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2 RETROTRAE: RETROSYNTHETIC PREDICTION WITH TRANSFORMER

Abstract. Herein we present a new retrosynthesis prediction method,
viz. RetroTRAE, which uses fragment-based tokenization com-
bined with the Transformer architecture. RetroTRAE mimics chem-
ical reasoning, and predicts reactant candidates by learning the
changes of atomic environments associated with the chemical re-
action. Atom environments stand as ideal, chemically meaningful
building blocks, which together produce a high-resolution molec-
ular representation. Describing a molecule with a set of atom
environments establishes a clear relationship between translated
product-reactant pairs due to the conservation of atoms in the re-
actions. Our model achieved a top-1 accuracy of 68.1% within the
bioactively similar range for the USPTO test dataset, outperform-
ing other state-of-the-art translation methods. Besides yielding
a high level of overall accuracy, the proposed method solves the
translation issues arising from the SMILES-based retrosynthesis
planning methods effectively. Through careful inspection of reac-
tant candidates, we demonstrated atom environments as promising
descriptors for studying reaction route prediction and discovery.
RetroTRAE provides fast and reliable retrosynthetic route plan-
ning for substances whose fragmentation patterns are revealed.
Our methodology offers a novel way of devising a retrosynthetic
planning model using fragmental and topological descriptors as
natural inputs for chemical translation tasks.

1. Introduction1

Planning the reaction pathways of organic molecules is a central com-2

ponent of organic synthesis. The idea of reducing the complexity of a3

desired organic molecule by considering all logical disconnections forms4

the basis of the retrosynthetic approach [1–3]. Therefore, the aim of5

the retrosynthetic approach is therefore to suggest a logical synthetic6

route to generate a target molecule from a set of available reaction7

building blocks. The retrosynthetic approach acts recursively on the8

target molecule until chemically reasonable pathways are identified [4].9

From a broader perspective, predictors for forward and backward reac-10

tions reported in the literature can be classified into those that rely on11

the construction of reaction templates and those that are template-free,12

data-driven networks trained in an end-to-end fashion. Template-free13

methods have emerged as an effective means of addressing the method-14

ological limitations of the template-based paradigm. These methods15

can be further subdivided according to the way of molecular represen-16

tation protocol: (i) graph-based methods [5–8] and (ii) sequence-based17

methods [9–11,43].18
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Sequence-based modeling recasts the problem of reaction pathway1

