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We propose a method for calculating the nonradiative decay rates for polyatomic molecules

including anharmonic effects of the potential energy surface (PES) in the Franck-Condon

region. The method combines the n-mode representation method to construct the ab ini-

tio PES and the nearly exact time-dependent density matrix renormalization group method

(TD-DMRG) to simulate quantum dynamics. In addition, in the framework of TD-DMRG,

we further develop an algorithm to calculate the final-state-resolved rate coefficient which

is very useful to analyze the contribution from each vibrational mode to the transition pro-

cess. We use this method to study the internal conversion (IC) process of azulene after tak-

ing into account the anharmonicity of the ground state PES. The results show that even for

this semi-rigid molecule the intramode anharmonicity enhances the IC rate significantly,

and after considering the two-mode coupling effect, the rate increases even further. The

reason is that the anharmonicity enables the C-H vibrations to receive electronic energy

while C-H vibrations do not contribute on the harmonic PES as the Huang-Rhys factor is

close to 0.
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I. INTRODUCTION

The photophysical properties of molecules have long been of research interest.1 Especially

in the last three decades, with the invent of organic light-emitting diode (OLED),2 luminescent

molecules have attracted continuous attention from academia and industry. One of the most in-

fluential factors on luminescent quantum efficiency is the intrinsic photophysical properties of

the molecules. The famous Jablonski diagram gives the most basic physical picture of molecular

photophysics. A molecule in the electronic excited state can emit photons radiatively back to the

electronic ground state, or it can return to the ground state through an internal conversion (IC)

process (transition within the same spin manifold) or an intersystem crossing (ISC) process (tran-

sition between different spin manifolds), in which the electronic energy is dissipated to vibrations

in the form of heat. Both IC and ISC are nonradiative transition processes. The relative magnitude

between the radiative transition rate kr and the nonradiative transition rate knr ultimately deter-

mines the intrinsic quantum efficiency η = kr/(kr + knr) of the molecular material.3 Therefore,

it is crucial to develop theories and computational methods to predict the molecular nonradiative

transition rates. In this work, we will focus on the rate theory of the IC process.

small gap

(a)

large gap

(b)

FIG. 1. Schematic diagram of two types of IC processes (a) The energy gap between the PESs is small,

the NAC is large, and the IC process is ultrafast. (b) The energy gap between the PESs is large, the NAC is

small, and the IC process is slow.

The molecular IC process is essentially a nonadiabatic process in which the Born-Oppenheimer

(BO) approximation fails. The IC processes can be roughly classified into two types depending

on the characteristics of the potential energy surface (PES) (Fig. 1). In type I, the nonadiabatic

coupling (NAC) constant is very large and thus IC is an ultrafast process with time scales in the

order of fs to ps.4 This usually occurs when the energy gap between electronic states is relatively
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small, such as the case of avoided crossing or conical intersection (CI) between PESs. IC between

electronic excited states (generally having small energy gaps) are usually considered to belong to

this type; photochemical reactions far from the Franck-Condon (FC) region (generally having a

low energy CI between the S1 and S0 states) are also of this type. In type II, the coupling between

electronic states is relatively small, and the time scale of the IC process is in the order of ns. It

is usually considered that IC from S1 state to S0 state (having a relatively large energy gap) in

the FC region, which is far from CI, belongs to this type. Theoretically, due to the large NAC

between the electronic states in type I, BO fails completely and thus the simulation of real-time

nonadiabatic dynamics becomes necessary, including the full-quantum multi-configuration time-

dependent Hartree (MCTDH) method,5 the time-dependent density matrix renormalization group

(TD-DMRG) method,6,7 the semiclassical methods,8,9 and the hybrid quantum-classical meth-

ods.10,11 For the latter two, direct dynamics on the ab initio PES can be done in combination with

ab initio electronic structure packages.12–14 However, these real-time nonadiabatic quantum dy-

namics approaches are not applicable to the IC process of type II, mainly because the transition

time is too long to simulate quantum dynamically. The long-time propagation is not only compu-

tationally intensive but also has no guarantee of accuracy. For type II, because the NAC is small,

the initial and final states before and after the transition can still be considered as a BO state. The

transition between them is triggered by the NAC as a perturbation, the rate of which can be cal-

culated by Fermi’s golden rule (FGR). It is worth noting that since the radiative transition rates

of organic fluorescent molecules are usually on the time scale of ns, if the nonradiative process

of the molecule falls into type I, the molecule either does not emit light or emits light with very

low efficiency. Molecules with a high quantum efficiency generally belong to type II. Therefore,

the theory applicable to type II is more relevant for predicting fluorescent molecules with high

quantum efficiency.

Qualitative and semi-quantitative theories applicable to type II of IC process were established in

the 1960s.15–17 Lin established the above-mentioned theoretical framework for calculating the IC

rate based on BO states and NAC as a perturbation,16 which is later combined with ab initio elec-

tronic structure calculation to predict the nonradiative transition rate of real molecules.18–20 In this

theoretical framework, the PES of the ground and excited states are approximated as a multidimen-

sional harmonic (HA) potential, accompanied by displacement, frequency difference (distortion),

and mode-mixing (Duschinsky rotation effect) between the PESs. The Duschinsky rotation effect,

which scrambles the harmonic modes, was found to be important to the IC process.19,21 How-
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ever, in this computational method, the vibrational modes are artificially divided into accepting

and promoting modes, and the displacement of the promoting mode is approximated as 0, called

the promoting mode approximation. Later, Shuai et al. derived an analytical rate formula in the

time domain beyond the promoting mode approximation, which allows a rigorous treatment of

displacement, distortion, and rotation between the ground and excited state PESs.22,23 Calcula-

tions of the nonradiative transition rate for a series of polyatomic molecules show that this method

enables quantitative prediction of the quantum efficiency of OLED molecules.24

The above computational methods are based on the harmonic approximation of the PES with

the anharmonicity completely ignored. In the radiative transition process, this approximation may

be valid, because most of the electronic energy is emitted through the form of light. Thus, the

final vibrational state is of low energy and can only explore the low energy part of the PES,

where the anharmonicity is believed to be negligible. On the contrary, in the IC process, since

all the electronic excited energy needs to be received by the vibrations, they will be excited to

high energy levels. Because the anharmonicity is very pronounced in the high energy part of

the PES far from the equilibrium position, the anharmonic effect is very important for the IC

process (see schematic diagram Fig. 2). Lin’s original work in 196616 has already pointed out

the qualitative role of anharmonicity: it scrambles the harmonic mode (similar to the Duschinsky

rotation effect) and thus is very important for vibrational relaxation; in addition, anharmonicity

changes the vibrational wavefunction of the final states, which in turn changes the FC factor. In

fact, these two factors are closely related.

