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Abstract 

We present SEEKR2 (Simulation-Enabled Estimation of Kinetic Rates Version 2) – the latest 

iteration in the family of SEEKR programs for using multiscale simulation methods to 

computationally estimate the kinetics and thermodynamics of molecular processes, in particular, 

ligand-receptor binding. SEEKR2 generates equivalent, or improved, results compared to the 

earlier versions of SEEKR, but with significant increases in speed and capabilities. SEEKR2 has 

also been built with greater ease of usability with extensible features to enable future expansions 

of the method. Now, in addition to supporting simulations using NAMD, calculations may be run 
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with the fast and extensible OpenMM simulation engine. The Brownian dynamics portion of the 

calculation has also been upgraded to Browndye 2. 

Introduction 

Background 

The ability to computationally predict kinetics quantities, such as rate constants of reactions 

involving biomacromolecules, remains an active pursuit in computational and theoretical 

biophysics.1–9 Many approaches rely on sampling possible reaction pathways using simulation 

methods such as molecular dynamics (MD)10–17 and Brownian dynamics (BD),18–22 however, the 

main challenge arises from the need to sample many MD simulation trajectories to obtain accurate 

predictions for important kinetics quantities, such as the koff.
23 At present, the amount of brute 

force MD simulations required to obtain kinetics of ligand binding and unbinding remains 

intractable for most applications involving biologically relevant targets. Therefore, many clever 

approaches to avoid the cost of brute force MD simulations use a wide variety of schemes to 

expand the temporal and spatial reach available to the computational biophysics community to 

predict kinetics quantities. We, and others, have summarized these approaches elsewhere.24–36  

SEEKR is one method we developed to utilize both MD and BD approaches such that we may 

exploit MD when explicit solvent and full molecular flexibility is required, but also exploit BD’s 

speed when semi-rigid body molecules and implicit solvents will suffice.37–40 SEEKR 

accomplishes this by partitioning the phase space of a system into smaller regions, then simulating 

trajectories within these regions using whichever is the most appropriate simulation approach, 

allowing each region to be simulated in parallel. The question of how to determine the best 

partitions of the MD and BD regions is still not completely understood. Minimally, the BD region 

should extend beyond the first, and probably second, solvation shell to minimize inaccuracies 
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caused by the implicit solvent. Within the solvation shells and the binding site itself, the explicit 

solvent and molecular flexibility of MD are likely required to obtain reasonable thermodynamic 

and kinetic quantities. In addition, by partitioning the phase space of molecular motion into smaller 

regions, one may ensure that events which are kinetically relevant but often rare, are adequately 

observed and characterized. The statistics obtained from short simulations in each of these smaller 

regions are then stitched together using milestoning theory.23,41–44 

SEEKR performed well in predicting ligand-receptor kinetics,38,45 and was mostly successful in 

rank-ordering the affinity and residence times of a series of ligands binding to a receptor.39,40 The 

SEEKR approach was further augmented by utilizing a newer modification to milestoning theory, 

Markovian milestoning with Voronoi tesselations (MMVT).39 MMVT-SEEKR performed 

comparably well to the classical milestoning approach used in the earlier versions, with some 

added benefits, including an increase in accuracy for some quantities and decreased computational 

cost. All previous versions of SEEKR, including the MMVT version, used the NAMD simulation 

software package for MD.46 

Here, we present SEEKR2, which uses the OpenMM simulation software suite47 for MD as an 

alternative to NAMD. OpenMM has enjoyed skyrocketing popularity among the scientific 

community because of its python interface, ease of extensibility, competitive performance on 

GPUs, and active development community. In addition, the design of OpenMM makes it relatively 

easy to develop independent plugins. Using SEEKR2, one may perform the MD portion of the 

SEEKR protocol in either OpenMM or NAMD, using either MMVT or the conventional 

milestoning method as developed by Elber and colleagues.23,41,42 A number of auxiliary utility 

programs are also included to perform calculations using the typical SEEKR protocol. 
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Design and Implementation 

The SEEKR2 OpenMM Plugin 

The SEEKR2 OpenMM plugin design is based on OpenMM’s own layered architecture; it 

contains: 1) a Python interface layer for easy interactions with a user, 2) CPU and GPU kernels 

which implement a number of integrators that implement the dynamics defined by MMVT or Elber 

milestoning, and 3) a C++ API layer to connect the Python layer with the kernels. 