planning as a language translation problem by using a string represen-2

tations of molecules. Current state-of-the-art forward- and backward-3

reaction predictors are mostly built on the Transformer architecture [13].4

The Transformer is a neural machine translation (NMT) model that5

solely depends upon attention mechanism [12, 13]. Molecular Trans-6

former was the first adaptation of Transformer with SMILES [25] for7

the forward-reaction prediction task [14, 15]. Further studies demon-8

strated the ability to make general predictions using different com-9

pound databases, including drug-like molecules [16] and carbohydrate10

reactions [17], to examine regioselectivity and stereoselectivity. This11

success has paved the way for additional research on retrosynthesis12

using SMILES and Transformer [18–23].13

SMILES strings are typical inputs for retrosynthetic predictors us-14

ing NMT models. Despite its widespread usage, SMILES can easily15

lead to erroneous predictions. It is because the SMILES has fragile16

grammatical structure and is not suitable for tokenization. For this17

reason, SMILES-based prediction methods tend to make grammati-18

cally invalid predictions reducing the prediction efficiency. To solve this19

problem, SCROP [21] included a neural-network-based syntax correc-20

tor to decrease the invalidity rate. Similarly, Duan et al [19] focused on21

determining the causes of invalid SMILES to improve the prediction ac-22

curacy. In addition, grammatically valid SMILES are not guaranteed23

to be semantically valid or synthetically accessible. In our previous24

study [29], we demonstrated that representing molecules as the sets of25

fragments is an effective solution to the aforementioned problems.26

Considering the complexity of retrosynthetic analysis, an efficient27

representation of source-target data structure is critical for accurate28

predictions. In this study, we show that representing molecules using29

sets of atom environments (AE) is an efficient alternative approach for30

devising a retrosynthetic prediction models to conventional SMILES-31

based approaches. AEs are topological fragments centered on an atom32

with a preset radius [36], defined by the number of shortest topological33

distances between atoms via covalent bonds. Unlike SMILES tokens,34

each AE is chemically meaningful and easily interpretable. NMT mod-35

els are designed to translate between different pairs of tokens, whereas36

SMILES-to-SMILES translations require a model to learn the chemi-37

cal change via rearrangements of regular expressions due to the con-38

servation of atom types in an ideal reaction dataset. On the other39

hand, AEs in close vicinity of reaction center encapsulate the chemical40

change. The chemical change becomes observable in associated tokens,41

fragments, thus can be captured by the model.42
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Here we propose a direct translation approach for retrosynthetic pre-1

diction by associating the AEs of the reactants with the products.2

Throughout the study, these are regarded as the basis of molecules3

and employed in our prediction workflow. Our design enables us to4

capture the changes in molecules that are associated with reactions5

by focusing on fragments related to the reaction centers. To accu-6

rately generate the reactant candidates for a target molecule we use7

the Transformer architecture [13]. We show that our model achieves8

a top-1 accuracy of 55.4% for exact matches and 68.1% if bioactively9

similar predictions are included. These results are better than those of10

the existing methods, without suffering from problems associated with11

SMILES representation.12

2. Method13

2.1. Model overview. The main goal of the Transformer architecture14

is to generate the next word of a target sequence. Transformer uses15

an encoder unit and a decoder unit to translate between sequences by16

effectively employing a multi-head attention mechanism on each unit.17

Input and output sequences for our Transformer model are the lists of18

fragments. We tested several different schemes to convert molecules19

into a list of fragments, such as MACCS keys [55], bit vectors of ex-20

tended circular fingerprint (ECFP) [54], and the atom environments21

(AEs) [36]. As presented in the next section, we identified that the AE22

representation resulted in the best performing model. AEs are frag-23

ments consisting of a central atom and its covalently bonded neighbors24

with a predefined radius. They can be considered the basis of construct-25

ing molecules, in a manner similar to the pieces of a puzzle. Each AE26

is described by a simplified molecular-input line-entry system arbitrary27

target specification (SMARTS) pattern [26].28

An overview of our Transformer-based model, viz. RetroTRAE, is29

depicted in Figure 1. Starting from a product molecule, it is decom-30

posed into a set of unique integer values. Each AE, a SMART pat-31

tern, is associated with a unique integer value. The lists of AEs were32

provided as input sequences for RetroTRAE. RetroTRAE is trained to33

predict the proper AE sequences of reactants corresponding to the true34

reactants.35

2.2. Atom Environments. We employed the concept of circular atom36

environments to represent the molecules in the reaction dataset. Cir-37

cular environments are defined as topological neighborhood fragments38

of varying ‘radii’ containing all bonds between the included atoms [36].39

They are centered on a particular atom, called the central atom. The40
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Figure 1. A schematic of RetroTRAE including the
input-output structure.

‘radius’ refers to the maximum allowed topological distance between1

the central atom and all covalently bonded atoms. The topological2

distance between two atoms was measured as the number of bonds on3

the shortest path between them. Thus, an AE of radius “r” contains4

all the atoms in the molecule with a topological distance r or smaller5

from the central atom, and all bonds between them.6

To construct the AEs, we used ECFPs of varying radii implemented7

in RDKit. We extracted all unique fragments that were folded into8

bits of ECFPs. AEs generated by the ECFP algorithm are invariant9

to rotation and translation and are easily interpretable as SMARTS10

patterns [32–34]. In Figure 2, the string representation of benzene11

is given as common SMILES and SMARTS patterns representing the12

atom environments generated by the ECFP fingerprint, along with the13

recently developed SELFIES [35] description. SMARTS and SELFIES14

are similar with respect to the level of information they display. The15

text sections of the SMARTS description contain two levels of detail:16

the first level concerns the aromaticity and H count of the element, and17

the second level includes the number of neighboring heavy atoms and18

ring information (represented by ”D” and “R”, respectively).19

By definition, AEs with radius r = 0 only include the atoms of the20

central atom type. We denote the set of all AEs with r = 0 as AE0. AEs21

with r = 1 contain the central atom, all atoms adjacent to the central22
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atom (nearest neighbors), and all the bonds between these atoms. The1

