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Abstract

The future forecasting ability of machine learning (ML) makes ML a promising

tool for predicting long-time quantum dissipative dynamics of open systems. In this

Article, we employ nonparametric machine learning algorithm (kernel ridge regression

as a representative of the kernel methods) to study the quantum dissipative dynamics

of the widely-used spin-boson model. Our ML model takes short-time dynamics as an

input and is used for fast propagation of the long-time dynamics, greatly reducing the

computational effort in comparison with the traditional approaches. Presented results

show that the ML model performs well in both symmetric and asymmetric spin-boson

models. Our approach is not limited to spin-boson model and can be extended to

complex systems.
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Introduction

With the realization that isolated systems do not exist in the real world, we have to deal

with open quantum systems, where we need to consider that the system and the surround-

ing environment can exchange energy, particles and/or quantum phase. Spin-boson (SB)

model is one of the well-known models which is widely used to understand the effects of the

surrounding environment on the system. SB model describes a two-state system coupled to

infinite number of non-interacting harmonic oscillators. Understanding quantum dissipative

dynamics of SB model (or in general open quantum system) has applications in wide range

of settings such as quantum computing,1 quantum memories,2 quantum electrodynamics,3,4

organic solar cells,5 superconducting junctions,6 quantum biology,7 quantum optics,8 quan-

tum transport,9,10 defect tunneling in solids,11,12 quantum dots,13,14 and colour centres and

Cooper pair boxes.15,16 In addition, SB model has remained a key-model for testing and

comparison of open quantum system theories before extending them to complex systems. A

large number of numerical methods has been developed to study SB model such as numer-

ical renormalization group (NRG) method,17,18 the density matrix renormalization group

(DMRG) method,19,20 the quantum Monte Carlo (QMC) method,21,22 the time evolving

density matrix using orthogonal polynomial algorithm (TEDOPA),23,24 the reaction coordi-

nate mapping,25 the multi-configuration time-dependent Hartree (MCTDH) method26,27 and

its extensions28 the Nakajima–Zwanzig generalized quantum master equation(GQME),29,30

transfer tensor method (TTM)31–33 and numerical variational method(NVM).34 Regardless

of their success, these methods have there own limitations in applicability and accuracy.

In addition to these methods, another popular approach is classical mapping-based ap-

proach (Meyer–Miller–Stock–Thoss mapping,35–39 spin-based mapping40,41 and so on), where

system and surrounding environment dynamics is described by classical trajectories. Classi-

cal mapping-based approaches are more feasible but because of the classical description, they

fail to properly describe the dynamics of the system especially at low temperature. Coming

back to exact quantum methods, Makri and coauthors proposed quasiadiabatic propagator
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path integral (QUAPI) scheme.42,43 In QUAPI approach, all correlation effects are included

over a finite time ⌧ = K�t and correlation effects beyond ⌧ are neglected. Good convergence

requires time ⌧ to be as large as possible and the Trotter increment �t as small as possible.

In QUAPI approach, the growing computational cost with the increase of system size and

time ⌧ limits its applicability for large complex systems.

An alternative numerical exact bench-marking approach is the hierarchical equations of

motion (HEOM)44–53 approach pioneered by Tanimura and Kubo.54 HEOM approach cap-

tures the combined effects of system–environment dissipation, non-Markovian memory effect,

and many-body correlation in a non-perturbative manner. In this approach, a hierarchy of

deterministic differential equations are constructed by using a set of memory basis functions

to unravel the correlation function of the environment. The size of HEOM depends on two

factors; the number of memory basis functions M and the depth of the hierarchy L, which

depends critically on the strength of the system–environment interaction and many-body

correlation. In the case of low temperature and strong dissipative interaction, good conver-

gence requires large M and L, which inevitably makes HEOM approach rather expensive.

Such a drawback has restrained the use of HEOM method in the ultra-low temperature

regime.

