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ABSTRACT

An outstanding challenge in deep learning is its lack of interpretability. The inability of both designers
and users of neural networks to explain why a prediction is made is a major drawback. This not
only dissuades chemists from using deep learning predictions, but also has led to neural networks
learning spurious correlations that are difficult to notice. Counterfactuals are a category of prediction
explanations that provide a rationale behind the prediction value. Counterfactuals have satisfying
properties like being in the same space as the features and require no deep learning expertise to
understand. Counterfactuals are generated via optimization, which makes them complex to use when
the features are chemical structures. Here we present an algorithm built on the “Superfast Traversal,
Optimization, Novelty, Exploration and Discovery" method (Nigam et. al, 2021) that is efficient
and model-agnostic for generating counterfactuals. We show this method is applicable in random
forest models, sequence models, and graph neural networks in both classification and regression. Our
method requires no additional training, data, or model gradients.

1 Introduction

Deep learning has made significant impacts in chemistry because of its ability to regress non-linear relationships between
structure and function. [1] Applications vary from computing quantum properties [2,3] to predicting chemical properties [4,5]

to screening drug molecules. [6,7] More specifically, deep neural networks that take in raw graph representations
of molecules have proven to be successful when compared with counterparts based on fixed descriptors in both
regression and classification tasks. [8] Despite their empirical accuracy, neural networks are black-box models; they lack
interpretability and predictions come without explanation.

Explainable artificial intelligence (XAI) is an emerging field which aims to provide explanations, interpretation, and
justification for model predictions. XAI should be a normal part of the AI model lifecycle. It can identify data bias
and model fairness. [9] Users are more likely to trust and use a prediction if it has an explanation. [10] Finally, it is
becoming a legal requirement in some jurisdictions for AI to provide an explanation when used commercially. [11,12]

From a researcher’s perspective, XAI can also find the so-called "Clever Hans" effects whereby a model has learned
spurious correlations such as the existence of a watermark in images or an over representation of counterions in positive
molecule examples. [13] Despite these benefits of XAI, this is rarely a part of deep learning in chemistry.

Miller [14] proposes a nomenclature within XAI that distinguishes between a prediction explanation, interpretability
of a model, and prediction justification. An explanation is a post-hoc description of why a prediction was made by
a model. [15] Model interpretability is “the degree to which an observer can understand the cause of a decision." [16]

Finally, justification of a prediction is a description of why a prediction should be believed. Justification typically
relies on estimated model generalization error. Interpretable models are common in computational chemistry – DFT,
molecular dynamics, and linear regression are inherently interpretable models. Justification is also routine, with almost
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all recent papers reporting estimated generalization error on withheld test data or from cross-validation. Explanation is
rare, especially in deep learning where no insight can be gained by inspecting model weights or parameters.

There are four major approaches for explaining a prediction from a black-box model: [17] identifying which features
contribute the most, [18–22] identifying which training data contributes the most, [23] fitting a locally interpretable model
around the prediction, [24] and providing contrastive or counterfactual points. [25] Feature importance analysis provides
per-feature weights that identify how each feature contributed to the final prediction. These can be formulated as
Shapley values, [26] which are a method of computed feature importance weights as a complete explanation (i.e.,

∑
wi =

f̂(x)). [27] This is effective when working with a sparse set of molecular descriptors, but when working with thousands
of descriptors, SMILES or molecular graphs, this can impart little insight to the human understanding. [14] Local
interpretable model-agnostic explanations (LIME) provide an implicit "sparsification" relative to feature importance
because the locally interpretable model is a different model than the black-box model being explained. [24] For example,
a two dimensional linear regression could be the locally interpretable model. The sparsification arises because we can
choose the features going into the locally interpretable model and it can be induced by using regularization when fitting
the locally interpretable model to the black-box (e.g., using lasso regression). [28] Some care must be taken in choosing
the locally interpretable model since it needs to fit well around the prediction and must be specifically constructed for
the problem of interest.

