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 The DP5 Probability, Quantification and Visualisation of Structural 
Uncertainty in Single Molecules  
Alexander Howarth,a Jonathan M. Goodman*a 

Whenever a new molecule is made, a chemist will justify the proposed structure by analysing the NMR spectra. The widely-
used DP4 algorithm will choose the best match from a series of possibilities, but draws no conclusions from a single candidate 
structure. Here we present the DP5 probability, a step-change in the quantification of molecular uncertainty: given one 
structure and one 13C NMR spectra, DP5 gives the probability of the structure being correct. We show the DP5 probability 
can rapidly differentiate between structure proposals indistinguishable by NMR to an expert chemist. We also show in a 
number of challenging examples the DP5 probability may prevent incorrect structures being published and later reassigned. 
DP5 will prove extremely valuable in fields such as discovery-driven automated chemical synthesis and drug development. 
Alongside the DP4-AI package, DP5 can help guide synthetic chemists when resolving the most subtle structural uncertainty. 
The DP5 system is available at https://github.com/Goodman-lab/DP5. 

Introduction  
 
Molecular structure elucidation and verification are central 
problems in organic, synthetic and natural product chemistry. 
Due to richness of the structural information its spectra contain, 
NMR spectroscopy has cemented itself as the method chemists 
use to solve these problems. Due to the complex nature of NMR 
spectra and often subtle variation between similar molecules, 
interpretation of these spectra can sometimes present a 
significant challenge. As a result, incorrectly assigned structures 
remain pervasive in the literature.1 Many of these incorrectly 
assigned are only discovered after costly and time consuming 
total syntheses are completed revealing a discrepancy between 
the experimental and literature NMR data.2,34 
Over the last two decades, many computational tools have been 
developed to aid the assignment of NMR spectra and 
elucidation of molecular structures.5–7 Comparing experimental 
NMR shifts with those calculated for a candidate structure using 
density functional theory (DFT) is now a well-established 
methodology and has been used to solve the structures of many 
molecules.8–11 A powerful way of performing this analysis is to 
calculate the DP4 probability.12 Unlike comparative metrics 
such as MAE and CMAE, the DP4 algorithm applies Bayes 
Theorem to calculate the probability that each candidate 
structure is the correct one. DP4 requires a list of possible 
structures as its input, and it assumes that one of these 
structures is correct. It is common for structures to be 
determined except for uncertainty in the details of their 
stereochemistry. DP4 has proved invaluable in the resolution of 
many such cases.13–17 DP4 can also be used to resolve non-
stereochemical uncertainty, provided that all of the acceptable 
possible structures can be enumerated. However, in cases 
where all the proposed candidate structures may be incorrect 
or only a single structure has been proposed, DP4 analysis 
cannot be applied. Until now in these very common situations 
chemists would have no quantitative way of assessing the 
probability of their proposed structure being correct given the 
NMR spectra.  
To solve this problem, we present the DP5 probability, a new 
methodology and complete software package for quantifying 
uncertainty in molecular structures. Similar to the DP4 

probability, the DP5 probability gives the probability that a 
candidate structure is correct. However, in contrast to DP4, DP5 
calculates normalised stand-alone probabilities and hence, the 
user can propose one or many structures without having to 
assume any of their proposals are correct. As a result, DP5 can 
be used to answer different questions to DP4 and will prove 
valuable in situations where this type of analysis was previously 
impossible. The DP5 probability is calculated given only the one-
dimensional 13C NMR data and utilises the same computational 
engine as the latest iteration of our DP4 software, DP4-AI. This 
program manages all NMR processing, assignment, DFT 
calculations and statistical modelling automatically. DP5 can 
also be used on a case-by-case basis utilising the graphical user 
interface (GUI). 
The system was developed and rigorously tested utilising a 
dataset of 5140 organic molecules from NMRShiftDB18. To 
demonstrate the performance of the DP5 probability in even 
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more challenging situations, the system was also evaluated on 
undergone reassignments in the literature.  
DP5 represents an exciting leap forward in quantifying 
molecular uncertainty. This system will prove valuable in fields 
requiring high throughput molecular structure elucidation such 
as automated chemical synthesis, but also in traditional organic 
chemistry as a tool to aid and guide expert chemists in their 
development of complex syntheses. It has been made possible 
following recent advances in molecular machine learning 
techniques and increased data availability.19–24  
 