Another approach with no temperature limitation, is the trajectory based stochastic equa-

tion of motion (SEOM) approach. In stochastic formulation, the influence of environment on

the system is captured by stochastic auxiliary fields. The SEOM for boson environment has

been established and adopted by many authors.55–68 Recently, the stochastic approach has

been extended to open quantum system with fermion environment.69–71 Numerous amount

of research work can be found on the applications of SEOM.72–75 SEOM approach can be

used in both low- and high-temperature cases, although at low temperature, a good con-

vergence needs more trajectories. The bottleneck of SEOM approach for complex systems

is the increase in the number of noises with the number of states, which as a result makes

SEOM approach hard to converge in the long-time limit.
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In the past decade, machine learning (ML) has found its applications in all fields of

science. In the field of chemical physics, ML has seen many applications,76,77 such as to con-

struct the potential energy surfaces,78,79 to learn coarse-grained force fields,80 atomic partial

charges,81 dielectric constants in crystals,82 absorption cross sections,83 and excited state

dynamics.84–86 ML approaches (recurrent neural network and non-linear autoregressive neu-

ral networks) have been employed to simulate the quantum dissipative dynamics of SB and

Landau–Zener models.87,88 Recently Rodríguez and Kananenka89 have used the parametric

ML model based on convolutional neural networks to study the excitation energy transfer

in a dimer, where they suggested to use short-time dynamics as input for ML. In their ap-

proach, ML was trained on reduced density matrix elements and required computationally

expensive fitting of ca. 3 million parameters on ca. 4 thousand trajectories.

Realizing the power of nonparametric machine learning algorithms, in this paper, we

are utilizing the kernel ridge regression (KRR) model to simulate the quantum dissipative

dynamics of very general SB model, which is a typical model for benchmarking different

approaches. Nonparametric models based on kernel methods, to which KRR belongs, often

provide more accurate ML models as was shown in several independent studies.90–92 In

addition, the problem of fitting their parameters has closed solution as it is the convex

optimization problem, making them attractive for training ML models. In our approach we

train the ML model directly on the expectation value of �̂z (aka the population difference),

making our approach more robust avoiding unphysical behavior, which may potentially arise

while training on the reduced density matrix elements. After training, our KRR model

takes rather short-time quantum dynamics as input and predicts the long-time dynamics

as an output making our model a promising cost-effective tool for open quantum systems.

Interestingly, our approach only required 450 training trajectories and fitting of 72 thousand

parameters. It accurately predicts the long-time dynamics in all cases: from weak system-

environment coupling to strong system-environment coupling and from weak environment

to strong environment cases. In our study, we included both the symmetric and asymmetric
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cases of the SB model.

The rest of the paper is organized as follows. In the Theory section, we review the theory

of the SB model and present our KRR approach. Next section is Results and Discussion

which is followed by Concluding Remarks.

Theory

Spin-boson model

The theory behind the SB model is well-explored by many authors,21,35,44,45,55,56 but for the

sake of completeness, we summarize it here too. The well-known SB model describes a

two-level system coupled with the outside environment. The environment consists of infinite

number of non-interacting harmonic oscillators. The total Hamiltonian is written as (h̄ = 1)

Ĥ = Ĥs + Ĥenv + Ĥs�env,

Ĥ =
1

2
✏�̂z +

1

2
��̂x +

X

k

!kb̂
†
kb̂k +

1

2
�̂zF̂ , (1)

where Ĥs, Ĥenv and Ĥs�env represent Hamiltonians of the 2-level system, environment and

their interaction, respectively. �̂x and �̂z are Pauli matrices and ✏ is the energy bias of the

two states, i.e., |ei and |gi. � is the tunneling matrix element of the two states. b
†
k is

the creation operator of the environment mode k. The environment mode k interacts with

the system via operator F̂k = ckp
2!k

(b̂k + b̂
†
k), where ck is the coupling strength. The total

interaction operator F can be written as F̂ =
P

k
ckp
2!k

(b̂k + b̂
†
k).

It is common to consider that at initial time t = 0, the interaction between system and

the surrounding environment is zero and the environment is in thermal equilibrium state.

The influence of the environment can be described by a two-time correlation function of

operator F̂ , i.e., C(t) = hF̂ (t)F̂ (0)i. In the case of no interaction with the system, C(t) can
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be written as63

C(t) =
1

⇡

Z 1

0

d!J(!)