set of all AEs with r = 1 is denoted as AE2.2

Figure 2. String representations of benzene are repre-
sented in the form of SMILES, SELFIES and as a com-
bination of SMARTS patterns generated by the Morgan
fingerprint. In atom environment renderings, the cen-
tral atom is highlighted in blue whereas aromatic and
aliphatic ring atoms are highlighted in yellow and gray,
respectively. A wildcard [*] is used to represent any
atom.

We focused on two fragmentation schemes: AEs and ECFPs. A3

word-based tokenization scheme was applied to both AEs and the in-4

dices of the ECFP bit vectors. An ECFP bit vector corresponds to5

a one-hot encoded vector in the fingerprint space, such as a sentence,6

which is a one-hot encoded in vocabulary space. In this study, the7

following representations encoded as bit indices and SMARTS were8

attempted:9

• AE2 and AE2, indicating atom environments of radius 0 and 1,10

• ECFP0, ECFP2, and ECFP4 [37] corresponding to the Morgan11

fingerprints of radius 0, 1, and 2, hashed into a dimension of12

1024.13
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AEs of radius 2 (AE4) result in millions of distinct fragments present1

in large datasets. Because of the vast vocabulary size of AE4, they are2

not suitable for translation purposes. Thus, only the hashed version of3

the Morgan fingerprint was selected for a radius of 2. The open-source4

RDKit module version 2020.03.1 was utilized to generate ECFPs and5

AEs.6

2.3. Dataset. Neural machine translation methods require a large cor-7

pus of diverse source-target pairs for successful translation. To evalu-8

ate and compare our model with the current state-of-the-art models,9

we used a subset of the filtered US patent reaction dataset, USPTO-10

Full, which was obtained using a text-mining approach [27, 28]. This11

subset [5] contains 480K atom-mapped reactions after removing dupli-12

cates and erroneous reactions from USPTO-Full. To train our models,13

the atom-mapping information was not used. However, we implicitly14

benefitted from the fact that each atom in the product had a unique15

corresponding atom in the reactants. In addition, there was no reaction16

class information available in this dataset.17

The product-reactant pairs were carefully curated in the same man-18

ner as in our previous study [29]. As a result, we generated two distinct19

curated datasets consisting of unimolecular (P =⇒ R) and bimolecular20

(P =⇒ R1 +R2) reactions, with sizes 100K and 314K respectively. Ad-21

ditionally, we used the PubChem compound database, which contains22

111 million molecules, and the ChEMBL database, to recover molecules23

from a list of AEs and compare the space of AEs [30,31].24

2.4. Training Details. Our curated datasets were randomly split into25

a 9:1 ratio to generate the training and testing sets. The validation26

sets were randomly sampled from the training set (10%). We used the27

Adam algorithm [40] to train the model parameters in combination28

with a negative log-likelihood (NLL) loss function. For each dataset,29

we performed multiple tests within the range of the hyper-parameter30

space, as described in Supplementary Table 1, to achieve optimal per-31

formance. The best hyperparameters were chosen according to their32

performance on the validating set. With these hyperparameters, the33

average training speed was approx. 11 min per epoch with a batch34

size of 100.. We trained our models on average 1000 epochs with the35

learning rate scheduler stochastic gradient descent with warm restarts36

(SGDR) [39] and applied a residual dropout with a rate of 0.1 [38]. The37

details of our key hyperparameters are described in the Supplementary38

Information.39
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2.5. Evaluation. To evaluate the performance of our translation model,1

a suitable metric was required to measure the similarity between the2

predictions and the true reactants The Tanimoto (Tc) and the Sørrensen-3

Dice coefficient (S) as two of the special cases of the Tversky index were4

the similarity metrics used in this study. The exact form of the Tversky5

index is as follows:6

(1) S(X, Y ) =
|X ∩ Y |

|X ∩ Y |+ α|X − Y |+ β|Y −X|
Here, α, β ≥ 0 are the parameters of the Tversky index. Setting7