(a) (b)

FIG. 2. Schematic diagram of the PESs and the wavefunctions of the initial and final vibrational states

during the (a) radiative transition process (b) internal conversion process. The initial state is in orange,

and the final state is in blue (filled ones are on the harmonic potential, and dashed ones are on the Morse

potential).
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In the framework of the FGR rate theory, the quantitative theoretical study of the anharmonic

effect on the molecular IC process has only started in the last decade.25–30 Humeniuk et al. used

a time-independent (TI) approach under the Morse potential model to obtain the anharmonic

vibrational wavefunction by exact diagonalization and then calculated the IC rate of coumarin

molecules by means of the sum-of-states (SOS) method.28 They found that, compared with HA

PES, the Morse PES significantly increases the IC rate when the electronic excitation energy is

large. However, for real molecules, the computational cost for SOS calculations increases ex-

ponentially with the number of atoms and thus the method is not scalable. A more promising

approach is to use time-dependent (TD) methods. Zhu et al. used the second-order cumulant

expansion method to consider the anharmonicity effect (introduced through the high-order force

constants at the equilibrium position) on the vibrationally resolved electronic spectra and the rate

of charge transfer.25 This method can be directly extended to the calculation of IC rate. Pollak et

al. proposed a semiclassical approach to calculate the IC rate on the anharmonic PES, and they

calculated the IC rate for the Morse potential model26 and formaldehyde.27 The biggest advantage

of this approach is that it is able to do on-the-fly calculations. Recently, we proposed to simulate

the dynamics on the anharmonic PES by the full-quantum TD-DMRG method, the effectiveness

of which has been proved on the Morse PES as well as the uncoupled single-mode anharmonic

PES of real molecules.30

In addition to the accurate quantum dynamics method, another difficulty in the calculation of

the nonradiative transition rate on the anharmonic PES for a real polyatomic molecule lies in how

to construct the PES. One approach is to make a high-order Taylor expansion of the PES at the

equilibrium position by calculating the high-order force constants. This approach is relatively

cheap and is used more often in calculating the anharmonic vibrational frequencies of semi-rigid

polyatomic molecules of medium to large sizes, especially in combination with the vibrational

second-order perturbation theory and quasi fourth-order force constant.31,32 However, the prob-

lem with the Taylor expansion form of PES is that it has a large error away from the reference

point, and more seriously, it often introduces an artificial “potential hole”. If the potential barrier

between the reference point and artificial hole is not high enough, the wavepacket may collapse

into this artificial hole, which is disastrous for the dynamics. Another approach is the multi-mode

expansion, which is called n-mode representation (n-MR) by expanding the PES into a sum of

one-mode potentials, two-mode potentials, three-mode potentials, etc.33,34 The advantage of this

approach is that the real PES can be approximated by a low-level expansion, making the number
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of coupled modes in the approximated PES smaller. However, this approach requires a scan of the

PES when obtaining each term, and thus is more computationally intensive for large systems with

a high expansion order. The most accurate method is to fit the global PES directly. Previously,

this method was only applicable to molecules with a few atoms, but with the development of deep

machine learning over the years, the global PES can be obtained for medium-sized systems.35,36

However, the obtained PES is generally not of a sum-of-products (SOP) form and thus cannot be

directly used in the high-dimensional dynamics methods like multilayer MCTDH,37 TD-DMRG,

etc. Comparing the advantages and disadvantages of these PES construction methods, we propose

to combine n-MR method and TD-DMRG method to calculate the nonradiative transition rate of

real polyatomic molecules at the ab initio level.

The remaining sections of this paper are arranged as follows: in section II, the framework of rate

theory, the methods of PES construction, TD-DMRG dynamics simulation, and the computation of

final-state-resolved (FSR) transition rates will be presented in detail. In section III, the anharmonic

effect on the IC rate from S1 to S0 of the azulene molecule in the FC region will be investigated

and discussed as an example. Finally, conclusions and outlooks will be given.

II. THEORY AND METHODOLOGY

A. Two-state molecular Hamiltonian and rate theory under perturbation approximation

When NAC is relatively small, the initial and final states can be approximated by BO states,

respectively. In addition, the contribution of the molecular vibrational motion to the electronic

transition is dominant during IC, while the effect of molecular rotation can usually be ignored. By

introducing the Eckart condition,38 the coupling between vibration and rotation can be minimized,

and thus only the vibrations need to be considered. Combining these two points, the initial and

final states (i for the initial state and f for the final state) can be represented as

Ψi/f(r,q) = ϕi/f(r;q)Xi/f(q) (1)

ϕi/f(r;q) is the eigenstate of the electronic Hamiltonian under the nuclear configuration q. r is

the coordinates of electrons. q = q1,q2, · · · ,qN are the vibrational coordinates of the system. The

vibrational Hamiltonian is

Ĥi/f = T̂ +Vi/f(q) (2)
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T̂ is the kinetic energy operator of the vibrational motions. Xi/f(q) is the vibrational eigenstate on

the adiabatic PES Vi/f(q) (the energy reference is the minimum of each PES). The use of normal

coordinates at the equilibrium structure is very suitable for semi-rigid systems. The first advantage

is that the kinetic energy operator is very simple, T̂ = ∑N
l=1−

1
2

∂ 2

∂q2
l

(in the following expressions,

we use atomic units). In addition, the coupling between modes is small, which will be beneficial

for constructing PES and simulating dynamics later. Due to the possible displacements, torsions

and rotations between the initial PES and final PES, the two sets of normal coordinates are not the

same and the relation between them is

qi,m = ∑
l

Jmlqf,l +∆qi,m (3)

where J is called the Duschinsky rotation matrix and ∆q is the projection of the displacement

between the initial and final state equilibrium structures in the direction of the normal mode. The

Huang-Rhys (HR) factor is defined as Si/f,m = 1
2ωi/f,m∆q2

i/f,m, characterizing the strength of the

electron-vibrational coupling. At the ab initio level, the methods to obtain J and ∆q for poly-

atomic molecules are well-established 39,40. In the following, qi/f is assumed to be the normal

coordinates. After considering NAC between the two electronic states as Ĥ1, Ψi/f is no longer

stationary. Commonly, only the first-order derivative term of NAC is considered, and the second-

order derivative is neglected. The NAC between two BO PESs is

Ĥ1 =−∑
l

F l
fi(q)|ϕf⟩⟨ϕi|

∂
∂ql

+h.c. (4)

F l
fi(q) = ⟨ϕf|

∂
∂ql

|ϕi⟩r (5)

In the FC region far from CI, the NAC matrix element F l
fi(q) is small and also varies very smoothly.

It is often to adopt the Condon approximation at the reference position to approximate F l
fi(q) as a

constant independent of the nuclear configuration, i.e. F l
fi(q) = F l

fi(q
ref).

In addition to the approximation that the initial and final states can be represented by BO states,

another assumption is that the rate of vibrational relaxation on the initial PES is much faster than

the electronic transition, so that the initial state is in a thermal equilibrium distribution. This

assumption is generally valid for fluorescent molecules because the vibrational relaxation time is

roughly in the order of ps, while the excited state lifetime is roughly in the order of ns. Under the

condition that both approximations hold, the IC rate can be calculated by FGR rate theory, which
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is

kic = 2π ∑
uv

Pu|H1,fv,iu|2δ (Eiu +∆Ead −Efv) (6)

= 2π ∑
uv

Pu|∑
l

F l
fi⟨Xfv(q)|

∂
∂ql

|Xiu(q)⟩|2δ (Eiu +∆Ead −Efv) (7)

iu denotes the uth vibrational eigenstate of the initial PES and fv denotes the vth vibrational eigen-

state of the final PES, whose eigenenergies are Eiu and Efv, respectively. Pu =
e−βEiu

Z is the Boltz-

mann distribution of the initial state at the temperature of β = 1/kBT . ∆Ead is the adiabatic ex-

citation energy between the PESs. For a general PES, the vibrational eigenfunction X(q) is a

high-dimensional wavefunction and it is very difficult, if not impossible, to compute each of them.

