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ABSTRACT: In reaction discovery, the search space of discrete reaction parameters such as catalyst structure is often not explored 
systematically. We have developed a tool set to aid the search of optimal catalysts in the context of phosphine ligands. A virtual 
library, kraken, that is representative of the monodentate P(III)-ligand chemical space was utilized as the basis to represent the discrete 
ligands as continuous variables. Using dimensionality reduction and clustering techniques, we suggested a Phosphine Optimization 
Screening Set (PHOSS) of 32 commercially available ligands that samples this chemical space completely and evenly. We present 
the application of this screening set in the identification of active catalyst for various cross-coupling reactions and how well-distrib-
uted sampling of the chemical space facilitates identification of active catalysts. Furthermore, we demonstrate how proximity in 
ligand space can be a useful guide to further explore ligands when very few active catalysts are known. 

Introduction 
Reaction optimization is perhaps the most resource intensive 

phase of developing and applying a synthetic reaction. This pro-
cess typically involves adjusting a multitude of reaction param-
eters that are generally interdependent. For example, the opti-
mization search space of a standard metal-catalyzed Suzuki-
Miyaura cross-coupling has been estimated to encompass 50 
million reactions sampling eleven different reaction parame-
ters.1 Thus, in order to explore this search space efficiently and 
identify optimal conditions with the least number of experi-
ments, the choice of which reactions to carry out is critical, es-
pecially at the outset when little is known about the role of the 
reaction parameters.2 Typically, however, initial empirical op-
timization studies are selected on the basis of the experimenters 
intuition and compound availability. This approach is particu-
larly common when one is exploring how a discrete variable, 
such as a ligand for a catalytic process, impacts the reaction out-
come. The practitioner often changes one variable at a time in a 
linear fashion. In the case of ligand evaluation, one would select 
ligands with varied steric and electronic properties, and itera-
tively choose new sets of ligands based on the interpretation of 
the observed experimental results. This can also be scaled in a 
high-throughput experimentation (HTE) manifold to accelerate 
data collection. Frequently this will result in a biased ligand se-
lection wherein the perceived properties impacting the reaction 
outcome are used to guide the next step.  

This iterative approach contrasts how rational selection tac-
tics in a high-dimensional search space are applied to continu-
ous variables. It is relatively straightforward to choose experi-
ments that sample such a parameter evenly. For example, the 
temperature could be sampled at even intervals of 10 °C; with 

5 experiments at such intervals, identifying an optimal temper-
ature can be simple, and one can even interpolate within the 
sampling interval by fitting a function to determine the optimal 
temperature. A statistically rigorous implementation of this 
principle, the Design of Experiments (DoE) approach,3,4 has 
been used extensively to guide the optimization of several con-
tinuous variables, such as temperature and concentration, sim-
ultaneously. However, applying these principles to the optimi-
zation of discrete variables such as ligands remains limited as 
one cannot readily define the search space in order to choose 
experiments that sample that space effectively (Figure 1). Even 
with experimental knowledge, a discrete treatment does not 
contain information on the relationship among the other exper-
iments. Properly defining and sampling the search space of dis-
crete variables becomes even more relevant as data-driven tools 
are increasingly used to analyze and guide HTE campaigns.5,6  

 

Figure 1. Comparison of ligand optimization approaches using ar-
bitrary data. Gray points represent potential ligands defining the 
search space; the color map represents a hypothetical response such 
as yield across the search space where a darker color corresponds 
to better performance; the black points represent experiments that 
sample the search space. 



 

 

It is clear that a rational selection of initial experiments could 
improve sustainability and shorten timelines of reaction optimi-
zation and increase the chances of achieving a global opti-
mum.7–9 As such, we were interested in developing a workflow 
to identify a screening set of monodentate phosphorus ligands, 
perhaps the most widely used ligand type in cross-coupling ca-
talysis, that would quantitatively represent the chemical space 
that is commercially available. Using an objectively-designed 
set of ligands that evenly and completely covers the range of 
ligand properties would allow testing all property trends in a 
single set of ligands. We hypothesized that this type of approach 
has several advantages including: 1) such a set would have a 
representative ligand in each area of chemical space and should 
contain at least one or several well-performing ligands for most 
applications, 2) an even sampling of most ligand properties dur-
ing optimization facilitates the use of data science tools to in-
terrogate the experimental data with the aim of suggesting a 
next ligand set to improve performance, and 3) if the training 
data covers the complete property space, the search for optimal 
ligands based on the modeled training data will for the most part 
be an interpolation in the descriptor space, increasing the accu-
racy of such predictions. 