α = β = 1 leads to the Tanimoto coefficient; setting α = β = 0.5 leads8

to the Sørrensen-Dice coefficient. The Tanimoto and Dice coefficients9

measured between two molecules range between 0 and 1. The value of10

zero represents the total dissimilarity, whereas a value of 1 represents11

the exact match. Pairwise similarities between the predicted and cor-12

rect sequences are calculated at the end of each epoch for every pair13

present in the validation set using the chosen metrics.14

Since there are many ways to decompose a molecule, retrosynthetic15

prediction tools can procure many different possible synthetic routes.16

However, the selection of an appropriate synthetic route is challenging.17

As a general rule, we used top-1 predictions as the best recommenda-18

tions to report network performance, as well as for molecular search19

and retrieval. We used the ccbmlib Python package [47] to generate20

similarity value distributions of the fingerprints and assess the statisti-21

cal significance of the Tanimoto coefficients. This implementation also22

allowed for a quantitative comparison of the similarity values between23

various fingerprint designs.24

3. Results and Discussion25

3.1. Performance of RetroTRAE. We evaluated the retrosynthetic26

predictor performance of the selected fingerprint variants to determine27

the best molecular structure encoding. We also compared the results28

of our Transformer models with those of the previously developed29

fragment-based retrosynthetic predictor (Table 1). The Transformer30

model representing molecules with the union of AE0 and AE2 out-31

performed all other models, achieving an exactly matching accuracy of32

55.4%. The relationship between structural similarity and biological ac-33

tivity has been extensively investigated in systematic analyses [48–51].34

Molecules found to have similar biological activities when their sim-35

ilarity is over 0.85. The addition of bioactively similar predictions36

(Tc ≥ 0.85) increased the accuracy by 12.7% over the exact matches,37

resulting in an overall model accuracy of 68.1%. The model using38
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ECFP2 also performed well and showed slightly worse performance1

than using AEs. Hereafter, we refer to the model with the union of2

AE0 and AE2 as RetroTRAE.3

Table 1. Performance summary of various
Transformer-based models trained with different
fragmentation schemes and a comparison with the
Bi-LSTM-based models. Success rates (%) are given
with respect to exact and bioactively similar matches
(Tc ≥ .85) and the mean Tanimoto coefficients of all
predictions are listed.

Model Unimolecular dataset

Tc = 1.0 Tc ≥ .85 Tc

Bi-LSTM-based [29]

MACCS 29.9 57.7 0.84

ECFP2 35.6 50.7 0.80

ECFP4 9.1 28.4 0.66

Transformer-based

MACCS 30.1 57.5 0.85

ECFP0 50.8 61.2 0.85

ECFP2 54.9 67.6 0.88

ECFP4 26.0 50.1 0.73

AE0 47.2 57.4 0.83

AE2 50.9 59.9 0.84

AE0 ∪ AE2 55.4 68.1 0.88

The Transformer-based models demonstrated significant improve-4

ments over the previous bi-LSTM-based method with respect to the5

exact match accuracy. This enhancement represented a substantial6

overall performance gain of 15-17%. However, when MACCS keys were7
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used for fragmentation, the number of exact and bioactively similar1

matches were similar. This suggests that the combination of MACCS2

keys may have limited diversity, i.e., low resolution power. In contrast,3

AE2 describes the chemical space more precisely and provides 60 times4

higher resolution power than MACCS keys (Supporting Table 5).5

Figure 3. The histogram of Morgan bits according
to the number of unique SMARTS patterns from AE0
(blue), AE2 (cyan), and AE4 (red).