✓
coth

✓
!�

2

◆
cos (!t)� i sin (!t)

◆
, (2)

where J(!) is the spectral density

J(!) =
⇡

2

X

k

c
2
k

!k
� (! � !k) . (3)

As we are only interested in the dynamics of the system, we can trace out the environment

degrees of freedom,

⇢̂s(t) = Trenv
h
Û(t, 0)⇢̂T(0)Û

†(t, 0)
i
, (4)

here ⇢̂s(t) is the reduced density matrix of the system at time t while ⇢̂(0) is the initial density

matrix of the composite system governed by Ĥ. Û(t, 0) and Û
†(t, 0) are operators for for-

ward and backward propagation in time, respectively. Different approaches deal with Eq.(4)

differently as mentioned in Introduction section. For more details on a specific approach,

readers are referred to the corresponding references.

Kernel ridge regression

In kernel ridge regression (KRR), which is also known as Kernel Regularized Least Squares,93

the approximating function f(x) for a vector of input values x is defined as76,94–96

f(x) =
NX

i=1

↵iki (x,xi) , (5)

here N is the number of training points and ↵ are the regression coefficients. The kernel

function k(x,xi) takes two vectors x and xi from the input space and measures the distance

between them.

6



In this work we use the Gaussian kernel as implemented in the MLatom package:96–98

k (x,xi) = exp

 
�kx� xik22

2�2

!
, (6)

as our tests showed that it has a good performance for our application and other kernels such

as those from a family of popular Matérn kernels are not better. In the Gaussian kernel, we

have only one hyperparameter �, defining the length scale. Intuitively, the Gaussian kernel

measures similarity between the vectors x and xi. The output of these kernels increases as

kx� xik ! 0 and becomes unity at x = xi while for large distance kx� xik ! 1, the kernel

k (x,xi) tends to zero. After choosing the kernel function, we need to find the regression

coefficients ↵ in Eq.(5). It is done by minimization a squared error loss function76,95,96

min
↵

NX

i

(f(xi)� yi))
2 + �↵TK↵, (7)

here y is the target output vector, K is the kernel matrix and � denotes a non-negative

regularization hyperparameter. In above equation, the second term is usually added to stop

KRR model from giving too much weight to a single point.99 After simple algebra, Eq.(7)

leads to94,95

↵ = (K+ �I)�1 y, (8)

here I is the identity matrix.

Data and Training

We consider that our system is initially in the excited state (i.e., |ei). For the environment,

the Drude–Lorentz spectral density is considered

J(!) = 2�
!!c

!2 + !2
c

, (9)
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where !c and � denote the characteristic frequency and the system–environment coupling

strength, respectively. In this work, all considered parameters are in atomic units (a.u.).

The time-step for integration is �t = 0.05 and the time of propagation t is fixed to

be 20. We generate trajectories of reduced density matrices for all combinations of the

following parameters: � = 1, ✏ 2 {0, 1}, � 2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},

!c 2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and � 2 {0.1, 0.25, 0.5, 0.75, 1}, here � = 1/kBT with kB as

Boltzmann constant and T as temperature. It should be noted that we include data for both

symmetric and asymmetric SB models, i.e., ✏ 2 {0, 1}. With the given set of parameters,

1000 trajectories (500 for symmetric and 500 for asymmetric case) of reduced density matrix

are generated with the HEOM approach as implemented in the publicly available QuTiP

package.100 As the HEOM method is computationally very expensive at low temperature,

we did not include data for very low temperatures.

We train our model directly on the data extracted for the expectation value of �̂z as it is

the quantity of interest in the case of spin-boson model. The ML model can be trained for all

the elements of the reduced density matrix as done in Ref. 89, but this approach is expensive

and may potentially lead to unphysical errors in the expectation value of �̂z. Coming back

to training our KRR model, the initial training data are raw trajectories, which can be

viewed as unsupervised data. To transform it into supervised data, we take a small cut

with a time-length t = tm (memory time using terminology of Rodríguez and Kananenka89)

as input trajectory and define the next time step as output. In our case, we considered

tm = 4. Taking the small cut with t = tm as a base trajectory, N = (t � tm)/�ttrain

number of supervised trajectories are generated. For training, the �ttrain can be larger

than the propagation-time step �t. In our case, we considered �ttrain = 0.1. Following this

procedure, we transformed one unsupervised trajectory with time-length t into N supervised

trajectories each with time-length tm.