Computational Methods 
DFT calculations for the structure reassignment examples were 
performed using the method developed in previous works.25–27 
All molecular mechanics calculations were performed using 
MacroModel (Version 9.9)39. All conformational searches were 
performed in the gas phase utilizing the MMFF force field40–45 

and a mixture of Low Mode following and Monte Carlo search 
algorithms.46,47 The step count for MacroModel was set so that 
all low energy conformers were found at least 5 times. 
Quantum mechanical calculations were carried out using 
Gaussian0948. NMR shielding constants were found using the 
GIAO method.49–51 The functional mPW1PW9152 was chosen 
with the 6-311G(d)53,54 basis set for NMR shift prediction as this 

has been shown to be optimal for DP4 calculation. For 
molecules containing iodine, the basis set def2-SVP55,56 was 
chosen. All DFT calculations were performed using the implicit 
PCM solvent model.57 The molecular geometries were also 
optimized at the DFT level of theory, this was performed using 
the B3LYP functional58,59 with the 6-31G(d) basis set. Finally, 
single-point energies were separately calculated using M06-
2X60 functional and def2-TZVP55,56 basis set.  
The calculations were managed by the DP4-AI27 Python script 
written in Python 3.7. DP4-AI is available from http://www-
jmg.ch.cam.ac.uk/tools/nmr/ and GitHub 
https://github.com/orgs/Goodman-lab/. 
DFT optimised geometries and NMR shift calculations for the 
molecules from NMRShiftDB were obtained from the training 
data of the GNN NMR shift prediction software CASCADE.61 A 
single conformer of each of these molecules was optimised 
utilising the M062X functional and def2-TZVP basis set and NMR 
shift calculations performed using in 6-311g(d) basis set and 
mPW1PW91 functional.  
Calculation of FCHL atomic representations, l2 distances and 
gaussian kernel transformations were performed using the 
python package qml.62 
 
Program Description  

Figure 1. Schematic of the DP5 program. The required inputs from the user are a candidate structure and the raw 13C NMR data (or a 
list NMR signals). The DP5 probability is built on top of the DP4-AI analysis. 
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The main text of the article should appear here with headings 
as appropriate. A schematic of the DP5 program is displayed in 
Figure 1. The required input files are the structure of the 
molecule and either raw 13C NMR data or a list of NMR peaks.  
DP5 calculates NMR shifts for the atoms in populated 
conformers of the candidate structure utilising the highly 
optimised and well established methods within DP4-AI (see 
supporting information section 2.1).25–27  
NMR interpretation is handled by a part of DP4-AI called NMR-
AI.27 This system was developed to remove the requirement for 
the user to process and assign NMR spectra and has been 
demonstrated to complete this task to at least the same high 
standard as an expert chemist. 
Once the geometries of populated conformers have been 
calculated, the probabilities of the observed DFT-NMR 
prediction errors for each atom in that conformer can be found. 
To do this a probability density function (PDF) describing the 
DFT-NMR prediction error distribution is required (see 
supporting information section S2.2). This PDF is found 
empirically by performing a Kernel density estimation (KDE) on 
a dataset of 63542 known prediction errors calculated for the 
DFT optimised geometries of 5140 molecules from NMRShiftDB. 
It is well known that the expected magnitude and variance of 
DFT prediction errors for different functionals show strong 
complex, nonlinear dependencies on atomic environment.28,29 
This process is made to take into account the properties of the 
specific atomic environment by weighting each training point by 
its similarity to the test point. This similarity is calculated by 
finding the Euclidian distance between a vector representation 
of the test atomic environment and those in the training set. 
These distances are converted into covariances utilising a 
gaussian kernel (equation (1); see supporting information 
section S2.4). By setting the pre-exponential scaling factor to 
one, these covariances can be interpreted as a measure of the 
similarity. The resulting PDF is integrated by equation (2) (see 
supporting information section S2.5) to yield a prediction error 
probability for each atom in the conformer. Once atomic 
probabilities have been calculated for each conformer, these 
values are Boltzmann weighted to produce overall atomic 