Another interesting observation is the poor performance of ECFP4.6

The number of exact matches dropped to nearly half that of ECFP2.7

This poor performance may be due to a high collision rate of ECFP48

(Figure 3). We investigated the number of unique AEs of radii 0, 1,9

and 2 that were associated with the activated bits of hashed ECFPs for10

the unimolecular reaction dataset. With a radii of 0 and 1, each ECFP11

bit contained fewer than 10 and 20 unique AEs, respectively. However,12

with a radius of 2, most bits corresponded to many unique AEs, rang-13

ing from 100 to 160. In other words, ECFP4 has a much higher bit14

collision rate than ECFP2 or ECFP0. The presence of higher-density15

bits complicates the relationships between the fragments of a product16

and the true reactants, deteriorating the prediction power of the model.17
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Therefore, finding an optimal set of fragments representing a molecular1

structure most accurately is a critical factor in improving the predictive2

power of retrosynthesis planning.3

Table 2. The accuracy (%) of single and double reac-
tant predictions by using the union of AE0 and AE2.

Datasets Tc = 1.0 SM DM Tc ≥ .85 Tc ≥ .80 Tc S

Unimolecular 55.4 57.8 62.1 68.1 72.5 0.88 0.94

Bimolecular 61.9 62.7 64.6 67.8 69.7 0.77 0.87

Prediction performance, as a function of different similarity thresh-4

old values for the best performing model is shown in Table 2. By using5

AEs, we can select more reasonable thresholds that are size-dependent,6

similar to the similarity metrics. Single and double mutations represent7

changes in one and two fragments with respect to the ground truth.8

We refer to these as soft thresholds. For unimolecular reactions, the9

average reactant length is 27. The single and double fragment muta-10

tions corresponded to Tc ≥ 0.96 and Tc ≥ 0.92, respectively. The de-11

gree of similarity was different for bimolecular reactions because both12

reactants had an average length of 17. A detailed description of the13

similarity scale can be found in the Supporting Information for the soft14

thresholds as a function of the reactant fingerprint length (Supporting15

Table 6).16

Soft thresholds present two clear advantages over hard thresholds,17

particularly when working with close analogs. First, soft thresholds al-18

lowed us to easily find the type and number of fragments that deviated19

from the ground truth. In contrast, classifications made by arbitrarily20

defined thresholds were difficult to comprehend. This is because there21

is no way to envision a molecule just by knowing the structure and the22

pairwise similarity value of a reference molecule in advance. Therefore,23

similarity maps were developed to provide better interpretation of the24

resulting similarity by visualizing the atomic contributions [53]. Sec-25

ond, by using soft thresholds, we avoided any risk of losing high-quality26

reactant candidates that could be excluded with hard thresholds. The27

idea of structural complexity was closely associated with the finger-28

print length. This suggests that high-quality predictions with low and29

medium complexity had a higher chance of being excluded by hard30

thresholds. As such, a high-quality double mutated prediction with31
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medium complexity represented with 13 atom environments could be1