A key aspect of the MMVT protocol is the definition of Voronoi cells. When a system reaches 

one of the boundaries of the cell, it collides against the boundary, and the identities and timescales 

of these collisions are logged for eventual analysis. SEEKR2 leverages the powerful custom 

mathematical expressions within the OpenMM package in order to define the locations of Voronoi 

cells and boundaries. By supplying a mathematical expression, the user can define the boundaries 

of a Voronoi cell, and when the system crosses it, the integrator logs the crossing information, the 

atomic positions and velocities are restored to the previous step, and velocities are reversed. 

The mathematical expression for a given boundary defines a function, which can be any function 

of the system atomic positions. The functions for a cell (one function for each boundary) are 

defined by the user such that when the system is inside the cell, the boundary function is negative. 

But if the system ever crosses the boundary, the value of the boundary function is positive for that 

system configuration. 

Such custom mathematical expressions make it straightforward to define Voronoi cells and 

boundaries in high-dimensional spaces; up to 31 possible boundaries may be defined per cell in 

the SEEKR2 OpenMM plugin. Examples are included along with the plugin that show how the 

collective variables defining anchor points can be distances, angles, or absolute positions between 

atoms or any groups of atoms and more. 
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An additional feature of the plugin allows users to optionally save OpenMM state objects 

whenever the boundary is crossed. These states can be used to analyze or visualize the locations 

of MMVT collisions, or as a starting set of atomic positions/velocities for simulations in adjacent 

Voronoi cells. Users may also optionally set the plugin to compute MMVT rate matrices, 

incubation time vectors, and other quantities needed in post-processing analysis, and then update 

them all to a file with each collision. There is negligible slowdown caused by this feature, and can 

be used to compute convergence and other quantities "on-the-fly". 

The SEEKR2 Application Programming Interface (API) 

We include additional scripts and programs (called the API) for preparation, running, and 

analysis of the simulations for each cell. For preparation of the SEEKR2 calculation, we include a 

simple utility that prepares the file tree and files for a SEEKR2 calculation using concentric 

spherical milestones defined by the distance between the center-of-mass (COM) of atoms of a 

receptor binding site and the COM of a ligand molecule used in our first MMVT SEEKR paper.39 

For the convenient control of the SEEKR2 calculation, we include software that can be called with 

a single line that can run the simulations for any or all of the simulation regions. Lastly, we include 

an analysis package that will perform the milestoning calculations to obtain mean first passage 

times, rate constants, free energy profiles, and other quantities that are potentially desirable to 

obtain from an SEEKR2 calculation. Highly automated programs are also included to compute 

convergence 

In addition to these utilities, a number of example calculation scripts are included, as well as 

comprehensive unit tests, documentation, and tutorials, all within a MolSSI cookiecutter, which 

we found at https://github.com/MolSSI/cookiecutter-cms.git. 
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Results and Discussion 

Benchmarking was performed to compare the performance of SEEKR2 against the original 

MMVT-SEEKR implementation in NAMD and a conventional OpenMM simulation of the same 

molecular system. Comparisons are listed in Table 1. For the trypsin-benzamidine system, the 

SEEKR2 OpenMM implementation performs almost 20 times faster than the MMVT-SEEKR 

code running on a GPU, which were re-run for the purposes of this study, and almost six times 

faster than the old MMVT-SEEKR running on a 68-core CPU node.39  

Compared to a conventional OpenMM simulation (without SEEKR2), only a ~25% loss of speed 

was observed for these systems when the milestoning protocols were included in the SEEKR2 

plugin. 

To ensure that SEEKR correctly replicated the rate constants as predicted in the original MMVT-

SEEKR implementation,39 we repeated the simulations in a nearly identical process (details listed 

in the Materials and Methods) to obtain kinetic and thermodynamic quantities, which are reported 

in this section. 

Several of our previous papers have run SEEKR calculations on the trypsin-benzamidine system. 