From the data set of 1000 trajectories, 100 randomly chosen trajectories are taken as the

hold-out set, which we use to produce results presented in this paper. With �ttrain = 0.1
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and tm = 4, the remaining set of unsupervised trajectories of time-length t = 20 are trans-

formed into 144000 supervised trajectories of time-length tm = 4. The data set of supervised

trajectories is randomly partitioned into two subsets: a training set, which contains 80% of

the data and a validation set with 20% random trajectories of the set for the optimization

of hyperparameters � and � on the logarithmic grid.96 For ML calculations we used the

MLatom package.96–98 We train two separate models for symmetric and asymmetric cases

and the errors for test set are shown in Table 1. Fig. 1 systematically explains all the steps

adopted during training and data preparation.

Table 1: Mean absolute error (MAE), Mean square error (MSE) and Root mean square error
(RMSE) for the test set.

SB models MAE MSE RMSE
Symmetric 9.20⇥ 10�4 6.12⇥ 10�6 2.47⇥ 10�3

Asymmetric 1.97⇥ 10�3 8.00⇥ 10�5 8.94⇥ 10�3
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Figure 1: Flowchart of all steps during data preparation, training and predictions.
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Results and Discussion

After training our KRR model, it takes a short-time trajectory with the time-length tm as

input and predicts the value of h�̂zi at the next time step tm+1. This gives us the valuable

information about the temporal evolution of the state population in contrast to alternative

approaches, where ML was used to completely bypass HEOM dynamics and predict the final

properties of interest such as transfer times and transfer efficiencies in the pigment–protein

complexes.101 We prepare a new input by including the predicted time-step and this process

continues until the last time step. It is worth emphasising that the fed input trajectories are

unseen to our trained KRR models. Fig. 2 shows results for symmetric SB model with a wide

range of parameters. Similarly, Fig. 3 shows results for asymmetric SB model. Fig. 2 and

Fig. 3 show small fraction of results. For the remaining results of hold-out test set, interested

readers are referred to Supporting Information. The predicted results cover a wide range of

scenarios from strong environment to weak environment and from strong coupling to weak

coupling.

From Fig. 2, we can see that the predictions by KRR model are very accurate for symmet-

ric cases. For asymmetric SB model, the predicted result given in Fig. S3-(3f) of Supporting

Information slightly deviate from the the exact HEOM results in the long-time regime. The

possible reason is that the memory-time or in other words, the window-size of the base tra-

jectory (|0 � tm|) is not enough for this case. In this work, we have considered the same

memory time for both symmetric and asymmetric SB models, but it is advised to train

separate models for symmetric and asymmetric SB cases with different memory times. The

accuracy of the KRR model depends on memory time. By increasing the memory time, the

KRR model gets more accurate in the predictions as shown for the hold-out trajectories in

Fig. 4. The window-size of the base trajectory (|0� tm|) should be wide enough, so that ML

model can learn to differentiate among different trajectories. For not wide enough window-

size, KRR model cannot differentiate well between two input trajectories, which results in a

rapid deterioration of the accuracy.
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Figure 2: Expectation value of �̂z for symmetric SB model (i.e., ✏ = 0.0) as a function of
time. Results predicted by KRR model (blue line) are compared to the HEOM results (red
dots). The adopted parameters are: (a) � = 1.0, ⌘ = 0.2, !c = 8.0, � = 1.0; (b) � = 1.0,
⌘ = 0.4, !c = 10.0, � = 1.0; (c) � = 1.0, ⌘ = 0.2, !c = 10.0, � = 0.25; (d) � = 1.0, ⌘ = 0.1,
!c = 4.0, � = 0.1; (e) � = 1.0, ⌘ = 0.8, !c = 3.0, � = 1.0; (f) � = 1.0, ⌘ = 1.0, !c = 2.0,
� = 0.1. All parameters are in atomic units.
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Figure 3: Expectation value of �̂z for asymmetric SB model (i.e., ✏ = 1.0) as a function of
time. Results predicted by KRR model (blue line) are compared to the HEOM results (red
dots). The adopted parameters are: (a) � = 1.0, ⌘ = 0.1, !c = 6.0, � = 0.75; (b) � = 1.0,
⌘ = 0.3, !c = 8.0, � = 1.0; (c) � = 1.0, ⌘ = 0.2, !c = 10.0, � = 0.25; (d) � = 1.0, ⌘ = 0.4,
!c = 8.0, � = 0.75; (e) � = 1.0, ⌘ = 0.8, !c = 10.0, � = 1.0; (f) � = 1.0, ⌘ = 0.7, !c = 10.0,
� = 0.1. All parameters are in atomic units.
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Figure 4: Mean absolute error (MAE) as a function of memory time tm. The MAE is
calculated for 50 hold-out symmetric trajectories with predictions within the time window
t = 12–20.