overlooked by a commonly used bioactively similar threshold (Tc ≥ .85)2

The mean Tc of the predictions by the best-performing model was3

found to be 0.88, which is highly statistically significant with a p-4

value < 10−5 (Table 2). Figure 7 shows the statistical significance of5

the selected similarity thresholds above which the quality of non-exact6

predictions is assessed in chemical terms. The inset of the figures shows7

the regime with Tc values having a p-value of 0.1, whereas our lowest8

similarity threshold value (Tc > 0.8) had a p-value of 1e-04 or lower.9

Therefore, the predictions satisfying Tc > 0.8 occur in the high similar-10

ity regime. The statistical equivalences between the similarity scores11

of each fingerprint type we used are shown in Figure 7C. The unified12

AEs and ECFP2 shared similar distribution profiles (Supporting Fig-13

ures 7A and 7B). Hence, we found that they returned almost identical14

similarity values, as shown in Figure 7C. Landrum [52] showed that15

only 250 of the 25K pairs have a Tanimoto similarity value higher than16

0.434 and 0.655 if computed with ECFP2 and MACCS keys respec-17

tively. Likewise, our lowest similarity threshold Tc > 0.8 corresponded18

to Tc > 0.9 if computed with MACCS keys.19

3.2. Comparison with existing retrosynthesis planning meth-20

ods. Overall, Transformer-based models lead to better performances21

compared to non-Transformer models. Table 3 presents a performance22

comparison of our model with the available retrosynthesis models trained23

without reaction class information. Performance differences in the24

SMILES-based Transformer models can be attributed to improvements25

in data augmentation (with non-canonical SMILES) [22,45], tokeniza-26

tion scheme (character or atom level) [18, 20], and postprocessing (by27

rectifying invalid SMILES) [19, 21]. The better predictive power of28

our model appears to be due to better reaction representation beyond29

the standard SMILES. For fair comparison, we compared with models30

that were trained and tested with large versions of the USPTO dataset,31

either filtered MIT-full or MIT-fully atom mapped reaction datasets.32

Our approach achieved top-1 exact matching accuracies of 55.4%33

and 61.9% for unimolecular and bimolecular reactions without reaction34

class information, respectively (Table 2). In general, this level of accu-35

racy was better than existing non-Transformer and Transformer models36

using SMILES. Lin’s Transformer model using character level SMILES37

tokenization [20] was comparable to the performance of RetroTRAE.38

When bioactively similar predictions were considered, the overall ac-39

curacy of both datasets increased to 68%. This result surpassed all40

current state-of-the-art approaches by a large margin.41
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Table 3. Model performance comparison without addi-
tional reaction classes. The results are based on either
filtered MIT-full or MIT-fully atom mapped reaction
datasets.

Model top-1 accuracy (%)

Non-Transformer

Coley et al., Similarity, 2017 [42] 32.8

Segler et al., Neuralsym, 2017 [41] 35.8

Segler-Coley,–rep. by Lin, 2020 [20,41] 47.8

Dai et al., GLN, 2019 [44] 39.3

Liu et al.–rep. by Lin, 2020 [20,43] 46.9

Transformer-based

Zheng et al., SCROP, 2020 [21] 41.5

Wang et al., RetroPrime, 2021 [45] 44.1

Tetko et al., AT, 2020 [22] 46.2

Lin et al., 2020 [20] 54.1

RetroTRAE – this work 55.4

RetroTRAE + Bioactive – this work 68.1

3.3. Examples of high-quality predictions. As we have stressed1

in our previous report [29], the similarity score can be considered2

an effective metric for assessing the retrosynthetic quality of predic-3

tions. High similarity scores indicate higher-quality retrosynthetic pre-4

dictions. Thus, we included single and double fragment mutations,5

bio-active, and highly similar predictions as high-quality reactant can-6

didates. Figure 4 shows a representative example for each category.7

These examples help us interpret non-exact, but high-quality, reactant8

candidates.9

For single mutant cases, all the atom types were correct and the10

changes were often associated with misplacement of a single atom en-11

vironment (e.g. at the ortho/para/meta position). For double mutant12

cases, most changes were also observed in ortho/meta/para substitu-13

tion patterns, similar to the single mutation cases. In addition, the14
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Figure 4. A representative example belonging to each
threshold level is shown. Distinct fragments are given as
SMARTS patterns. Predictions are drawn as similarity
maps using the Morgan fingerprints. The first reactant is
predicted correctly and the qualities of the second reac-
tants are evaluated. The fragments only belonging to the
prediction or its true counterpart are given as set nota-
tion differences, which allows us to describe the chemical
change more concretely. Colors indicate atom-level con-
tributions to the overall similarity (green: increases in
similarity score, red: decreases in similarity score, uncol-
ored: has no effect).
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length of simple aliphatic chains is often incorrectly predicted because1