If there is no coupling between the modes (V (q) = ∑l V (ql)), the vibrational eigenstate can be

written in the form of a Hartree product of the single-mode eigenstates, and the energy is also a

summation of the individual mode eigenenergies

Xiu(qi) = ∏
l

χiul(qi,l), Eiu = ∑
l

εiul (8)

Xfv(qf) = ∏
l

χfvl(qf,l), Efv = ∑
l

εfvl (9)

Additionally, if there is no mode-mixing (J = I, qi = qf +∆q), the above equation can be further

simplified as

kic = 2π ∑
u1,u2,··· ,uN ,
v1,v2,··· ,vN

Pu1u2···uN

∣∣∣∣∣∑l
F l

fi⟨χfvl(ql)|
∂

∂ql
|χiul(ql +∆ql)⟩∏

k ̸=l
⟨χfvk |χiuk⟩

∣∣∣∣∣
2

δ (Eiu+∆Ead −Efv)

(10)

ql is called the promoting mode, contributing to the transition of the electronic state. Only those

modes with nonzero NAC constant can behave as the promoting mode. The other modes are

called the accepting modes. As the name implies, for multi-mode molecules, the electronic energy

mainly dumps into the accepting modes. In addition, the magnitude of the FC factor between the

final and initial states of the accepting modes satisfying the energy conservation condition mainly

determines the IC rate. However, even though the modes are uncoupled, the calculation of the

above equation using the SOS approach has exponential complexity. Hence, it is preferred to use

the TD approach, in which the δ function is expressed as

δ (Eiu +∆Ead −Efv) =
1

2π

∫ ∞

−∞
ei(Eiu+∆Ead−Efv)t dt (11)
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The rate can be written as the integral of the autocorrelation function of Ĥ1 in the time domain

kic =
∫ ∞

−∞
ei∆EadtC(t)dt (12)

C(t) = ⟨Ĥ1(t)Ĥ1⟩T = Tr(
e−β Ĥi

Z(β )
eiĤitĤ1e−iĤftĤ1) (13)

where Z(β ) = Tr(e−β Ĥi). For the case in which both PESs are harmonic, the time correlation

function (TCF) C(t) in Eq. (13) has an analytical formula.22 For general PESs, C(t) needs to be

computed numerically by dynamics methods. The challenges for the calculation of the IC rate at

ab initio level of real molecules are the construction of PES in Eq. (2) and the simulation of the

dynamics in Eq. (13).

Finally, it is worth noting that for very flexible molecules, such as molecules whose PESs have

many local minima (multiple conformations) with close energy, or molecules whose vibrations

have a large amplitude of motion, using normal coordinates to construct PES and to do dynamics

is no longer efficient, because the coupling between normal modes will be very large. In these

cases, it is better to use curvilinear internal coordinates related to the molecular structure, but the

kinetic energy operator in curvilinear coordinates is generally very complicated. The method to

calculate the nonradiative transition rate using curvilinear coordinates is still under development

and deserves further study.

B. Construction of molecular potential energy surface

The n-MR PES has expression

V (q1,q2, · · · ,qN) =V (0)(qref)+∑
i

V (1)(qi;qref
l ̸=i)

+∑
i< j

V (2)(qi,q j;qref
l ̸=i j)+ · · · (14)

V (1)(qi;qref
l ̸=i) =V (qi;qref

l ̸=i)−V (0)(qref) (15)

V (2)(qi,q j;qref
l ̸=i j) =V (qi,q j;qref

l ̸=i j)−V (1)(qi;qref
l ̸=i)

−V (1)(q j;qref
l ̸= j)−V (0)(qref) (16)

· · ·

Eq. (14) is an incremental expression, in which V (0) is the energy of the reference point. The

second terms V (1) and third terms V (2) are the incremental one-mode and two-mode potentials.
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(qi;qref
l ̸=i) indicates that only qi can be different from the reference point. Hence, V (qi;qref

l ̸=i) in

Eq. (15) corresponds to a one-dimensional (1D) curve of PES across the reference point along

qi. Similarly, V (qi,q j;qref
l ̸=i j) in Eq. (16) represents the two-dimensional (2D) surface of PES

across the reference point along qi,q j. However, the higher-order terms contain contributions from

lower-order terms, for example, the 2D surface V (qi,q j;qref
l ̸=i j) already contains two 1D curves

V (qi;qref
l ̸=i), V (q j;qref

l ̸= j) and the energy of the reference point. Therefore, in the incremental ex-

pression Eq. (14), the contribution of the lower-order terms needs to be deducted from each V (n) to

avoid double-counting. Obviously when any of the variable coordinates in V (n) is in the reference

point, V (n)(qi,q j = qref
j ,qk · · · ;qref

l ̸=i jk···) = 0. As the expansion order n increases, the approximate

PES gradually approaches the exact one. This multi-mode expansion is exact when expanding to

N-mode potential V (N). In practice, only n < N order is usually enough to converge. Assuming

that 10 points are scanned in each coordinate, the number of single points needed to compute an

n-mode PES of a system having N modes is about Cn
N10n. One advantage of n-MR is that, since

it is a semi-global PES, there is no artificial hole. Another advantage is that since there are only

at most n-mode coupled terms, it is relatively easy to fit them into a dynamics-friendly SOP form

after some post-processing, such as potfit41 and function fitting. In the function fitting method, a

set of functions for each mode is first defined { f k(x)} (k is the label for different functions), which

can be the same or different for each mode. For simplicity, we use the same monomial for each

mode as the fitting function, then k represents the power of the monomial, k = 0,1,2, · · · .

f k(x) = xk (17)

For each term V (n) in Eq. (14), it can be fitted to a polynomial of the form

Ṽ (n)(qi1, · · · ,qin) = ∑
k1,··· ,kn

Ck1,··· ,kn f k1(qi1) · · · f kn(qin) (18)

It is clear that Ṽ (n) has an analytical SOP form.

With n-MR method, two independent PESs Vi(qi) and Vf(qf) in Eq. (2) can be constructed

in the normal coordinates of each state. However, it is necessary to work in a single coordinate

system in the dynamics. Hence, the PESs should be further transformed into one set of normal

coordinates according to the relation Eq. (3). For example, in the following we will work in the

normal coordinates of the final state and the initial PES is reexpressed as

Vi(qi) =Vi(Jqf +∆qi) =V ′
i (qf) (19)

10



In principle, instead of using Eq. (3) to rewrite Vi(qi) in qf to obtain V ′
i (qf), it is also possible to

scan Vi directly along qf. But in doing so, Vi may require a higher order n-MR to achieve sat-

isfactory accuracy. For example, the potential energy term λq2
i1 in 1-MR PES with initial state

normal coordinates becomes λ ∑lm(Sl1qfl +∆qi1)(Sm1qfm +∆qi1) with final state normal coordi-

nates, which includes two-mode potential energy terms appearing in 2-MR PES.