In Table 2, the rate constants for those calculations are listed alongside the values computed using 

the SEEKR2 program. SEEKR2 obtains a koff and a kon that are within an order of magnitude of 

the experimentally-measured quantities. Compared to previous versions of SEEKR, and compared 

to the experimental values, SEEKR2 obtains a koff that is slightly too fast (990±70 s-1 from 

SEEKR2 compared to the experimental 600± 300 s-1). The kon obtained by SEEKR2 is too fast 

relative to experiment ((3.40±0.05) ⨉ 108 M-1 s-1 from SEEKR2 compared to the 2.9 ⨉ 107 M-1 s-1 

from experiment), but nearly within an order of magnitude. Finally, the ΔGbind computed by 

SEEKR2 was off by a little more than 0.8 kcal/mol (-7.55 ± 0.04 kcal/mol from SEEKR2 compared 
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to -6.71 ± 0.05 kcal/mol from experiment. For the trypsin-benzamidine system, the total MD SMD 

simulation time was 20 ns, the total MD MMVT simulation time was 5 µs, and two million BD 

trajectories were performed, in total. This is slightly more, though similar, to the 4.4 µs of MD 

simulation time in our previous MMVT study.39 

In addition to the trypsin-benzamidine system, previous SEEKR studies have focused on 

computing the kinetics of a so-called “host-guest” model system, composed of the β-cyclodextrin 

and a series of small organic molecules.40,48 Using SEEKR2, as we did with MMVT SEEKR, we 

divided the space surrounding the β-cyclodextrin into twelve concentric spherical Voronoi cells 

(Figure 1) and recomputed koff (Figure 2), kon (Figure 3), and ΔGbind values (Figure 4) for the seven 

ligands mentioned in previous publications.39,40,48 SEEKR2 now correctly ranks the compounds 

by koff. SEEKR2 also represents a substantial improvement in the calculations of absolute kons for 

the host-guest system, although SEEKR2 does not correctly rank kons for all seven host-guest 

systems, which is difficult for any method since the host-guest kons differ by magnitudes that are 

relatively small compared to experimental margins of error. The ΔGbind values were computed with 

fairly similar accuracy to previous calculations, with the exception of aspirin, which showed an 

anomalous ΔGbind value. It is likely that the noise seen in the kon and ΔGbind calculations are 

primarily caused by the concentric spherical milestone shapes used in this study, which may not 

adequately approximate isosurfaces of the committor function for the host-guest system, as would 

be required by exact milestoning theory.23 At this time, SEEKR2 only supports concentric 

spherical milestone shapes, but we plan to add support for many other milestone shapes in the near 

future, which will allow us to investigate whether other types of milestones will improve the 

accuracy of kon calculations for the host-guest system. For each individual host-guest system, the 

cost of the SMD simulations to generate a starting structure was 110 ns, the MD MMVT ran for 
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700 ns each, as well as 110,000 BD trajectories per guest molecule. This is again slightly more 

simulation, though similar, to the ~560 ns total MD of our previous MMVT study.39 

Conclusion 

In summary, SEEKR2 performs MMVT and conventional milestoning simulations with an 

extensible interface for milestone/Voronoi cell definitions, and performs the simulations using 

either a CPU platform, or, much more quickly and efficiently, using the GPU platform. At this 

time, only one-dimensional concentric spherical milestone shapes have been formally 

implemented, but more dimensions and other milestone shapes will be straightforward to 

implement. We’ve shown that SEEKR2, in general, performs better than earlier versions of 

SEEKR to recreate the kinetics and thermodynamics for two benchmark systems and contains 

many of the utilities that members of the biophysics community may find useful for their own 

milestoning calculations. 

Materials and Methods 

The SEEKR2 calculations in this paper required both MD and BD simulations, which require 

different sorts of inputs. The analysis (calculation of kinetics and thermodynamics quantities, error 

analysis, and convergence analysis) were performed by SEEKR2. When possible, temperatures, 

salt concentrations, and protonation states were set to recreate experimental conditions as closely 

as possible. One exception to this was the MD simulations of the β-cyclodextrin “host” with the 

1- or 2-naphylethanol “guest”, which had 0.5M MnSO4 dissolved in solution for the experiment.49 

Due to the inadequacy or lack of parameters for these divalent ions, we elected to use pure water 

in these MD simulations, as we did with the other host-guest systems, which is consistent with 

previous studies.48,50 However, these salts were added to the BD simulations for the 

naphthylethanol molecules, since they were likely to significantly affect the rates of encounter. All 
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ΔGbind values were computed using the formula ΔGbind = RT ln(koff / kon), where R is the gas 

constant, T is the temperature, and ln() is the natural logarithm function. 