many fragments from a long aliphatic chain are identical. Thus, the2

length of an aliphatic chain cannot be accurately described using a set3

of unique fragments.4

As indicated in the similarity maps, none of the atoms of the re-5

actant candidates negatively contributed (red) to the similarity value6

(Figure. 4). After inspecting the bioactively similar predictions, we con-7

cluded that the most significant aspects of retrosynthetic analysis, such8

as bond disconnections, reactive functional groups, and core structures,9

were correctly predicted. In terms of hard thresholds, the number of10

altered atomic environments could be greater than two. However, they11

were mainly observed at the core structure, and do not affect the ac-12

curacy of the reactive sites. More reaction examples with high-quality13

predictions are provided in the Supporting Information.14

3.4. Covering the chemical space with atom environments. Be-15

cause AEs can be considered the basis of molecules, we investigated how16

many AEs are required to represent chemical space properly. We gener-17

ated the AE0 and AE2 sets using all compounds in PubChem (111M),18

ChEMBL (2.08M), and the USPTO 500K (1.3M) dataset and visual-19

ized their diversity and coverage (Figure 5). Coverage was defined as20

the chemical space spanned by these unique atom environments. The21

area-proportional Euler graph (Figure 5) demonstrates that the AEs22

of the reactants in the USPTO dataset is not enough to describe di-23

verse molecules and do not span a broad range of chemical space. This24

indicates that the current USPTO reaction dataset may not be large25

enough to train a truly general retrosynthesis predictors. We believe26

that our model would perform more accurately, if we have more diverse27

reaction datasets.28

USPTO reaction dataset contains 275 (r = 0) and 15,982 (r = 1)29

unique AEs. ChEMBL and PubChem contain 386 (r = 0), 39,149 (r =30

1) and 3450 (r = 0), 533,276 (r = 1) unique AEs, respectively. Although31

there are large differences in favor of PubChem, a significant portion32

of these unique AEs occurs only once in the whole set. In fact, many33

AEs from PubChem were found in only one compound record, which34

we refer to as singletons. The percentages of singletons were 38.5%35

and 35.2% for the AE0 and AE2 sets, respectively, generated from36

PubChem. The cardinality of each set of unique AEs was supplied as37

supporting information together with their intersections.38

3.5. Retrieving reactant candidates via atom environments.39

After predictions are made by RetroTRAE, the chemical structures of40

the predicted reactants can be retrieved through a database search.41
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Figure 5. Area-proportional Euler graph represent-
ing the space of atomic environments for the following
databases: PubChem 110M, ChEMBL 2.08M (ChEMBL
v28, as of May 2021), and USPTO-Fully atom-mapped
500K reactions (∼ 1.3M molecules). AE0 is upscaled by
20 times for better visual interpretation.

We investigated the success rate of retrieving a reactant candidate1

with 1000 USPTO test molecules using PubChem. The retrieval test2

results showed that more than half the predictions (55.7%) could be3

retrieved accurately (Figure 6). Allowing single mutations increased4

the retrieval rate by 30%. When double mutations were allowed, all5

the test molecules could be retrieved successfully. These results suggest6

that representing and predicting molecules with fragments is a viable7

and practical approach.8

Using the top-1 predictions does not necessarily lead to a single syn-9

thetic route considering the degeneracy of the fragment representa-10

tion. It is always possible to access multiple candidates during the11

process of converting fragments into valid molecules. This may corre-12

spond to multiple possible reaction pathways. Considering the small13

differences between molecules with high Tc values (Figure 4), multiple14
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molecules generally have differences in stereochemistry, the length of1

their aliphatic chains, and the location of their peripheral functional2

groups, such as ortho/meta/para positions. Thus, such small differ-3

ences can be easily corrected by experienced chemists.4

Finally, it is worth mentioning that AEs are less degenerate, i.e., have5

fewer reactant candidates corresponding to a prediction, than ECFP6

fingerprints during the retrieval process. Using ECFP bit indices for7

database searches retrieve 1.7 times more reactant candidates on av-8

erage. The difference is mainly due to bit collisions that occur during9

truncation to the bit vector and the absence of stereochemical infor-10

mation in our dataset.11

Figure 6. Retrieval of reactant candidates via a large
PubChem compound search database. SM and DM rep-
resent single mutation and double mutations.
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4. Conclusion1