C. TD-DMRG quantum dynamics method

The wavefunction ansatz in TD-DMRG is

|Ψ⟩= ∑
σ

Cσ1σ2...σN |σ1σ2 . . .σN⟩ (20)

= ∑
aσ

Aσ1
a1

Aσ2
a1,a2

. . .AσN
aN−1

|σ1σ2 . . .σN⟩ (21)

|σi⟩ is the orthonormal primitive basis for each vibrational mode qi, which is called the physical

bond with dimension d. In this work, we use simple harmonic oscillator eigenfunctions (SHO)

as the primitive basis functions. Since the full rank coefficients Cσ1σ2...σN are approximated as the

product of a chain of rank-3 matrices (tensors) Aσi
ai−1,ai , this ansatz is called matrix product state

(MPS).42 The size of ai connecting adjacent tensors is called the (virtual) bond dimension, denoted

as MS. The accuracy of an MPS approximating the exact wavefunction can be systematically

improved by increasing MS. Akin to MPS, a common operator Ô can be exactly decomposed into

a matrix product form with virtual bond dimension MO, called matrix product operator (MPO).

Ô = ∑
w,σ,σ′

W σ ′
1σ1

w1 W σ ′
2σ2

w1,w2 . . .W
σ ′

NσN
wN−1 |σ ′

1σ ′
2 . . .σ

′
N⟩⟨σNσN−1 . . .σ1| (22)

The potential energy term (Eq. (18)) and the other operators (Eq. (2) (4)) in the previous section

can be constructed into MPOs using the automatic construction algorithm proposed in our for-

mer work.43 Within the MPS/MPO framework, it is straightforward to represent Ô|Ψ⟩ as another

enlarged MPS with bond dimension MOMS.

Ô|Ψ⟩= ∑
w,a,σ′

A′σ ′
1

{w,a}1
A′σ ′

2
{w,a}1,{w,a}2

. . .A′σ ′
N

{w,a}N−1
|σ ′

1σ ′
2 . . .σ

′
N⟩ (23)

A′σ ′
i

{w,a}i−1,{w,a}i
= ∑

σi

W σ ′
i σi

wi−1,wiA
σi
ai−1,ai

(24)

A similar expression is available for operator multiplication. In TD-DMRG, there are many

schemes that can evolve an MPS according to the time-dependent Schrödinger equation.44 In this

11



work, we use the second-order projector splitting scheme (PS) based on the time-dependent varia-

tional principle. This scheme is more accurate and efficient than the others according to our former

experience. The detailed algorithm can be found in the original PS work45 or our previous work.46

At T = 0, the TCF C(t) (Eq. (13)) can be further simplified as

C(t) = eiEi0t⟨Xi0|Ĥ1e−iĤftĤ1|Xi0⟩= eiEi0t⟨Xf(t/2)∗|Xf(t/2)⟩ (25)

|Xf(t/2)⟩= e−iĤft/2Ĥ1|Xi0⟩ (26)

The asterisk represents complex conjugate. |Xi0⟩ is the lowest vibrational eigenstate on the initial

PES, which can be calculated by the standard DMRG ground state algorithm, i.e., iteratively op-

timizing each local matrix Aσi while keeping the others unchanged.42,47 The initial state Ĥ1|Xi0⟩

of the dynamics is calculated according to Eq. (23). At T = 0, it is possible to evolve only the

dynamics for t/2 to obtain TCF at t thus reducing the computational cost.

At finite temperature, it is able to obtain the density matrix at thermal equilibrium ρβ = e−β Ĥi
Z(β )

by evolving the imaginary-time Schrödinger equation from τ = 0 to τ = β/2.48

− ∂
∂τ

ρ(τ) = Ĥρ(τ) (27)

At infinitely high temperature (β = 0), the initial state ρ(0) is defined to be a locally maximal

entangled state satisfying the normalization condition ⟨⟨ρ(τ)|ρ(τ)⟩⟩= Tr(ρ(τ)†ρ(τ)) = 1, which

is conveniently represented as an MPO with MO = 1. To distinguish it from the MPO of a physical

operator, we call the matrix product form of the density matrix as matrix product density matrix

(MPDM).

ρ(0) =
e−0Ĥi√

Z(0)
= ∏

i
∑
σi

1√
d
|σi⟩⟨σi| (28)

After each evolution step along the imaginary axis, ρ(τ) needs to be normalized. The imaginary-

time evolution finally yields ρ(β/2) = e−β Ĥi/2/
√

Z(β ) = ρ1/2
β . Hence, TCF in Eq. (13) can be

reformulated as

C(t) = Tr
(
ρ1/2

β eiĤitĤ1e−iĤftĤ1ρ1/2
β

)
= Tr(ρi(t)†Ĥ1ρf(t)) (29)

where ρf(t) = e−iĤftĤ1ρ1/2
β and ρi(t) = e−iĤitρ1/2

β is the density matrix obtained by the real-time

evolution. It should be noted that in some papers, the density matrix is purified to a wavefunction

according to the thermo field dynamics approach by introducing an auxiliary space, thus obtaining

wavefunction-based equations of imaginary-time and real-time dynamics.42,49 These two formu-

lations are essentially equivalent to each other.
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The main advantages of using TD-DMRG to simulate dynamics are (i) TD-DMRG is fully

quantum and the accuracy can be systematically improved to achieve numerically exact results.

(ii) The computational complexity of TD-DMRG algorithm is polynomial, rather than exponential,

with respect to the number of atoms in the system.

D. Final-state-resolved rate coefficient

Besides the total transition rate, in this subsection, we will give an algorithm to calculate the

numerically exact FSR rate coefficient for uncoupled final PES, such as HA PES, 1-MR PES. To

the best of our knowledge, the only way to obtain the FSR rates so far was by expensive SOS

methods.

According to Eq. (6), (11) and (29), the FSR rate can be expressed in the time domain as

kv = kic(i → fv) =
∫ ∞

−∞
ei∆EadtTr(ρ1/2

β eiĤitĤ1|Xfv⟩⟨Xfv|e−iĤftĤ1ρ1/2
β )dt (30)

=
∫ ∞

−∞
ei∆Eadt⟨Xfv|Γ(t)|Xfv⟩dt (31)

Γ(t) = ρf(t)ρi(t)†Ĥ1 (32)

At T = 0,

Γ(t) = eiEi0t |Xf(t/2)⟩⟨Xf(t/2)∗| (33)

Γ(t) is in the form of an MPDM and Tr(Γ(t)) = C(t). Since Γ(t) is the product of two MPDMs

(Eq. (32)) or two MPSs (Eq. (33)), its bond dimension is MΓ = MρiMρfMĤ1
or MΓ = M2