Molecular dynamics simulations 

All MD were performed with OpenMM 7.5 using the SEEKR2 OpenMM Plugin. Simulations 

are initiated through the SEEKR2 API. MMVT simulation were performed according to the 

prescribed procedure.51 All starting structures and parameters were reused from the previous 

SEEKR MMVT study, and the same collective variable definitions, site locations, and concentric 

spherical milestone shapes were used.39 

Brownian dynamics simulations 

All BD were performed using the Browndye 2 program.52 As with OpenMM, all simulations 

were prepared and controlled through the SEEKR API 

. Interior dielectrics were set to 4, while exterior dielectric constants were set to 78. All atomic 

positions, charges, and radii were reused from the previous SEEKR-MMVT study. The APBS 

program was used to compute electrostatic grids.53 Desolvation forces and hydrodynamic 

interactions were enabled for all calculations, and other physical quantities (such as viscosity, 

solvent radius, etc.) were left at their defaults. 

Trypsin-Benzamidine system 

Simulations of the trypsin-benzamidine system were performed in an almost identical fashion to 

our previous study,39 with all simulations performed at 298.15 K and, in the MD simulations, with 

rigid hydrogen-heavy atom bonds, and a nonbonded cutoff of 9 Å, and a timestep of 2 fs, using 

OpenMM. The OpenMM implementation allowed us to check for a collision every time step, 

instead of every 10 time steps of the previous implementation,39 which likely improved calculation 

accuracy. We added some additional milestones to the trypsin-benzamidine system, such that 
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milestones were located at 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, and 18 Å from the center of mass of the 

binding site. Starting structures within each Voronoi cell were generated from a steered molecular 

dynamics (SMD) simulation, where the system was started from a bound state configuration and 

pulled out to a site-ligand from a distance of 1 Å to a distance of 13 Å over the course of 20 ns of 

constant volume (NVT) MD using a moving harmonic restraint with a spring constant of 9000 

kJ•mol-1•nm-2.  Upon examination, we determined that the original 14 Å milestones showed 

anomalous results in the BD, probably due to solvation shell effects and steric hindrances caused 

by the rigid body approach in BD. We added milestones beyond the original 14 Å to improve the 

calculation by moving the BD region beyond the solvation shells. Starting structures beyond the 

14 Å milestone were extracted sequentially from the states generated at the moments of MMVT 

collisions against lower milestones. Using the generated starting structures for each Voronoi cell, 

a total of 500 ns of MMVT MD simulations per cell were performed using SEEKR2. All collisions 

against the milestones were recorded for later analysis. For the BD simulations, the ligand was 

started at the b-surface and proceeded until it either escaped or satisfied the “reaction criteria” of 

touching the 18 Å radius milestone (b-surface stage). Then, among those that touched the 18 Å 

milestone, 1000 structures were extracted, and from each of these, 1000 independent BD 

simulations were run until the ligands either escaped or touched the 16 Å milestone (BD milestone 

stage). The purpose of the b-surface stage is to compute the rate of initial encounter with the 

outermost milestone, while the BD milestone stage computes transition probabilities used in the 

milestoning model which are used, in combination with the initial encounter rate, to compute the 

kon. 

Host-guest systems 
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For the host-guest systems, all parameters and starting structures were identical to our previous 

SEEKR papers where we used the Q4MD force field.39,40 However, in order to better recreate 

experimental conditions, a few adjustments to the host-guest system simulations are summarized 

in Table 3. 

     New SMD simulations were performed where the centers of masses (COMs) of “guest” 

ligands were restrained to 0.5 Å from the COM of the β-cyclodextrin “host” for 10 ns of constant 

pressure MD (NPT). Following this, the guest molecules were pulled by a moving harmonic 

restraint with a spring constant of 90000 kJ•mol-1•nm-2 in an SMD simulation from the 0.5 Å 

starting location to a final COM-COM distance of 13.5 over the course of 100 ns of NVT MD. 

The purpose of the SMD simulations was to generate starting structures between each pair of 

milestones (near the center of each Voronoi cell). Using these starting structures for the MD 

simulations, MMVT simulations were run using SEEKR for 50 ns per Voronoi cell, which is equal 

to the maximum simulation length per anchor of the previous MMVT study we performed.39 BD 

simulations of both the b-surface stage and the BD milestone stage were run to compute host-guest 

kons. 