We developed a new template-free retrosynthesis prediction model,2

viz. RetroTRAE, using the Transformer architecture and atom en-3

vironment representation. We demonstrated that AEs are promising4

descriptors for studying reaction route prediction and discovery be-5

cause they provide a highly descriptive representation, free from the6

grammatical complexity of SMILES. RetroTRAE showed comparable7

or improved performance compared to other state-of-the-art models.8

We critically assessed the retrieval process that converts a set of frag-9

ments into a molecule with respect to coverage, degeneracy, and reso-10

lution. The present approach provided reactant candidates with an ex-11

act match accuracy of 55.4%. In addition to the exact match accuracy,12

high-quality reactant candidates selected by soft and hard thresholds13

were found to be statistically significant below the 1.0e-04 level. The14

average prediction accuracy with a threshold of Tc ≥ 0.85 was ∼ 68%,15

outperforming the current state-of-the-art methods by a large margin.16

Our approach introduces a novel scheme for fragmental and topological17

descriptors to be used as natural inputs for retrosynthetic prediction18

tasks. We believe that our model will open new possibilities for the19

development of ML models not only for retrosynthetic prediction but20

also for reaction and property predictions.21

5. Availability of data and materials22

The datasets supporting the conclusions of this article are available23

via https://github.com/knu-lcbc/Transformer RetroTRAE repository.24
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6. Supporting Information1

Table 4. Hyper-parameter space and hyper-parameters
for the best model.

Parameter Possible Values Best Model
Parameters

Number of layers 2-8 4

Number of head 4-12 8

Size of hidden layers 256, 512, 1024 512

Size of intermediates 512, 1024, 2048 2048

Optimizer Adam or SGD Adam

Dropout 0.1, 0.2, 0.4 0.1

Learning rate 0.0001—0.01 0.001

Learning rate scheduler Decay, SGDR SGDR

Table 5

Representation Sequence length Vocabulary Size

Source Target Source Target

MACCS 32.30 39.15 130 131

ECFP0 9.95 13.44 79 99

AE0 9.95 13.44 119 118

ECFP2 18.33 21.37 1025 1028

AE2 18.33 21.37 7533 8007

ECFP4 46.39 52.78 2052 2053
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Figure 7. Figures A, B and D represent the cumulative
distribution function of the reactants in the USPTO DB
for the unified atom environments, ECFP2, and MACCS
keys respectively. The measure 1 – (p-value) is used to
assess significance. P-values has the range 0 to 1 and
smaller p-values indicate higher significance. The Figure
D shows the relation of MACCS Tc values to Tc values
of unified atom environments and ECFP2. The vertical
dashed line corresponds to a significance level of p-value
set to 1e-04.
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Table 6. The single and double mutant cases as a func-
tion of reactant fingerprint length

Length 5 8 11 14 17 20 23 26 29 32

Tc of SM 0.80 0.88 0.91 0.93 0.94 0.95 0.96 0.96 0.97 0.97

Tc of DM 0.60 0.75 0.82 0.86 0.88 0.90 0.91 0.92 0.93 0.94

Raw data of Figure 5.1

2

USPTO -AE0 = 275,3

ChEMBL -AE0 = 386,4

PubChem -AE0 = 3450,5

USPTO -AE0 ∩ ChEMBL -AE0 = 171,6

USPTO -AE0 ∩ PubChem -AE0 = 250,7

ChEMBL -AE0 ∩ PubChem -AE0 = 358,8

USPTO -AE0 ∩ ChEMBL -AE0 ∩ PubChem -AE0 = 170,9

10

USPTO -AE2 = 15982 ,11

ChEMBL -AE2 = 39149,12

PubChem -AE2 = 533276 ,13

USPTO -AE2 ∩ ChEMBL -AE2 = 10251,14

USPTO -AE2 ∩ PubChem -AE2 = 15224,15

ChEMBL -AE2 ∩ PubChem -AE2 = 37725,16

USPTO -AE2 ∩ ChEMBL -AE2 ∩ PubChem -AE2 = 10232,17
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