Xf
, which

is usually a very large value. Thus, Γ(t) needs to be compressed to reduce the computational cost

and memory. In the case of uncoupled final PES, Eq. (9) holds, and v = v1v2 · · ·vN . For HA PES,

the eigenstate of a single mode χfvl has an analytical form; for 1-MR PES, χfvl , called modal, can

be calculated numerically by vibrational self-consistent field (VSCF).50 If χfvl is chosen to be the

primitive basis in TD-DMRG (|σ⟩ ≡ |v⟩),

Γdiag(t)|σ=v = ⟨∏
l

χfvl |Γ(t)|∏
l

χfvl⟩ (34)

= ∑
w

W v1v1
w1

W v2v2
w1,w2

. . .W vNvN
wN−1

(35)

= ∑
w

W̃ v1
w1

W̃ v2
w1,w2

. . .W̃ vN
wN−1

(36)
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Γdiag(t) is the diagonal element with the primitive basis χfvl , which can be expressed as an MPS

with W̃ vl
wl−1,wl =W vlvl

wl−1,wl . As a result, Eq. (31) can be written as

kv =
∫ ∞

−∞
ei∆EadtΓdiag(t)|σ=v dt (37)

=
(∫ ∞

−∞
ei∆EadtΓdiag(t)dt

)∣∣∣∣
σ=v

(38)

The integration of Γdiag(t) can be done by the trapezoidal algorithm and by using the symmetry of

TCF,

Ihalf =
∞

∑
j=0

τ
2

[
ei∆Ead jτΓdiag( jτ)+ ei∆Ead( j+1)τΓdiag(( j+1)τ)

]
(39)

kv = I|σ=v = (Ihalf + I∗half)|σ=v (40)

where τ is the time-step. When calculating Ihalf, MPS compression is carried out after adding two

MPSs. The coefficient of each configuration v in I is the rate with that configuration as the final

state. If Γ(t) and Ihalf are not compressed, ∑v I = kic. However, all the coefficients are implicit in

the form of the matrix product. Because the number of final states is exponentially increased with

the number of modes, it is impossible to obtain all I|σ=v explicitly. In fact, if we only care about

those final configurations that contribute the most to the total IC rate, a sampling approach can

be used. Inspired by the sampling algorithm and genetic algorithm used in the ab initio quantum

chemistry DMRG to reconstruct configuration interaction wavefunction,51,52 we propose a similar

sampling algorithm to obtain the dominant configurations of I. We first define the occurrence

probability of different occupation numbers for each mode during the total transition.

pvl = ∑
allvk,k ̸=l

kv1v2,··· ,vl ,···vN

kic

= ∑
allvk,k ̸=l

1
kic

Av1Av2 · · ·Avl · · ·AvN (41)

Here, Avi are the local matrices of I. Note that ∑vl
pvl = 1. According to this probability distribu-

tion, the whole sampling procedure is

1. calculate I and then calculate pvl according to Eq. (41).

2. generate a random configuration v, calculate its rate coefficient kv and keep it if it is greater

than a preset threshold ξ .
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3. generate an integer random number k between 1 to N, and then mutate vk of the current

v according to the distribution pvk .v′k can be determined by generating a random number

between [0,1] and check which interval it falls into. Repeat this step if v′k = vk.

4. calculate the rate kv′ of this v′ and keep it if kv′ > ξ and it has not been kept yet. The

probability to accept this mutation is defined as p(v → v′) = min(1, kv′
kv
), and then generate

a [0,1] random number to decide whether to accept this mutation. If accepted, the new

v = v′ and then go back to step 3. Sampling ends if either the total number of the kept

configurations or the sum of rate coefficient of the kept configurations reaches the preset

value.

Since it is an approximation to use one MPS for all FSR rates, it is not guaranteed that all FSR

rates are positive in the actual calculation. Therefore, in the later calculations, we set the threshold

ξ to 0. In addition, although this algorithm is rigorous only for uncoupled final PES, it is possible

that the Hartree product of VSCF modals is still a good approximation to the exact final states

when the mode coupling in n-MR (n > 1) PES is relatively small.

Finally, it is worth emphasizing that the methods we propose to deal with the anharmonic PES

of real molecules is not only applicable to IC rates, but can also be used for the calculation of the

emission spectra (and the corresponding radiative transition rates) as well as for the calculation of

ISC rates.

III. RESULTS AND DISCUSSIONS
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FIG. 3. The chemical structure of azulene. The optimized C-C bond lengths of the S0 state (black) and S1

state (red) are also listed.

As a real example, we study the IC process of the azulene molecule from the S1 state to the S0

state. Azulene is the first experimentally discovered molecule with anti-Kasha rule luminescence,
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which is from S2 to S0.53,54 Its S1 to S0 IC rate is very fast, with experimental measurements of

about 1-2 ps,55,56 and thus the S1 fluorescence quantum efficiency is very low. In our previous

work, we found that azulene is a semi-rigid molecule, and even then there is a significant increase

in the IC rate after considering the single-mode (intramode) anharmonicity compared to that on

HA PES. In this work, the calculation is extended to the 2-MR PES to study the effect of mode

coupling on the IC process.

The S0 and S1 structures of azulene are first optimized at (TD-)B3LYP/6-31G(d) level (all

the following electronic structure calculations are done in Gaussian 1657). The total number of

vibrational modes is 48. Although we do not add symmetry constraints, the optimized structure has

C2v symmetry. The S0 and S1 equilibrium structures are shown in Fig. 3. The adiabatic excitation

energy is 16478.4cm−1. The normal mode analysis at the S0 and S1 equilibrium structures is

performed, and then the Duschinsky rotation matrix J and mode projection displacements ∆q are

calculated using the molecular material property prediction package (MOMAP).58 Fig. 4a gives

the HR factors along the normal modes of S0 and S1 states, respectively. For the S0 state, the

modes are numbered according to the vibrational frequencies, while the mode numbering for the

S1 state makes the Duschinsky rotation matrix as diagonalized as possible in accordance with the

modes of the S0 state. Fig. 4b shows the absolute values of the Duschinsky rotation matrix J,

and the red boxes highlight the mixing between modes with large HR factors. It can be seen that

the mixing of modes 38 and 39 is very prominent. There are two main features of the azulene

electron-vibrational coupling: first, the HR factors of all modes are less than 1, which can be

classified into the weak coupling regime; second, the HR factors of high frequency C-H vibrations

above 3000cm−1 are small and negligible. The largest HR factor of the C-H vibrations is only

0.00126. In the displaced harmonic oscillator model, the mode with an HR factor of 0 (zero

displacement) cannot be an accepting mode because ⟨χfv|χiu⟩= δuv. Therefore, it can be expected

that the ability of C-H vibrations to receive energy is weak on HA PES.59 The C-H vibrations can

only play the role of promoting mode triggering electronic transition. The projection of the NAC

vector at the S0 optimized structure onto the S0 normal modes is shown in Fig. S1 (see Supporting

Information). The NAC constant is larger in the C-C vibrational region and smaller in the C-

H vibrational region. The Condon approximation is adopted to approximate NAC as a constant

independent of the nuclear structure.