Contrastive explanations and counterfactuals explain a prediction by providing related examples of features. These two
explanation methods are conceptually similar, but should be distinguished. [25] In contrastive explanations, one tries to
answer "why output X, but not output Y?" [29,30] rather than "why did output X happened?". This is similar to generating
multiple choice question options after knowing the correct answer. Through the elimination of incorrect options, one
is able to recover the reasoning behind the correct answer. On the other hand, counterfactuals try to answer “what is
the smallest change to the features that would alter the prediction". [31] A counterfactual is an example as close to the
original, but with a different outcome. “Your papers would be better cited, if you had a better title". The example being
a paper identical except the new title and the outcome has changed: the paper is better cited. Contrastive explanations
generate explanations by entertaining alternate outcomes whereas a counterfactual explanation shows how to minimally
modify our input to get a different prediction.

Counterfactuals are intuitive to understand and are sparse because they are as similar to the original prediction as
possible. [14,31] Yet counterfactuals are hard to generate because they arise from optimization over input features – which
requires special care for molecular graphs. [32,33] Namely, molecular graphs are discrete and have valency constraints,
making gradients intractable for computation. Here we propose a method that can generate molecular counterfactuals
for arbitrary models. These molecular coutnerfactuals provide explanations that are sparse and composed of molecular
structures.

An example of a molecular counterfactual is shown in Figure 1. The left molecule is inactive and the right is active. It
shows that the carboxylic acid could be made an ester to change activity, giving insight into the reason why the left
molecule is not active. The explanation is sparse and intuitive to those with a knowledge of chemical structures. A
related concept analogous to counterfactuals is the idea of paired molecules, [34] where similar molecules with opposite
activity are used to understand a class of active compounds.

Our approach to generating molecular counterfactuals is built on the Superfast Traversal, Optimization, Novelty,
Exploration and Discovery (STONED) method which enables rapid exploration of chemical space without a pre-
trained generative model or set of reaction rules. [35] We expand chemical space around the molecule being predicted
(base), identify similar molecules with a changed prediction (counterfactuals), and select a small number of these
molecular counterfactuals with clustering/Tanimoto similarity. This method works because we represent molecules as
Self-Referencing Embedded Strings and any modification to a SELFIES is also a valid molecule. [36] An overview of
this process is shown in Figure 2.

1.1 Comparison to existing work

Recent progress in applying XAI methods to graphs, like molecular graphs, is reviewed in Yuan et al. [37] Our
method, called Model Agnostic Counterfactual Compounds with STONED (MACCS), produces counterfactual ex-
planations. Counterfactuals are challenging due to the numerical problems associated with both neural networks
gradients and working with graphs GNNs. [38] There have been a few counterfactual generation methods for GNNs. The
Counterfactuals-GNNExplanier from Lucic et al. uses graph edge operations and a relaxed model prediction function
to propose counterfactuals and was found to do well on graph datasets. [32] Graph edge operations cannot be used on
molecular structures because the majority of graph operations will violate valencies. This method also requires model
gradients with respect to input, which may not be possible for models outside of neural networks. Our method works on
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Figure 1: An example of a counterfactual. The molecule on left was predicted to have class of 0, no activity. With
the modification shown in teal, the molecule would be in class 1, active. This shows that the carboxylic acid is an
explanation for lack of activity.

descriptors, graphs, SMILES, and SELFIES features. MACCS does not require gradients, enabling its use on machine
learning methods like random forest classification or support vector machines.

Numeroso et al. [33] proposed a molecular explanation generator that is closer to our work. They use a reinforcement
learning agent to generate counterfactuals, which ensures that proposed counterfactuals are reasonable molecules. Our
method does not require training a counterfactual generator because all molecules resulting from STONED are valid
compounds. [35] This negates the need for a generative counterfactual maker and greatly simplifies the method.