Herein we apply our recently disclosed computationally de-
fined library of phosphorus ligand features kraken10 to define a 
screening set curated from those ligands commercially availa-
ble at MilliporeSigma. This set of 32 ligands spans the de-
scriptor space of the kraken library and was evaluated for four 
palladium-catalyzed cross-coupling reactions. In all four case 
studies, high-performing catalyst systems were identified. Fi-
nally, we showcase how proximity in the chemical space de-
fined by the ligand features can be used to identify alternative 
ligands with desired performance even in scenarios with very 
sparse data, such as a single “hit”.  

Workflow  
The specific workflow for the selection of a diverse molecule 

set adopted herein (Figure 2) represents just an example of a 
more general procedure where different choices can be made at 
every step, depending on the application. Indeed, others have 
used similar procedures to generate diverse sets of molecules in 
unique contexts,7,9,11–16 including phosphorus ligand sets.8,17–19  

First, selecting a set of ligands that covers the entire range of 
ligand properties requires a means to quantify this range in ad-
vance, thus defining the search space. To this end, we choose to 
utilize physicochemically relevant descriptors to quantify mo-
lecular properties that directly impact chemical reactivity and 
ligand behavior.20 In this context, we have recently reported the 
chemical space characterization of an extensive library of ca. 
1500 monodentate P-donor compounds (including phosphites, 
phosphoramidites and many other combinations of heteroatom-
substituents at P, all collectively referred to as “phosphines” for 
the sake of brevity in the following) at the DFT level, taking 
conformational variation into account (referred to as kraken).10 
This incorporates many commercially available ligands, as well 
as examples from the academic literature and previously unsyn-
thesized compounds and is thus representative of the structural 
diversity of monodentate P-donor ligands. Each conformer is 
characterized by 78 individual properties, which include sterics 
and electronics of the P-donor site as well as whole-molecule 
properties. To account for the conformational impact on ligand 
behavior, 190 “condensed” descriptors have been derived from 

these properties for each ligand, including the Boltzmann-
weighted average and the highest and lowest value of each 
property across all conformers. The chemical space defined by 
these ligands and descriptors can be explored more conven-
iently and efficiently after dimensionality reduction.17,21,22 We 
found that principal component analysis (PCA) yields low-di-
mensional spaces that are highly interpretable by chemical 
means (Figure 2, 1.) even just by analyzing the first four princi-
pal components (PC, 59% variance). We have hypothesized that 
geometric relationships in this chemical space representation 
correspond approximately to the relative chemical reactivity 
found for these ligands.1,10,19  

After defining the entire search space, a filtering step can be 
necessary or useful, according to the goals of the screening set. 
Our goal was to create a general ligand set using commercially 
available ligands only, to facilitate early-stage reaction screens. 
Filtering to the 495 compounds we have tagged as commer-
cially available based on SciFinder23 reveals an even distribu-
tion of those compounds over the full search space with the ex-
ception of the “extreme corners” that mostly contain com-
pounds that are not relevant as ligands in catalysis (Figure 2, 
2.). Conceptually, the entire virtual library can be filtered by 
any user-defined criteria depending on prior knowledge and/or 
experimental requirements to arrive at more or less directed 
screening sets. For example, the selection procedure could be 
limited to a subsection of the ligand space such as that exclud-
ing heteroatom-based substitution at P if the reaction of interest 
is known to be catalyzed only by phosphine-derived metal com-
plexes.19 