Since the thermal energy kBT at room temperature is small relative to the vibrational frequency,

the initial thermal equilibrium state is near the equilibrium position of the excited state PES, and
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FIG. 4. (a) The HR factors of S0 normal modes (upper panel) and S1 normal modes (lower panel). (b)

The Duschinsky rotation matrix |Ji j| between the S0 and S1 normal coordinates. The modes with large HR

factors are highlighted by red boxes.

thus the anharmonic effect of the excited state PES is expected to be relatively small. On the

contrary, according to the analysis above, the anharmonic effect of the ground state PES will be

very significant. Therefore, we only consider the anharmonicity of the ground state PES, while

the excited state is still approximated by HA PES. Along the normal modes of S0 state, a 2-MR

PES of the S0 state is constructed using MidasCPP software60 interfaced with Gaussian 16.57 The

single-point calculations are still performed at the B3LYP/6-31G(d) level. The adaptive density-

guided approach (ADGA) is used to adaptively select the single points to be computed, which

has the advantage of not requiring a predetermined range of each coordinate to be scanned.61 The

convergence of the PES obtained by ADGA is characterized by the lowest 7 modals for each mode

computed by VSCF. More details of the ADGA method can be found in Ref. 61. The resulting

n-MR PES is fitted with a polynomial up to 12th order, as in Eq. (18). For the 1-MR PES, a

total of 665 single points are computed; for the 2-MR PES, a total of 201,825 single points are

computed. The typical one-mode and two-mode cuts of the PES are shown in Fig. 5. To verify the

accuracy of the n-MR PES, we compare the reorganization energy λS0 of the constructed S0 PES.

The reference energy is calculated by the so-called “four-point method”. For λS0 , only two single-

point calculations are required, λS0 = E(S0;S1 opt geom)−E(S0;S0 opt geom). Table I shows that

the error of the PES decreases as the order of expansion increases.

We calculate the IC rates on the HA, 1-MR and 2-MR PESs using TD-DMRG. All calculations
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FIG. 5. (a)(b) The typical one-mode cuts of PES. The black circles are the ab initio points. The red line is

the 1-MR energy curve fitting the ab initio points. The blue line is harmonic potential. The dashed horizon

lines are the lowest 10 energy levels of the harmonic potential. (c)(d) The typical two-mode cuts of PES.

The solid contour is the 2-MR surface and the dashed contour is the harmonic surface. The unit is cm−1.

TABLE I. The reorganization energy calculated on different levels of S0 PES. Units: cm−1

four-point method HA 1-MR 2-MR

λ 3481.9 3399.2 3421.4 3495.7

error - -82.7 -60.5 13.8
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are carried out with our in-house code Renormalizer.62 The time-step is 0.25 fs, with a total evo-

lution time of 425 fs. The primitive basis function for each mode is SHO basis up to 20 quanta

(d = 20). Table II lists kic at 0K and 300K with different MS. At 300K, the MPOs used for the TD-

DMRG calculations with MS ≥ 40 are compressed to reduce the computational cost. The cutoff

threshold used in singular value decomposition (SVD) is ε = 10−6 after normalization of the sin-

gular values. With this cutoff, the error introduced through MPO compression is negligible. Since

the thermal vibration correlation function (TVCF) method24 (calculated using MOMAP pack-

age58) yields analytically exact solutions on HA PES, they are also listed for comparison. Because

the directly calculated C(t) does not dephase to 0 after finite time, it is multiplied by a broadening

function C̃(t) =C(t)g(t) in the time domain. The physical origin of this broadening function may

be static disorder as well as dynamic disorder of the actual environment. Instead of a Lorentzian

broadening function g(t) = exp(−ηt) with η = 100cm−1 used in our former work, here a Gaus-

sian broadening function g(t) = exp(−η2t2/2) with η = 100cm−1 is adopted. The reason is that

the Lorentzian broadening function has a very long tail in the frequency domain, decaying with
1
π

η
∆ω2+η2 (∆ω is the detuning frequency). As a result, it will take into account many states that

severely violate energy conservation but have large FC factors (Most are low energy states, which

is evident in the FSR rate calculation). This behavior, although possible in the condensed phase,

is clearly against the physical picture in the calculations of the single molecule model here. In

comparison, the Gaussian broadening function decays exponentially in the frequency domain with
1√
2πη exp(−∆ω2/2η2), which can well satisfy the energy conservation. The choice of the broad-

ening function and width have also been discussed in detail in Humeniuk’s work.28 For the same

reason, they also found that the Gaussian broadening function has a small effect on the nonra-

diative transition rates, while the Lorentzian broadening has a large effect on it. Since the rate is

related to the Gaussian broadening width, it is not feasible to directly compare the computational

results with the experiments. Fortunately, it has little effect on the relative change of the rate due to

anharmonicity, which is the main focus of this work. From the results in Table II, it shows that the

TD-DMRG results converge very quickly with increasing MS. For the mode-uncoupled HA PES

and 1-MR PES, MS = 40 is enough (if 1% error is required). For the coupled 2-MR PES, MS = 80

will make the rate at 0 K converged, but is still not enough for the rate at 300 K. On HA PES, the

numerical results of TD-DMRG can reproduce the analytically exact results of TVCF. The rate on

1-MR PES is about 200% of the rate on HA PES, indicating that the introduction of intramode an-

harmonicity will prominently accelerate the rate of IC. More significantly, the coupling between
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modes has a greater effect on the IC rate: the rate on 2-MR PES is about 500% of the rate on

HA PES. The physical picture of the quantitative results is that the mode coupling accelerates the

vibrational relaxation and therefore the dephasing of the wavepackets on the excited and ground

state PESs is much faster. To some extent, this mode coupling effect is similar to the Duschinsky

rotation effect, both of which scramble the normal modes.

TABLE II. The internal conversion rate kic of azulene from S1 to S0 with harmonic PES, anharmonic 1-MR

and 2-MR PESs calculated by TD-DMRG with different bond dimension MS. The analytically exact results

with harmonic PES calculated by TVCF are also listed. A 100 cm−1 Gaussian broadening is applied.

Method kic(×1010 s−1) at 0K kic(×1010 s−1) at 300K

HA 1-MR 2-MR HA 1-MR 2-MR

TVCF 0.79 - - 1.00 - -

TD-DMRG

MS = 10 0.60 1.27 2.92 0.78 1.65 3.80

MS = 20 0.74 1.42 3.23 0.88 1.77 4.10

MS = 40 0.78 1.47 3.40 0.96 1.85 4.19

MS = 60 0.79 1.47 3.54 0.97 1.86 4.37

MS = 80 - - 3.56 - - 4.53

relative value to HA 100% 186% 451% 100% 192% 467%

Furthermore, we examine the magnitude of the anharmonic effect with different energy gaps.

Fig. 6 plots the IC rates on HA, 1-MR, and 2-MR PESs at 0 K and 300 K with different adiabatic

energy gaps ∆Ead. It shows that the size of the energy gap is very important for the anharmonicity

to take effect. With a gap smaller than 1.6 eV, there is basically no anharmonic effect. With the

increase of the gap, the anharmonic effect becomes more and more noticeable. The IC rate on

HA PES decreases much faster than that on anharmonic 1-/2-MR PES with the increase of gap.