2 Theory

A deep learning model takes in as input a set of feature vectors (x), and outputs a prediction, denoted as f̂(x) or ŷ .
The true value of the property being predicted by the model is denoted as f(x), or y. For chemical applications, x is
typically a representation of a molecule, which can be a string (SMILES or SELFIES), a set of chemical descriptors, or
a molecular graph. Programs including Mordred [39] and DRAGON [40] can be used to compute chemical descriptors,
such as electronegativity or molecular weight, for each molecule. A molecular graph can consist of a node feature
vector and an adjacency matrix. The node feature vector provides information on the type of atoms (e.g., C, H, O, N)
present in the molecule and the adjacency matrix provides information on the edges between each node, or which atoms
are bonded together. [1] Together, the node feature vector and adjacency matrix can be used as a molecular graph input
to a graph neural network model. [41]

A counterfactual x′ is specific to the example of interest x, where we have made a prediction f̂(x). The counterfactual
is the explanation of x and defined by the solution to the following constrained optimization:problem [31]

minimize d(x, x′)

such that f̂(x) 6= f̂(x′)
(1)

where x is the feature vector of our prediction, d(x, x′) is a measure of distance between features, and f̂(x) is our
model. The counterfactual optimization problem is a function of x, so that each time a new prediction is made the
counterfactual is also updated. In this work, distance is computed with Tanimoto similarity of molecular fingerprints. [42]

In principle, this optimization problem could be solved by computing a gradient ∇xf̂(x). However, there are complexi-
ties of computing gradients with respect to x because it may be a molecular graph, a SMILES string, or descriptors which
then propagate derivatives to the molecular structure (although see recent progress specifically with SELFIES [43,44]).
Instead, previous for counterfactual generation have relied on perturbing x using graph transformation operators [32]

and reinforcement learning. [33] Both these methods have the disadvantage that they can generate chemically infeasible
structures, although Numeroso et al. [33] can generate good candidate molecules with sufficient training. Our innovation
here is to use the STONED SELFIES method [35] which rapidly explores local chemical space around a point by
exploiting the surjective property of SELFIES (SELF-referencIng Embedded Strings): every SELFIES string is a valid
molecule. Krenn et al. [36] introduced SELFIES to overcome one of the major limitations in SMILES [45] that, they do
not always correspond to valid molecules. The STONED protocol consists of string insertion, deletion, and modification
steps that can generate thousands of perturbations of x that are valid molecules and close in chemical space. This
requires no training, is independent of features (e.g., molecular graphs, SMILES, descriptors), and requires no gradients.

3
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Figure 2: Overview of MACCS. The input is a molecule to be predicted. Chemical space is expanded and clustered.
Counterfactuals are selected from clusters to find succinct explanation of base molecule prediction.

3 Methods

An overview of our method is shown in the schematic in Figure 2. We use the STONED method as described in Nigam
et al. [35] to sample chemical space. Briefly, a starting molecule is encoded into SELFIES and successive rounds of token
deletion, replacement, and insertion is done to generate modifications of the starting molecule. This process relies on
the surjective property of SELFIES. As in Nigam et al., we limit the number of modifications to the starting SELFIES
to ensure we stay local in chemical space. Additionally, starting diversity is improved by exploiting the fact there are
multiple non-canonical starting SELFIES. Unless otherwise stated, 3,000 modified SELFIES are generated with at most
2 token modifications (mutations). The available tokens (alphabet) for insertion/modification in the STONED algorithm
are modified here to use a restricted subset of "intuitive" tokens. Specifically, all positively and negatively charged
atoms except O− were removed and the available elements were restricted to B, C, N, O, S, F, Cl, Br, I. We call this the
“basic" alphabet. This alphabet can be modified and is discussed further in the results.

Rdkit was used for molecule processing, including constructing molecular graphs, drawing molecules, validating input
structures, and computing fingerprints. [46] The scores used in STONED were the Tanimoto similarity [42] of EFPC4 [47]

fingerprints.