We wanted to employ a sampling method that would allow 
us to select an arbitrary number of samples so that the screening 
set size can be adjusted according to experimental constraints. 
Furthermore, we pursued a method that would generate ranked 
candidates for each screening set member representing a section 
of the chemical space, so that further considerations such as 
price or stability of the ligands could be considered in screening 
set design without compromising the statistical validity of the 
approach. Both of these secondary objectives are met by clus-
tering methods such as k-means clustering. While there are un-
supervised learning methods that identify the natural clustering 
that is present in a data set to identify the optimal numbers of 
clusters, we specifically chose k-means clustering as it allows 
choosing the desired number of clusters via the hyperparameter 
k. The implicit assumption taken in this approach is that the 
phosphine chemical space representation as given by the first 4 
principal components is relatively continuously populated with-
out clusters that are separated by “empty” space. The chemical 
space as defined by the 190 descriptors does not fulfill this as-
sumption because it is only sampled sparsely by the 495 com-
mercially available compounds. In the four-dimensional space 
defined by the first 4 PC, the same number of samples repre-
sents a much higher density. K-means clustering of the com-
mercial ligands in this 4-dimensional space into N clusters thus 
provides a natural means to select a diverse screening set (Fig-
ure 2, 3.).15,24 The immediate output from the clustering analysis 
is the geometric location of the center of each cluster, rather 
than a specific sample. For each cluster, screening set candi-
dates can then be sampled on the basis of increasing distance to 
the cluster center. This method allows for the curation of the 
screening set by other objectives such as price, availability or 



 

 

stability, while at the same time maintaining a diverse selection 
fulfilling the design criteria. 

 

Figure 2. General workflow for the design of diverse compounds sets, illustrated with the specific exemplary choices taken in the design of 
the phosphorus ligand screening set described herein. The colors in 3. and 4. (left) are arbitrary, corresponding to one of each cluster. The 
clustering was done with the first four principle components of the kraken DFT feature space, thus the clusters and selected ligands appear 
to be overlapping in the two-dimensional projection shown. The structures of all numbered compounds in PHOSS are shown in Figure 3. 

There are alternative and equally valid approaches to choos-
ing a diverse set of ligands. For example, selections with the 
Kennard-Stone algorithm maximize the distances between all 
designated samples, thus resulting in an even and complete cov-
erage of the space in question.14,15,25 This will always select 
samples from the “outer edges” of the chemical space. For the 
PCA representation of the phosphine descriptor space, this re-
sults in selection of rather unusual structures that may not be 
feasible ligands for catalysis (e.g., by being too bulky or too 
electron-poor to coordinate metals). Furthermore, implement-
ing secondary objectives or a curation step is less straightfor-
ward with this method. Ultimately, the precise algorithm used 
for this step likely has less of an impact on the performance of 
the screening set than other steps such as which compounds and 
descriptors are used to define the chemical space in the first 
place. It has been shown previously that any algorithmic sam-
pling of a chemical space is better than random sampling, and 
even that is better than the biased sampling that is still common 
in experimental studies.7,9,16 

With these steps in the workflow defined, we aimed to define 
a screening set encompassing 32 ligands (Figure 2, 4.). This was 
in part to achieve compatibility with typical HTE screening set-
ups of 96 wells per plate, thus allowing space for either dupli-
cate experiments or the testing of several reaction conditions on 
a single plate. Furthermore, the curation of candidates after k-
means clustering involved selection of compounds that were 
available to MilliporeSigma (ca. 2018), generally selecting less 
expensive alternatives to facilitate adoption of the ligand set and 
opting for Buchwald-type ligands and against heteroatom-sub-
stituted compounds where possible. The final screening set 
(Figure 2, 4. and Figure 3) consists of ligands from many major 
classes of phosphorus ligands such as triaryl, trialkyl and mixed 
aryl/alkyl phosphines, Buchwald-type biaryl phosphines, and 
several heteroatom-substituted compounds such as a phos-
phinite, phosphites, phosphoramidites, and an aminophosphine. 
Along with very common ligands, it includes some exotic lig-
ands that are not often tested in catalysis, which might lead to 
unexpected discoveries. In the following, the ligand set is re-
ferred to as the Phosphine Optimization Screening Set 
(PHOSS). 