This behavior, which has also been reported in the study of model molecules,28 can be reasoned in

this way: the larger the gap, the higher the energy level of the final vibrational state, and therefore

the greater the anharmonic effect. Comparing the 1-MR and 2-MR PESs, the IC rate on 2-MR

PES is faster. However, with an energy gap larger than 2.5 eV, the trend of the rate on 1-MR and

2-MR PESs to decrease as the gap increases seems comparable. In addition, at each energy gap,

the anharmonic effect does not differ much at different temperatures.

To analyze the specific effects due to anharmonicity, the FSR IC rates are calculated at 0 K.
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energy gaps. Solid line is T = 0K, dashed line is T = 300K.

The MPS to represent |Xf(t)⟩ in Eq. (25) has MS = 20, while MPSs to represent Γ(t) and Ihalf have

MS = 50 (HA and 1-MR) and MS = 120 (2-MR), respectively. In TD-DMRG, two primitive basis

functions are used: one is SHO (used in HA PES), and the other is modal from VSCF calculation

(used in 1-MR, 2-MR PESs). The primitive basis adopts d = 10 (the difference compared with

d = 20 is very small). Since MPS is compressed in the calculation of Γ(t) and Ihalf, to verify the

accuracy, the total rate obtained by summing over the FSR rates ∑v I is listed in Table S1 and the

total rate obtained directly by integrating C(t) (in Table II) is the reference. From the comparison,

the accuracy is sufficient for the later analysis of the FSR IC rates.

Based on the probability of different occupation numbers of each mode in Eq. (41) occurring

in the total IC process, the mean vibrational quantum number and the mean accepting energy for

each mode are defined as

v̄l = ∑
vl

pvl vl (42)

ε̄l = ∑
vl

pvl εvl (43)

where εvl is ωivi for the SHO basis function (not including the zero-point energy) and is the

energy of each modal relative to the zero-point energy for the VSCF modal basis function. v̄l

on different PESs are shown in Fig. 7, in which the total ε̄l of the 8 high-frequency C-H vibrations

above 3000cm−1 (∑ε̄C-H) are also listed. For HA PES, the modes with large HR factors receive

more energy and the corresponding v̄l is larger. The main contributor, mode 38, has the largest
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2.4 mean vibrational quantum number, while the high-frequency C-H vibrations with small HR

factors basically do not contribute, with a mean accepting energy of 1017cm−1, which in the

later analysis is attributed to the energy received as a promoting mode. For 1-MR PES, v̄l in

the C-C vibrational region decreases significantly, with the largest being 1.9 (mode 38). This is

mainly due to the significantly enhanced contribution of C-H vibrations, whose mean accepting

energy is increased to 4680cm−1. From 1-MR PES to 2-MR PES, ∑ε̄C-H increases further to

6309cm−1, and the corresponding v̄l of C-C vibrations decreases further to a maximum of 1.5.

Therefore, by introducing anharmonicity, the ability of C-H vibrations to receive electronic energy

is opened up: on the original HA PES, C-H vibrations only receive less than 1/10 of the electronic

excitation energy, while they receive more than 1/3 of the electronic excitation energy on the 2-MR

PES. Since the C-H vibrations receive more energy, the quantum numbers of the C-C vibrations

decrease. Qualitatively, according to that the FC factor between two displaced harmonic oscillators

is |⟨χi0|χfv⟩|2 = e−SSv

v! and for azulene HR factors are less than 1 (weak coupling regime), smaller v

results in a larger FC factor and thus a faster IC rate after accounting for anharmonicity. However,

for the 2-MR PES, the VSCF modals are used to approximate the final vibrational states. Hence,

the statistical quantities in Eq. (42) (43) may be inaccurate. In order to check the reliability of this

approximation on the statistical quantities, v̄l of 1-MR, 2-MR PESs with SHO basis functions are

shown in the Supporting Information Fig. S2. With SHO basis, v̄l is also approximated on 1-MR

PES. From Fig. S2, we find that v̄l only changes a little on both 1-MR and 2-MR PESs with either

SHO basis or modal basis. Therefore, the analysis of v̄l and ε̄l on 2-MR PES is reliable.

With the sampling algorithm described in the last section, the dominant final vibrational states

that contribute the most to the total IC rate are analyzed. We find that unlike the statistical mean

vibrational quantum number, the rate of individual final state is very sensitive to what kind of basis

function is used. For 2-MR PES, the FSR rates obtained by using VSCF modal basis function

are incorrect. Therefore, Fig. 8 only plots the results of HA PES with SHO basis and 1-MR

PES with modal basis. A total of 105 final state configurations are sampled (the total number

of configurations is 1048). For HA(1-MR) PES, the contribution of the sampled configurations

accounts for 91%(93%) of the total rate. This is an indication of the efficiency of our proposed

sampling algorithm. In addition, it shows that the 105 configurations are sufficiently representative.

The black bars in Fig. 8 are the rates of the top 1000 sampled configurations with the largest rates.

Several configurations that contribute the most are labeled next to the bar. The blue curve is the

rate-weighted density of states (DOS) calculated by the 105 configurations (a Gaussian broadening
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The horizontal red line is a guide to the eye.

of 10cm−1 is used).

ρ(ω) = ∑
i

kiδ (ω −ωi) (44)

The overall FSR IC rates are increased in the 1-MR PES compared to HA PES. For HA PES, the

configurations having a large rate are all composed of excited vibrations with large HR factors.

Among them, the three configurations with the largest rates are 116130333438239, 116130333538139,

116230233438239 (the subscript is the mode index). This result is consistent with the previous

statistics of the mean vibrational quantum number. For the 1-MR PES, the three configurations

with the largest rates become 133138443,133338346, 233238346 (the mode indices above 41 are all

C-H vibrational modes), demonstrating that the rates of the final states with C-H vibrations excited

increase greatly after considering the anharmonicity.

The increase of vibrational DOS on the anharmonic PES is also expected to be one factor that

will increase the total IC rate, e.g., the DOS of Morse potential becomes larger with energy. To
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further distinguish whether the increase in the total IC rate is due to the increase in the rate for

each individual final state or the increase in the vibrational DOS, we calculate the DOS ρ(ω) =

∑i δ (ω −ωi) for the sampled 105 states (using a 10cm−1 Gaussian broadening). Actually, the

DOS calculated here is an effective DOS, since only the sampled states with a not too small rate

are counted. Fig. 9 shows that there is no fundamental difference between the DOS around the

energy gap on HA PES and on 1-MR PES. The DOS is even slightly larger on HA PES. It confirms

that the rate increases on anharmonicity PES is due to an increase in the rate of individual final

state, such as the rate of C-H excited configurations, which originally have a small contribution on

HA PES, increase considerably after considering anharmonicity.
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FIG. 8. The black bar is the rate of the top 1000 final configurations among the sampled 105 configurations

and the blue curve is the rate-weighted density of states for the 105 final configurations (Eq. (44)) on (a) HA

PES with SHO as the basis function and (b) 1-MR PES with modal as the basis function. The vertical red

line indicates the 0-0 gap between the ground and excited states.