STONED generates a set of molecules around the molecule from which we are predicting (base molecule). To generate
counterfactuals, we apply the optimum condition in Equation 1. To generate multiple counterfactuals, clustering is done
using DBSCAN [48] with parameters ε = 0.15 and minimum 5 samples per cluster. The distances used for clustering
d = 1− s, where s is pairwise Tanimoto similarity. The most similar molecule from each cluster which satisfies the
counterfactual condition is selected and a further reduction by similarity is done if fewer counterfactuals are requested
than clusters. DBSCAN infers cluster numbers using the ε = 0.15 parameter, which is in units of similarity.

4 Experiments

4.1 Blood-Brain Barrier Permeation Prediction

Predicting if a molecule can permeate the blood-brain barrier is a classic problem in computational chemistry. [49] The
most used dataset comes from Martins et al. [50] It is a binary classification problem with molecular structure as the
features. State-of-the-art performance is 0.955–0.988 receiver-operator characteristic area under curve (ROC-AUC)
depending on model type and molecular structure featurization. [49] To test MACCS on this dataset, we developed a
random forest model as implemented in Scikit-learn [51] using molecular descriptors as features. The descriptors are

4
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Figure 3: Counterfactual for negative example of Blood-Brain Barrier random forest model. Similarity is computed
from Tanimoto similarity of ECFP4 fingerprints. [47] Red indicates deletion relative to base molecule and teal indicates
modification. Counterfactuals show that the removing or modificting carboxylic acid group is the simplest way to make
this molecule pass the blood-brain barrier.

computed with Morderd. [39] A 20% train/test split was done and the ROC-AUC was computed as 0.91 (See Figure S1
for ROC curve).

Figure 3 shows a negative prediction from the trained blood-brain barrier classifier. The molecule should not pass the
blood-brain barrier. The counterfactuals show what could make the negative example cross the blood-brain barrier,
including removing the carboxylic acid (Counterfactual 1,3) or changing to an alcohol with additional alkane chains
(Counterfactual 2). Based on these counterfactuals, the explanation of why this molecule cannot cross the blood brain
barrier is due to the carboxylic acid group. In words: “This molecule will not cross the blood-brain barrier. It would
cross the blood-brain barrier if the carboxylic acid were removed."

4.2 Small Molecule Solubility Prediction

Solubility in water plays a critical role in drug design. [52] Thus, there are many previously developed machine learning
tools [32,53,54] to predict solubility. Solubility is also an intuitive concept that is taught in introductory organic chemistry,
thus providing a good setting to test MACCS. We used solubility data from Sorkun et al. [55], which consists of organic
and organometallic molecules. Solubility of the molecule in water is measured in log molarity.

We predict solubility of a given molecule using a gated recurrent unit (GRU) recurrent neural network (RNN) [56]

implemented in Keras. [57] RNNs are a standard approach in natural language programming tasks because of their ability
to handle long sequences and model long-range correlations. Thus, they are commonly used in chemistry applications
with SMILES sequences. [58,59] In our regression model, we use SELFIES because it matches the representation used
in MACCS. However, using SELFIES over SMILES does not necessarily translate to better supervised learning
performance. [60]

A 10%-10%-80% test-validation-train data split was done. The data, which are specified in SMILES, were canonicalized
and converted into SELFIES and training was done for 100 epochs with the Adam optimizer [61] with a learning rate
of 10−4. The correlation coefficient on test data is 0.84 and state-of-the-art performance is 0.80–0.93. [62] Additional
model details are listed in the Supporting Information.

As this task is regression, Equation 1 must be modified. Instead of finding a change in classification label, we find
counterfactuals for both an increase and decrease in solubility:

minimize d(x, x′)

such that
∣∣∣f̂(x)− f̂(x′)

∣∣∣ ≥ ∆
(2)

where ∆ is 1. Figure 4 shows counterfactuals generated for a given base molecule. Increase or decrease in solubility
is annotated in the counterfactuals. These counterfactuals can be used to explain what functional groups are most
important for solubility of the base molecule. According to Figure 4, the ester, hydrogen bond acceptors, and alkane
chain length are contributing reasons for the solubility. The diversity of counterfactuals comes from the DBSCAN
clustering, as seen in the principal component analysis projection of chemical space.