As predicted value is included in the input for the next time step, the error accumulation

with time is inevitable, which imposes strict requirements on the accuracy of the predictions

as for less accurate ML models the quality of trajectories will rapidly deteriorate. Fig. S5

of Supporting Information shows the increase of absolute error in the predictions with the

passage of time for the deviating trajectory Fig. S3-(3f) of Supporting Information. As

KRR is a nonparametric ML model, the number of parameters increases with the increase of

training points, which makes the training very time consuming and requires large memory.

To avoid this problem, we should keep the number of points in the training set as minimum

as possible. It can be done by using farthest-point sampling,97 while choosing trajectories

for training, or setting �ttrain to larger values while ensuring that it will not decrease the

accuracy of the KRR predictions too much.

The computational cost-saving by our ML approach is substantial. The amount of time

saving depends on the memory time and the trajectory time and in our case it is 75%. This

reduction in computational time may allow longer simulations with HEOM model at low
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temperatures, where its cost and memory requirements increase very fast. In contrast, after

training, the computational cost of our KRR model remains the same for all cases. On a

single Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz, the whole process of prediction and

preparing new input at each time-step takes ⇡2 min for ML calculations. In the future, our

approach can be combined with SEOM, which requires a large number of trajectories to have

good convergence in the long-time regime. After generating short time trajectory of time-

length tm with SEOM, our approach can be used to predict the long-time dynamics saving a

tremendous amount of computational cost, which is currently the topic of our investigations.

Concluding Remarks

In this article, we have developed an ML approach to study quantum dissipative dynamics.

We have demonstrated the ability of kernel ridge regression (KRR) to learn from relatively

small amount of training data and predict the long-time quantum dissipative dynamics for

two-level SB model without much loss of accuracy. After training, the KRR model requires

short-time trajectory as input and as an output, it gives the dynamics for future times.

The ability of predictions for future time makes KRR model or in general ML an appealing

approach to avoid the calculation of expensive long-time dynamics. It can be combined with

other approaches such SEOM, which has bad convergence in long-time regime. Here, we have

only demonstrated results for the two-level SB model, but our approach can be extended

to multi-level systems given that the data for training is provided. In the end, with the

establishment of database with the dynamics data, the ML approach has great potential to

become a useful low-cost computational tool for studying the quantum dissipative dynamics.
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Table S1: Parameters for the sub-plots shown in Fig. S1-S4. The common parameter is
� = 1.0. All parameters are in atomic units (a.u.).

sub-plots ✏ � !c � sub-plots ✏ � !c �

(1a) 0.0 0.1 1.0 0.5 (3a) 1.0 0.1 2.0 1.0

(1b) 0.0 0.1 1.0 0.25 (3b) 1.0 0.1 3.0 0.75

(1c) 0.0 0.1 4.0 0.75 (3c) 1.0 0.1 7.0 0.5

(1d) 0.0 0.1 6.0 0.5 (3d) 1.0 0.1 10.0 0.1

(1e) 0.0 0.2 1.0 0.75 (3e) 1.0 0.2 1.0 0.25

(1f) 0.0 0.2 3.0 0.5 (3f) 1.0 0.2 1.0 1.0

(1g) 0.0 0.2 7.0 1.0 (3g) 1.0 0.2 2.0 0.75

(1h) 0.0 0.3 1.0 0.25 (3h) 1.0 0.2 4.0 0.1

Continued on next page
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Table S1 – Continued from previous page