The following question is whether anharmonicity increases the ability of the C-H vibration to

act as an accepting mode or a promoting mode. In the traditional understanding of the displaced

harmonic oscillator model, since the C-H mode has an HR factor of about 0, it cannot be an accept-

ing mode. Same results have been obtained for real molecular PESs with torsion and rotation.59

To answer this question, we turn off the ability of the C-H vibration as a promoting mode, i.e., the

NAC constants of all 8 C-H modes are set to 0. If the anharmonicity enhances the promoting abil-

ity of C-H vibration, the difference between the rates on anharmonic and harmonic PESs should

be significantly reduced after turning off NAC of the C-H vibrations. From the total rates listed

in Table III, although the total kic decreases after turning off NAC of C-H vibrations, the relative

24



15600 15800 16000 16200 16400 16600
Vibrational energy / cm 1

6

7

8

9

10

11

12

13

D
en

si
ty

 o
f s

ta
te

s

HA
1-MR

FIG. 9. Vibrational density of states ρ(ω) = ∑i δ (ω −ωi) around energy gap for the sampled 105 config-

urations on the HA (black), 1-MR (red) PESs. The vertical line indicates the 0-0 gap between the ground

and excited states.

value of kic on 1-MR and 2-MR PESs to that on HA PES is qualitatively unchanged. In addition,

the mean accepting energy by C-H vibrations on 1-/2-MR PESs, which is the main factor on the

change of IC rate, is also basically unchanged relative to that of HA PES. Similarly, Fig. 10 shows

that without NAC of C-H vibrations, v̄l of each mode on the 1-MR PES does not change much

compared to that with C-H NAC. The situation is similar for the HA PES and 2-MR PES (see

Fig. S3). These results demonstrate that the anharmonicity mainly enhances the accepting ability

of C-H vibrations, even though the HR factor is ∼ 0. Without anharmonicity, the C-H vibrations

can only be the promoting mode, as ∑ε̄C-H on HA PES decreases significantly from 1017cm−1 to

205cm−1 after turning off NAC of C-H vibrations.

TABLE III. The IC rate and mean accepting energy of C-H vibrations on HA, 1-MR and 2-MR PESs with

and without nonadiabatic coupling of C-H vibrations at 0 K. (MS = 20, d = 10)

PES
kic(×1010 s−1) ∑ε̄C-H (cm−1)

with C-H NAC without C-H NAC with C-H NAC without C-H NAC

HA 0.73 0.53 1017 205

1-MR 1.42 (195%) 1.09 (206%) 4680 (3663) 4065 (3860)

2-MR 3.25 (445%) 2.62 (494%) 6309 (5292) 6387 (6182)

We expect this specific anharmonic effect related to C-H vibrations to be general for the IC
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FIG. 10. The mean vibrational quantum number of each mode with (black) or without (red) the nonadia-

batic coupling of C-H vibrations on the 1-MR PES.

process of hydrocarbon compounds, at least for small-sized and medium-sized molecules. In ex-

periments, it has already been observed that the number of C-H vibrations is very important to

the nonradiative decay rate of hydrocarbons.63 The most direct experimental verification of the

effect of C-H vibrations on the nonradiative transition is the deuterium effect. When H is replaced

by D, the frequency of the C-D vibration decreases, and thus the energy received by the same

vibrational quantum number of C-D vibrations decreases. Therefore, the efficiency of C-H vibra-

tions to accept energy is reduced and thus the rate of the nonradiative transition is expected to

decrease. As early as the 1960s, experimental studies found that the lifetime of the triplet state of

molecules such as naphthalene has a very pronounced deuterium effect. The lifetime of deuter-

ated naphthalene becomes longer at low temperatures,64 and many aromatic compounds other than

naphthalene have similar phenomena.65 Theoretically, the isotope effect of nonradiative transition

rate has also been discussed qualitatively by Lin and Jortner et al.17,66 According to the analytical

rate expression of the displaced harmonic oscillator model under weak electron-vibrational cou-

pling, the nonradiative transition rate is mainly determined by the highest-frequency mode with

a nonzero HR factor, and the higher the frequency, the faster the rate. Therefore, under the as-

sumption that the HR factor of C-H vibrations is not zero, it does exhibit a significant deuterium

effect. What we find in this study is that for molecules like azulene, its C-H vibration can still get

involved in nonradiative transition even though the HR factor is close to 0, and thus the molecule

is expected to exhibit the deuterium effect as well. In addition, it was also found experimentally in

naphthalene and acetophenone that the magnitude of deuterium effect only depends on the num-
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ber of deuterium regardless of the substitution position.66 According to the phenomena, Lin et al.

qualitatively classified the C-H vibrations into the accepting modes, because if C-H vibrations are

used as promoting modes, NAC may be sensitive to the positions of deuteration as the wavefunc-

tion varies over the molecule. On the contrary, due to the local nature of C-H vibrations, the C-H

vibrational wavefunctions at different positions are similar and thus have similar abilities as ac-

cepting modes.66 Our current quantitative calculations at ab initio level verify that the C-H modes

are the accepting modes. However, it should also be noted that both experimental and theoretical

studies showed that there is a low energy CI between S1 and S0 PESs in azulene, which is also

important for the IC process.55,67,68 The few nonadiabatic dynamics studies based on the trajec-

tory surface hopping method have obtained an S1 lifetime of 10 fs, which is much shorter than

the experimental value.67 Therefore, further theoretical studies are needed to properly understand

the S1 to S0 IC process in azulene. Perhaps the contributions of both channels in the FC and CI

regions need to be considered.69

IV. CONCLUSION AND OUTLOOK

To summarize, we present the methodology to calculate the internal conversion rate of real

polyatomic molecules with an anharmonic potential energy surface at ab initio level in the Franck-

Condon region by combining the n-MR method to construct PES and the TD-DMRG method to

simulate quantum dynamics. Furthermore, a method to calculate the final-state-resolved rate coef-

ficient is proposed, which is numerically exact for the uncoupled PES of the final state and helps in

the analysis of the IC process. Taking the semi-rigid azulene molecule as an example, we compare

and discuss in detail its IC rates on the harmonic potential, 1-MR potential, and 2-MR potential.

We find that the anharmonic effect opens up the ability of the C-H vibration to receive electronic

energy. Because the frequency of the C-H vibration is larger than that of the C-C vibration, the

efficiency of receiving energy is higher. In the weak electron-vibrational coupling regime (Si < 1),

it is able to increase the Franck-Condon factor and thus increase the internal conversion rate. We

expect this anharmonic effect to be prevalent in small-sized hydrocarbon compounds (small num-

ber of C-C vibrations). Whether this anharmonic effect is still present in large-sized hydrocarbon

compounds (large number of C-C vibrations) deserves further investigation. Additionally, whether

the 2-MR PES is accurate enough for rate calculations is unknown due to that 3-MR is too expen-

sive to construct for such a system. There is still hope to combine with deep learning methods to
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reduce the number of single-point calculations and obtain higher order of n-MR PES. Finally, the

current method uses only rectilinear normal coordinates, which is not appropriate for very flexible

molecules. Therefore, it is worth exploring a theoretical framework and computational method for

nonradiative transition rate based on curvilinear coordinates.
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