4.3 HIV Activity Prediction

Since the first reported case in 1981, the AIDS epidemic has killed 36 million people. According to HIV.gov [63],
currently 1.2 million people in the US have tested positive for HIV (human immunodeficiency virus) which causes
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Figure 4: Chemical space for solubility predicting RNN model. This is a principle component analysis of chemical
space from Tanimoto similarity distances. Points are colored by solubility. Counterfactuals are annotated.

AIDS. Although there is no cure for HIV, antiretroviral therapy (ART) reduces mortality and transmission of HIV. [64]

However, effectiveness of ART is limited due to toxicity and cost of treatment. [65] This means there is still a need
for new drugs. Additionally, the National Institute of Allergy and Infectious Diseases has made a systemic study of
compounds that can inhibit HIV resulting in large compound datasets. These two facts make predicting potential new
HIV drugs a frequently studied task in computational chemistry. [49]

We use a binary classification approach to test MACCS to screen compounds based on their ability to inhibit HIV. The
data was downloaded as processed in a Kaggle competition. [66] This dataset was prepared by the Drug Therapeutics
Program (DTP) for AIDS antiviral screening for more than 40,000 compounds. [67] We use a graph convolutional
network (GCN) [68] implemented in Keras [57] for molecular featurization and standard dense layers for classification
based on molecular features. The inputs to this GCN are the molecular graphs generated with canonicalized SMILES
using RDKit software. [46] However, in the original dataset only 3.5% of the molecules were labeled HIV active. To
address the imbalance between the labels, we used the class weighting technique. A 10%-10%-80% test-validation-train
data split was done. The model gains an ROC-AUC of 0.765 after training for only 30 epochs. See Figure S3 for ROC
curve. State-of-the-art performance is 0.945–0.993. [69] For more information on this GCN architecture please refer to
supplementary information.

After training, we generated counterfactual explanations as shown in Figure 5 for the given base molecule. The base
molecule is HIV active. If the base molecule did not have the specific diamide functional group, it would not be active.
If the phenyl diether were fluorinated, it would be not active. The fluorination may also be an effect on solubility.
Additional counterfactuals are provided in the Figure S4 and reinforce the importance of the diamide group. This shows
how chemical reasoning can now be applied to black box predictions through counterfactuals.

4.4 Effect of MACCS Parameters

There are three main parameters to choose in MACCS: the number of molecules to sample, the number of mutations,
and the choice of alphabet. The number of molecules to sample is restricted by the speed of inference of the model
being evaluated: more is always better. The models from the experiment section are generally fast enough that the
majority of time is spent on fingerprint calculation. However, the random forest model is slow to compute descriptors,
which is not related to the model or MACCS. Now, we examine the effect of the other two parameters on our RNN
model for predicting solubility.

There is no direct relationship between number of SELFIES mutations and the similarity. Figure 6 shows a histogram
of molecules arising from STONED as a function of the mutation number from the solubility prediction model. One
mutation provides a range of similarities, although few above 0.80 similarity. Even at three mutations, the majority of
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Figure 5: Counterfactuals for positive example of GCN model for classifying HIV activity. Similarity is computed from
Tanimoto similarity of ECFP4 fingerprints. [47] Teal indicates the modifications to the base molecule. Counterfactuals
illustrate which atom groups make this molecule HIV active.

Figure 6: The effect of mutation number on Tanimoto similarity of generated molecules from RNN solubility model.
Increasing mutation number reduces number of similar molecules from which counterfactuals can be generated.

molecules are dissimilar and cannot be used for counterfactuals. At five mutations, there are almost no molecules that
are comparable with the base molecule. Thus, one and two mutations combined are recommended in MACCS.