sub-plots ✏ � !c � sub-plots ✏ � !c �

(1i) 0.0 0.3 2.0 1.0 (3i) 1.0 0.2 4.0 0.5

(1j) 0.0 0.3 8.0 0.5 (3j) 1.0 0.2 5.0 0.75

(1k) 0.0 0.3 8.0 0.25 (3k) 1.0 0.2 6.0 1.0

(1l) 0.0 0.3 8.0 0.75 (3l) 1.0 0.2 7.0 0.25

(1m) 0.0 0.4 2.0 0.1 (3m) 1.0 0.2 8.0 0.5

(1n) 0.0 0.4 2.0 0.25 (3n) 1.0 0.2 8.0 0.25

(1o) 0.0 0.4 3.0 0.75 (3o) 1.0 0.3 2.0 0.25

(1p) 0.0 0.4 6.0 0.1 (3p) 1.0 0.3 4.0 1.0

(1q) 0.0 0.4 6.0 0.75 (3q) 1.0 0.3 7.0 0.25

(1r) 0.0 0.4 7.0 0.25 (3r) 1.0 0.3 8.0 0.75

(1s) 0.0 0.4 8.0 1.0 (3s) 1.0 0.3 10.0 1.0

(1t) 0.0 0.5 1.0 0.5 (3t) 1.0 0.4 2.0 0.75

(1u) 0.0 0.5 1.0 0.25 (3u) 1.0 0.4 7.0 0.1

(1v) 0.0 0.5 1.0 1.0 (3v) 1.0 0.4 7.0 1.0

(1w) 0.0 0.5 6.0 0.5 (3w) 1.0 0.5 1.0 0.5

(1x) 0.0 0.5 8.0 0.1 (3x) 1.0 0.5 3.0 0.5

(2a) 0.0 0.5 9.0 0.75 (4a) 1.0 0.5 8.0 0.25

(2b) 0.0 0.6 2.0 0.25 (4b) 1.0 0.5 8.0 0.75

(2c) 0.0 0.6 2.0 1.0 (4c) 1.0 0.6 1.0 0.1

(2d) 0.0 0.6 6.0 0.5 (4d) 1.0 0.6 1.0 1.0

(2e) 0.0 0.6 10.0 0.75 (4e) 1.0 0.6 4.0 1.0

(2f) 0.0 0.7 6.0 0.1 (4f) 1.0 0.7 1.0 0.75

(2g) 0.0 0.7 6.0 0.75 (4g) 1.0 0.7 5.0 0.25

(2h) 0.0 0.7 7.0 0.5 (4h) 1.0 0.7 6.0 0.5

Continued on next page
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Table S1 – Continued from previous page

sub-plots ✏ � !c � sub-plots ✏ � !c �

(2i) 0.0 0.7 7.0 0.25 (4i) 1.0 0.7 9.0 0.5

(2j) 0.0 0.7 8.0 0.1 (4j) 1.0 0.8 2.0 0.1

(2k) 0.0 0.7 8.0 0.75 (4k) 1.0 0.8 2.0 0.25

(2l) 0.0 0.7 9.0 0.1 (4l) 1.0 0.8 6.0 0.1

(2m) 0.0 0.9 4.0 0.5 (4m) 1.0 0.8 10.0 0.75

(2n) 0.0 0.9 10.0 1.0 (4n) 1.0 0.6 4.0 0.1

(2o) 0.0 1.0 5.0 0.75 (4o) 1.0 0.6 4.0 0.25

(2p) 0.0 1.0 6.0 0.25 (4p) 1.0 0.6 6.0 0.5

(2q) 0.0 1.0 8.0 0.5 (4q) 1.0 0.6 7.0 0.1

(2r) 0.0 1.0 8.0 1.0 (4r) 1.0 0.6 7.0 0.5

(2s) 0.0 1.0 9.0 0.1 (4s) 1.0 0.6 10.0 0.1

(2t) 0.0 1.0 10.0 0.1 (4t) 1.0 1.0 3.0 0.5
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Figure S1: Expectation value of �̂z for symmetric SB model as a function of time. Results
predicted by KRR model (blue line) are compared to the HEOM results (red dots). The
adopted parameters are given in Table S1.
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Figure S2: Expectation value of �̂z for symmetric SB model as a function of time. Results
predicted by KRR model (blue line) are compared to the HEOM results (red dots). The
adopted parameters are given in Table S1.
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Figure S3: Expectation value of �̂z for asymmetric SB model as a function of time. Results
predicted by KRR model (blue line) are compared to the HEOM results (red dots). The
adopted parameters are given in Table S1.
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Figure S4: Expectation value of �̂z for asymmetric SB model as a function of time. Results
predicted by KRR model (blue line) are compared to the HEOM results (red dots). The
adopted parameters are given in Table S1.
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Figure S5: Absolute error |h�̂z(t)iHEOM � h�̂z(t)iKRR| for Fig. S3-(3f) as a function of time.
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