

Machine learning methods. Spectrum prediction makes use of a Deep Learning 

Machine Learning algorithm called LSTM (Long-Short Term Memory) model 43 (Figure 1). 
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We use wavelength windows from 220 to 400nm for the spectra from Dataset I and 230 

to 400nm for spectra from Dataset II (due to the wavelength limitations of the 

spectrophotometer). For input, we considered four different data representations: 1024-

bit or 2048 bit ECFP6 fingerprint, a compressed fingerprint, and the tokenized SMILES 

string as parameters along with the full wavelength values for each molecule to build a 

model. We make use of the extended connectivity fingerprint 6 (ECFP6, also known as 

Morgan Fingerprint with diameter 3) fingerprint for each molecule calculated from the 

SMILES using RDKit library in python (www.rdkit.org) cheminformatics library. This 

fingerprint array is composed of binary bits 1 and 0. To create a compressed fingerprint, 

we generate 2048 bit-ECFP6 and divide these bits into groups of 256 resulting in a total 

of 8 groups for a molecule (compressed fingerprint). These groups are then converted to 

base 10 integers (i.e to decimal values). Fingerprints are input as features as floats of the 

molecule directly to the first LSTM layer. 

 

For the SMILES-based model and Seq2Seq model, each unique character in the SMILES 

vocabulary was represented as a separate integer, except for Br and any closed brackets 

notation, which were given their own separate integers. A beginning (<B>) token was 

added in the front of each SMILES, and an end-of-sequence token(<EOS>) was added 

at the end of each SMILES string, each with their own unique integer representation. 

Each SMILES string was thus tokenized by converting into an integer representation 

which was used as the input sequence into the spectra models. The test column is the 

absorbance value to be predicted. The model is trained using a randomized 70:15:15 

(train: test: validation) split.  
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Two general model architectures were used for UV-adVISor. The first is composed of 4 

LSTM layers (2048, 1024, 512, and 156 hidden units, respectively) using relu activation 

with dropout layers in between each LSTM layer. This is followed by one dense layer of 

128  units and a final dense layer being the output layer corresponding to all 171 or 181 

wavelength values. The SMILES-based LSTM model has an additional embedding layer 

(output size: 1024) to accept the integer-based tokenized SMILES representation. The 

model makes use of Adam Optimizer and loss is measured using the MAE while training; 

The code runs for 300 epochs with batch size=10. The second model architecture is 

based on Seq2Seq model with Luong attention 24,25. We used an embedding layer (output 

size: 1024) followed by a 3-layer bi-directional LSTM with 512 hidden units for the 

encoder. We reasoned that the encoder would benefit from the relationship between 

atoms and bonds from both a forward and backward direction. We incorporated a Luong 

attention mechanism using dot-product to compute the attention score. For the decoder, 

we used one dense layer of size 1024 units that accepted a single float value followed by 

6 layers of 1024 hidden units of LSTM layers. After the LSTM layers, a single dense layer 

(1024 units) was the output layer for predicting a single wavelength value. Use of bi-

directional LSTMs did not improve the model’s predictive abilities in the decoder, so we 

used regular LSTM layers to save computational cost. The model was trained as follows: 

First, SMILES are tokenized (described above). After tokenization, each integer-

representation of the SMILES string was fed in one at a time into the encoder, generating 

a hidden vector for each input in the tokenized SMILES string. The hidden vectors for the 

forward and reverse LSTMs in the bi-directional LSTM layers were concatenated. After 
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the entire SMILES string was input, we used 0.0 as a starting value for the decoder. This 

value was fed through the decoder LSTM layers and output a hidden vector. An attention 

score was computed using the entire encoder hidden output and the current decoder 

hidden output using the dot-product. This attention score was fed through a softmax layer 

to compute the attention weight vector for each input value. Finally, the attention weight 

vector and hidden state of the decoder were combined to create a context vector, which 

was fed through a final linear layer for the single wavelength prediction score. 

 

To accelerate learning, we used teacher forcing to begin model training, in which the 

decoder is given the correct previous value as input to decode the next value regardless 

of the output at each decoder time step. We used scheduled sampling to reduce the 

amount of teacher forcing over time, starting at 100% teacher forcing (for each input, 

teacher forcing is used), and reduced the chance to use teacher forcing by 10% every 2 

epochs (starting at epoch 3, teacher forcing would have a 90% occurring for each training 

input sequence in the batch; at epoch 5, teacher forcing would be 80%; etc.) until teacher 

forcing was no longer used (0%, epoch 23). Instead, for each decoder timestep, the 

predicted wavelength value at the previous time steps were input as the new start value 

for the next step of the decoder. The model was trained using early stopping based on 

the validation loss (patience = 5), a batch size of 64, with an Adam optimizer (learning 

rate of 1e-4 and a weight decay of 1e-4). The model finished training after 115 epochs.  