Data and Software Availability 

SEEKR2 can be found at https://github.com/seekrcentral/seekr2.git, where development is 

ongoing. Documentation for installation and usage, as well as tutorials, can also be found there. In 

order to run SEEKR2 with OpenMM, it is necessary to also install the SEEKR2 OpenMM plugin 

at https://github.com/seekrcentral/seekr2_openmm_plugin.git. The data for this study can be 

obtained at https://amarolab.ucsd.edu/files/seekr2_data.tgz. 

 

FIGURES 

https://github.com/seekrcentral/seekr2.git
https://github.com/seekrcentral/seekr2_openmm_plugin.git
https://amarolab.ucsd.edu/files/seekr2_data.tgz
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Figure 1. The space surrounding the β-cyclodextrin molecule is divided into twelve concentric 

spherical Voronoi tessellations (eight of the innermost ones are shown here), with boundaries that 

exist at 1 Å increments from 1 Å to 13 Å, and so on. OpenMM is used to run MMVT using MD 

within each of these cells, and trajectories collide against the boundaries between each cell, giving 

the transition times and statistics which are analyzed with milestoning theory. 
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Figure 2. The koffs of each of the “guest” molecules to dissociate from the “host” molecule are 

listed. SEEKR2 performs comparably or better than brute force MD and other computational 

methods. SEEKR2 is also the only method (aside from brute force MD) that correctly ranks the 

“guest” compounds by koff according to experiment. Error bars are present for the SEEKR2 data, 

but they are sometimes too small to see in this figure. 



   

 

 14 

 

Figure 3. The kons of each “guest” compound as they bind to the “host” molecule are shown in 

order of increasing experimentally measured kon. SEEKR2 performs the best of all methods for 

estimating absolute kon values. No methods were able to correctly rank kons. This is likely due to 

the very small differences between experimentally measured kons. Error bars are present for the 

SEEKR2 data, but they are sometimes too small to see in this figure. 
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Figure 4. The ΔGbind of each “guest” compound when binding to the “host” molecule ranked from 

lowest to highest ΔGbind. Note that two experimental values may be listed – one where the ΔGbind 

was computed directly, and one where ΔGbind was computed from the experimentally-measured  

kon and koff. SEEKR2 correctly predicts compound ranking, with the exception of the first two 

compounds, which have very similar ΔGbind. Error bars are present for the SEEKR2 data, but they 

are sometimes too small to see in this figure. 

 

TABLES 

MD Engine SEEKR version Computing Resource Performance (ns/day) 

NAMD2.13 MMVT SEEKR Expanse V100 GPU 

(1 CPU) 

12 
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  Stampede CPU node 

(68 CPUs) 

47 

OpenMM7.5 SEEKR2 Expanse V100 GPU 

(1 CPU) 

300 

 Conventional Expanse V100 GPU 

(1 CPU) 

416 

Table 1. Trypsin-benzamidine system performance (~23000 atoms). 

Trypsin/ benzamidine kon (M
-1 s-1) koff (s

-1) ΔGbind (kcal/mol) 

Experimental 2.9 ⨉ 107 600 ± 300 -6.71 ± 0.05 

SEEKR1 (2017) (ref) (2.1±0.3) ⨉ 107 83 ± 14 -7.4 ± 0.1 

MMVT SEEKR 

(2020) (ref) 

(12.0±0.5) ⨉ 107 174 ± 9 -7.9 ± 0.04 

SEEKR2 (2021) (3.40±0.02) ⨉ 108 990± 70 -7.55 ± 0.04 

Table 2. Thermodynamics and Kinetics of binding results computed for the trypsin-benzamidine 

system in current and previous studies. 

Guest Molecule Experimental Study Temperature (K) Salt pH 

1-propanol Fukahori et. al. 200454 298.15 pure water 7 

1-butanol Fukahori et. al. 200454 298.15 pure water 7 

tert-butanol Fukahori et. al. 200454 298.15 pure water 7 

1-naphthyl-ethanol Barros et. al. 199849 293.15 0.5 M MnSO4 7 

2-naphthyl-ethanol Barros et. al 199849 293.15 0.5 M MnSO4 7 

methyl butyrate Nishikawa et. al. 

200255 

298.15 pure water 7 

aspirin 

(protonated) 

Fukahori et. al. 200656 298.15 pure water 1.7 
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Table 3. Experimental conditions when measuring the kinetics of binding/unbinding for the host-

guest system. We attempted to recreate these conditions as closely as possible in our 

simulations/calculations. 
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