 

 

 

Figure 3. Screening set of monodentate P(III) ligands (“PHOSS”) that was used in the following case studies. The numbers refer to the 
unique ID in the kraken database.10  

Application of PHOSS 
To test the behavior of the screening set, we experimentally 

performed four case studies. The goal of these case studies was 
to test two premises: 1) Will the screening set contain a diverse 
range of outputs with at least one high-performing ligand for 
most applications? And, where necessary, 2) will the data ob-
tained from this screening set facilitate a means to rationally se-
lect a next set of ligands through a data driven workflow? In this 
context, the case studies are representative of common reaction 
optimization problems in catalysis, featuring two “easier” ex-
amples and two more “difficult” cases. For each case study, re-
actions were performed with each ligand from the screening set 
individually at representative, constant reaction conditions. The 
yield of the reactions was determined by chromatographic anal-
ysis and each reaction carried out at least in duplicate or more 
if there was a discrepancy between the first two results.  

For the two easier cases, we selected prototypical Suzuki-
Miyaura couplings of both an aryl chloride and aryl triflate, 

wherein the data was recently collected in the context of under-
standing how ligands effect speciation in cross-coupling reac-
tions.26 In the evaluation of PHOSS, excellent performance was 
detected, with a wide range of active catalysts found. Perhaps 
unsurprisingly, the best ligands from within PHOSS were 
Buchwald-type dialkyl biaryl phosphines in both cases. Thus, 
for the aryl chloride (Scheme 1, A), the best performing ligand 
was Ad-BippyPhos (340, 85% yield) whereas for the aryl tri-
flate (Scheme 1, B), the best performing ligand was SPhos (3, 
92% yield). Of most importance, the ligand set does provide a 
reasonably well-spread data response consistent with the design 
philosophy described above, identifying seven ligands that pro-
vided over 33% yield in both cases.  

The first “more difficult” case study was the evaluation of a 
sterically hindered Suzuki-Miyaura reaction wherein both cou-
pling partners present di-ortho substitution (Scheme 1, C).27 
Excitingly, the results of this screen also provide a diverse range 
of results as well as high performing examples. Again, SPhos 
(3, 87% yield) was the best performing ligand, but three other 



 

 

structurally diverse ligands provided yields over 70%, thus 
demonstrating the often-non-intuitive relationships between 
ligand structure and reactivity: CyBippyPhos (327, 84%), Jack-
iePhos (104, 80%) and tBu2PCy (30, 73%).  

The final reaction is perhaps most representative of how we 
envision the use of this screening set in a reaction optimization 
setting. In this case study, we performed a chemoselective 
Buchwald−Hartwig amination at low catalyst loading (Scheme 
1, D).28 The results are qualitatively different than any of the 
other examples, with only one high performing ligand and only 
one other ligand giving a >5% yield. Clearly, this is a difficult 
coupling under the reaction conditions evaluated. In spite of 
this, the screening set does allow for the identification of a good 
ligand for this reaction. The best performing was tBuBrettPhos  
(89, 89% yield), which was previously reported in the optimi-
zation of this reaction and also coincidentally included in 
PHOSS at the outset. However, this heavily skewed distribution 
of reaction outputs also makes virtual screening for other high-
performing catalysts by regression modeling impossible. This 
prompted us to investigate approaches to ligand suggestion that 
are applicable even with very sparse data or other scenarios 
where regression modeling fails. 

Scheme 1. Case studies tested with PHOSS.a  

 

aL refers to the ligands shown in Figure 3, each added individu-
ally. For further details, see the Supporting Information. 

Proximity-based ligand suggestion 
Based on the premise that our ligand descriptor set character-

izes the chemical and physical properties of the ligands, we hy-
pothesized that proximity in the reduced-dimensional chemical 
space representation provided by PCA would correspond to 
similar reactivity. In other words, untested ligands that are near 
ligands that provided high-performing catalysts have a higher 
chance to also provide high-performing catalysts than those that 
are further away. While this somewhat simplistic assumption 
will not always be successful, it does provide an opportunity to 
suggest experiments where a practitioner would like to have op-
tions for the use of a different ligand or test mechanistic hypoth-
eses. In some cases, this type of analysis may suggest the same 
ligands as those that a chemist would intuitively select but it is 
possible that ligands with similar features may not be as obvi-
ous.10  