To identify the optimal parameters for our model, we made use of GridSearchCV in Scikit 

Learn on the training and evaluating results on the evaluation set. For our model we ran 

this optimization 2 times. The grid search parameter, cv_folds, was set to 3 each time. 
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The first time we ran it to identify the number of hidden layers that our model should have. 

We ran our code for layers: 3, 4, 5, 6, 7, 8, 9, 10, 11. Out of these, the model's best 

performance was seen when the number of layers was equal to 4. This parameter is 

where the model had the lowest average RMSE (Figure S5). The second time we used it 

to identify the appropriate learning rate and dropout rate for our model. We tried the 

following combinations: learning rate: 0.1, 0.01, 0.001 and dropout rate: 0.1, 0.3, 0.4. Out 

of the above combinations, we found that the lowest RMSE was observed for learning 

rate=0.01 and dropout rate=0.3 or 0.4. However, when the model was trained with these 

parameters, it was seen that the model was only predicting a single curve as the best fit 

for all the training curve. Therefore, we chose the second best parameter combination 

which was lr=0.001 and dropout rate=0.3. All the models that we have reported have the 

following parameters: number of layers:4, learning rate: 0.001, dropout rate: 0.3 (Table 

S2 and Figure S5). 

t-SNE visualization. t-SNE 32 embeds data into a lower-dimensional space. 1024 

ECFP6 fingerprints were generated for all compounds. The 1024 bit fingerprints were 

then embedded into a 2-dimensional vector using t-SNE. All t-SNE values were generated 

using the scikit-learn library in python with default hyperparameters (n_components = 2, 

perplexity = 30, early exaggeration = 12.0, learning rate = 200, n_iter = 1000). 

 

Clustering of Spectra. To cluster spectra, the package tsclust in R was used 44,45. 

Spectra were clustered using shape-based distance clustering46. To determine the 

number of optimal clusters that exist in the data, the silhouette method was performed28. 

Briefly, the silhouette method determines how similar each datapoint is to its own cluster 
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(intra-cluster distance) in comparison to how similar the datapoint is to other clusters 

(inter-cluster distance). From 1 to 10, k-means clustering was performed on the spectra 

dataset and the silhouette method was performed to measure inter-cluster distance vs. 

intra-cluster distance. The average silhouette is calculated for each datapoint, and the k-

means clustering with the highest average silhouette value is considered the optimal 

number of clusters to portion the data into. 

 

Server details. Computational Servers consisted of the following components: 

Supermicro EATX DDR4 LGA 2011, Intel Computer CPU 2.1 8 BX80660E52620V4, 

Crucial 64GB Kit (16GBx4) DDR4 2133 (PC42133) DR x4 288 Pin Server 

Memory CT4K16G4RFD4213 / CT4C16G4RFD4213, 2 x EVGA GeForce GTX 1080 Ti 

FOUNDERS EDITION GAMING, 11GB GDDR5X, Intel 730 SERIES 2.5Inch Solid State 

Drive SSDSC2BP480G410, WD Gold 4TB Datacenter Hard Disk Drive 7200 RPM Class 

SATA 6 Gb/s 128MB Cache 3.5 Inch WD4002FYYZ and Supermicro 920 Watt 4U Server. 

The following software modules were installed: nltk 3.2.2, scikit-learn 0.18.1, Python 

3.5.2, Anaconda 4.2.0 (64-bit), Keras 1.2.1, Tensorflow 0.12.1, Jupyter Notebook 4.3.1. 

 

Spectrum comparison measures. For each compound we compared the actual 

and predicted spectra (Figure S3) and calculated the statistics using the scikit-learn library 

in python. DTW works by constructing an n-by-m matrix where the ith,jth element of the 

matrix corresponds to the squared distance, d(qi,qc) = (qi,qc)2 of two time series, Q = 

q1,q2,…,qn and C=c1,c2,c3,…,cm. DTW finds the minimum cost path through the matrix 

with constraints, in essence following a path that warps through time.  
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ASSOCIATED CONTENT 

The supporting Information is available free of charge. 

Supporting Information consists of Table S1 provides examples of diverse small 

molecules with a summary of associated experimental and DFT predicted UV-Vis spectra 

information, Table S2 provides machine learning model parameter optimization details, 

Figure S1 illustrates the diversity of spectra from Datasets I and II, Figure S3 describes 

the test set correlation between DTW and RMSE, Figure S3 shows a t-SNE plot of 

overlaps between 17 additional test compounds in Dataset III and the model from Dataset 

I, Figure S4 is an actual and predicted spectra for SRI-1053288-001 using the Dataset I 

model, Figure S5 describes the parameter optimization for the number of layers in the 

LSTM and Supplemental References. 

 

We have made the Supporting dataset files available on FigShare 

(https://doi.org/10.6084/m9.figshare.15217512) which consists of spectra and SMILES 

files for Datasets I-III, Data for Figures 1, 3 and 4 and data for Tables 1-3.  
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