The effect of the alphabet choice is shown in Figure 7. Three counterfactuals are shown that are more soluble than
the base molecule. In the basic alphabet, recommended for MACCS, we can see that the counterfactual is changing
the ester to a ketone. The "Training Data" alphabet is derived from all unique tokens in the training data and shows a
counterfactual with a mercury cation. Although technically quite similar, it provides little understanding about why
the original molecule is not more soluble. Finally, the SELFIES alphabet without cation/anions removed can propose
high similarity counterfactuals simply by ionizing atoms. This does not provide understanding, as these extreme
molecules provide little intuition about the base molecule. Although this could be framed as an example of out of
distribution predictions, the point of MACCS is to explain predictions and thus we desire an alphabet that results in
human interpretable counterfactuals. This is necessarily subjective, but this example shows a limited alphabet provides
simpler explanations. Thus, we recmomend the basic alphabet in almost all cases. One exception may be organometallic
molecules, where exchanging a metal in a counterfactual may be helpful for understanding.

Figure 7: The effect of STONED alphabet choice counterfactuals from RNN solubility model. Although each
counterfactual has the same similarity, the molecules are increasingly unusual. The basic alphabet provides a balance of
intuitive counterfactuals and enough tokens to explore chemical space.
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5 Conclusions

Counterfactuals are human interpretable explanations composed of molecular structures that explain model predictions.
Counterfactuals can be generated with our proposed MACCS method. Our method is efficient and general, as
demonstrated on three model types and three datasets. It requires no gradients, training, or additional data to generate
per-prediction explanations. As deep learning becomes more common in real systems, counterfactual explanations
can mitigate model bias by involving experts in understanding predictions. The code for generating counterfactuals
available at https://github.com/ur-whitelab/exmol.
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Supplementary Information

RF model

Figure S1: Random forest model fit to test data with area-under curve analysis of receiver operator characteristic.

RNN model

SELFIES tokens are embedded using a 256 dimensional embedding. The embedded sequence is input to a gated
recurrent unit (GRU) RNN. [56] The GRU output goes through one hidden dense layer of dimension 128 with an ReLU
activation and a solubility is predicted. The loss is mean squared error in units of solubility, log molarity. The Adam
optimizer with a learning rate of 0.01 is used in training. [61] Here, N is a variable which refers to the maximum molecule
vocabulary length. Sequences are padded with the “[nop]" SELFIES token. The model fit is shown in Figure S2

Figure S2: RNN model fit on testing data. Loss is RMSE.
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Table SI: RNN model architecture

Layer type Shape Activation

Embedding (N,256) None
GRU layer (N,128) None

Dense layer 1 (128) ReLU
Dense layer 2 (1) None

GCN model

Our GCN model follows the original architecture of Kipf and Welling. [68] Namely, our layer definition is:

f(V (l), A) = σ
( 1

D̂
ÂV (l)W (l)

)
(3)

Here, V (l) are the graph level outputs (node features) of layer l. A is the adjacency matrix and Â = A+ I where I is
the identity matrix. Â is used here to add self loops. D̂ refers to the node degree matrix. W (l) are the trainable weight
matrix for the lth layer.

In our GCN model we stacked 4 graph convolutional layers and 2 dense layers with activation ReLU. The model
architecture is shown in table SII. As this is a binary classification task, we use a sigmoid activation in the last dense
layer to output predicted HIV activity (HIV inactive: 0 or HIV active: 1). Class weights of 1 and 30 for inactive and
active classes are used respectively to address the imbalance in the data. We train our model with binary cross entropy
loss and Adam optimizer. A learning rate of 0.01 is used. In this model we have padded the input molecules vectors to
be of length 440 (maximum length of molecules in the dataset) to allow batching.

Table SII: GCN model architecture

Layer type Shape (N=400) Activation

Input 1 (N,100) None
Input 2 (N,N) None

GCN layer 1 (N,100) ReLU
GCN layer 2 (N,100) ReLU
GCN layer 3 (N,100) ReLU
GCN layer 4 (N,100) ReLU

Graph Reduction layer (100) None
Dense layer 1 (256) Tanh
Dense layer 2 (1) Sigmoid
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Figure S3: GCN AUC-ROC plot. Loss is binary cross entropy.

Figure S4: Additional counterfactuals for the GCN model for predicting HIV activity. Top 19 counterfactuals for the
base molecule are illustrated here.
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