To test this hypothesis, the chemical space is first classified 
into regions of “most active” and “less active” based on the ex-
perimentally observed yield with the nearest ligand in case 
study D. Here, only tBuBrettPhos (89) was considered in the 
“most active” class and all other ligands “less active” (Figure 4, 
A). In other scenarios, a specific yield criterion could be used 
instead of just the best ligand, as required by the current data 
and goals of the individual project. Subsequently, classes are 
assigned to untested ligands based on the closest PHOSS mem-
ber. For example, each other ligand for which tBuBrettPhos is 
the closest member is also assigned the “most selective” class. 
Practically, this is accomplished using a k-nearest neighbors 
classifier29 with k = 1 trained on all experimental results with 
the PHOSS ligands, and applied to all commercially available 
ligands in the kraken library.  

Using this procedure, eight of the untested ligands that were 
commercially available at the time this case study was carried 
out were classified into the “most active” region (Figure 4).30 
Two of those had been tested during reaction optimization in 
the original study for this reaction,28 where Me4tBuXPhos (291) 
provided the desired product in 23% yield and tBuXPhos (90) 
was reported as providing < 5% yield. Encouraged by this re-
sult, we tested four of the other ligands, along with two more 
that are near tBuBrettPhos but just outside the region classified 
“most active”. In the reactions using RockPhos (103) and 
Me3(OMe)tBuXPhos (534), 65% and 64% of the desired prod-
uct were observed, respectively, while all other reactions did 
not result in product formation. In fact, the two successful lig-
ands are also the two ligands with the closest absolute distance 
to 89 of all commercially available ligands in the kraken data-
base (Figure 4, X). Thus, three out of six ligands classified into 
the “most active” region that were tested by us or others did 
form active catalysts in this case study. This could be a useful 
starting point for further optimization of other reaction parame-
ters, or the design of novel ligands. However, as perhaps ex-
pected, the proximity-based selection does not always guaran-
tee finding successful ligands. Beside the simplistic representa-
tion as distance in the four-dimensional principal component 
space, another limiting factor can be the availability of any lig-
ands in close proximity to a successful experimental sample. 
Furthermore, we do acknowledge that ligands in close proxim-
ity in the descriptor space will also be structurally similar to the 
point that might seem like a very straightforward variation a 
chemist would have suggested based on intuition alone (as is 
the case here). However, since the molecular structure is not an 



 

 

explicit part of the descriptor set, this approach does have the 
potential to result in nonintuitive suggestions.  

 

Figure 4. Ligand selection with sparse data demonstrated for case study D. A) Classification of the ligand space into active (black) and 
inactive (white) using a k-nearest neighbors approach trained on the experimental data (large diamonds) and applied to the commercially 
available part of kraken (small squares). B) Enlarged depiction of the chemical space around the best performing ligand, including ligands 
used in additional experiments and literature. Diamond size proportional to observed yield in case study D. Literature results refer to the 
yields reported in ref 28 under the same reaction conditions. C) Relationship between absolute distance from 89 in the first 4 PC and observed 
yield in case study D. D) Best ligands from PHOSS in case study D. E) Further ligands and results included in B). 

Conclusion 
In summary, we have applied a flexible workflow to aid in 

the screening and optimization of catalytic reactions employing 
monodentate phosphorus ligands in PHOSS. This approach in-
cludes the ability to select the number of ligands for a desired 
screening application and the ability to construct focused ligand 
sets based on prior knowledge, availability, or other criteria. In 
several of the case studies, an excellent distribution of yield out-
puts was observed, which could aid in future statistical model-
ing.  We further demonstrate the ability to take a single reaction 
hit and explore the ligand space neighborhood even in scenarios 
when more traditional virtual screening approaches relying on 
regression models would fail.  

We envision that the use of standardized ligand sets in reac-
tion optimization could contribute to more comparable data 
sets, thus working towards future efforts in transfer learning 
across wider parts of catalysis.31,32 Finally, one can envision in-
tegrating this ligand selection strategy into active/iterative opti-
mization procedures such as simplex searches,33 Bayesian opti-
mization34 or active learning approaches,35 where an efficient 
initialization is crucial for a rapid optimization outcome.36  
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