probabilities for the structure. This process is summarised in 
Figure 2. 
The representation used by DP5 was investigated in great detail. 
In recent years many molecular representations have been 
developed for applications in molecular machine learning, such 
as the coulomb matrix,30 bag-of-bonds,31 aSLATM32 and FCHL.23 
Kernel ridge regression (KRR) utilising the FCHL atomic 
representation have been shown to predict NMR shielding 
constants with near chemical accuracy (also tested in this work 
see supporting information section S3.4.1).33 These works 
demonstrate that FCHL contains the information required to 
accurately encode atomic environments. Due to the similarity 
of these tasks, the FCHL representation has been chosen for use 
in the DP5 probability calculation (see supporting information 
section S2.3). 
A particular challenge in the development of the DP5 probability 
was determining an equation to combine individual atomic 
probabilities to yield probability for the whole structure. If any 
single atom is given too much influence, a molecular probability 
of one or zero will usually be assigned, whilst if there is too 
much smoothing over individual atomic probabilities, the 
resulting molecular probabilities will not show enough useful 
variation. A number of formulae were tested during this study 
(see supporting information section S2.7). Overall equation (3) 
was found to yield useful variation in molecular probabilities, 

similarity)* = A exp0−
2𝑋) − 𝑋*24

4

2𝜎4 7 
(1) 

The similarity between the FCHL representation of 
atom 𝑖, 𝑋)	and that of atom 𝑗 in the test set 𝑋* is 
calculated using a gaussian kernel.  
 

 

p) = < 𝑝𝑑𝑓)(∆)	𝑑∆
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(2) 

A prediction error probability for atom 𝑖	is calculated by 
integrating the bespoke prediction error function 
generated for that atom, where ∆) is the (internally 
scaled) prediction error for atom 𝑖 and ∆E corresponds 
to the mean absolute prediction error for the training 
set. 
 

 

Figure 2. Schematic diagram of how the probability of 
observing a DFT-NMR prediction error for an atom in a given 
environment is calculated as described in the text. 
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whilst combining the atomic probabilities in a mathematically 
meaningful way. The inclusion of the geometric mean in 
equation (3) was found to be necessary to prevent single atoms 
with a very high or low probability having too much influence 
on the final result.  
The last stage in the calculation scales the molecular probability 
using a Bayesian correction function to yield the final DP5 
probability (see supporting information section S2.8). This 
empirical stage of the process ensures the DP5 probability 
assigned matches the probability of the structure being correct 
as closely as possible. This empirical correction function was 
found by first calculating a PDF for the molecular probabilities 
of the 5140 NMRShiftDB molecules. By finding all the possible 
pairs of spectra and structures in this dataset with the same 
number of carbon atoms, a PDF of the molecular probabilities 
of incorrect spectra-structure pairs was also generated. In this 
instance, each pair was assigned a weight to ensure the mean 
absolute DFT-NMR prediction error distribution of these 
incorrect pairs matched that of the correct structure-spectra 
pairs (see supporting information section S3.2). Given any 
proposed structure must be either correct or incorrect, by 
applying Bayes Theorem the DP5 probability is defined by 
equation (4). 
 

 
Calculation of the DP5 probability has been integrated into the 
well-established DP4-AI workflow.27 All the required 
calculations and analysis of NMR data can be performed 
automatically with no user input required. DP5 can hence be 
integrated into pre-existing automatic 
reaction/characterisation workflows. DP5 analysis can also be 
performed on single molecules with the GUI. This GUI can be 
used to launch calculations, analyse NMR assignments made by 
NMR-AI and also to investigate the DP5 statistics. The GUI 
visually displays the atomic probabilities, helping the chemist 
identify potential regions of the molecule that may be incorrect 
and determine possible modifications (Figure 3).  
 
Results  

The main text of the article should appear here with headings 
as appropriate. A major challenge in the development of DP5 
involved constructing a method to assess the efficacy of the 
system. As the DP5 probability is not a physical property that 
can be measured, it is not straightforward to compare the DP5 
probability assigned to a molecule with an experimental value. 
In this study two rigorous evaluation methods were devised to 
assess and improve the real-world effectiveness of the DP5 
probability. 
The database of 5140 organic molecules from NMRShiftDB as 
used in comprehensive leave-one-out style cross validation 
study summarised in Figure 4 (see SI 3.2). In this study DP5 
analysis of correct and incorrect proposed candidate structures 
was simulated by permuting the experimental data to form 
correct and incorrect pairs. This analysis is particularly powerful 
as negative examples could be synthesised from real world 
data, avoiding more unreliable methods involving generating 
fake experimental or calculated spectra. This analysis was used 
to develop DP5 and was repeated for many different 
formulations of the DP5 probability (see supporting information 
section S4.1). The results for the final DP5 system can be seen 
in Figure 4. The final DP5 methodology was also evaluated 
against a series of thirteen real world structure reassignment 
problems from the literature, molecules S1a-S13b in Figure 5. 
This study represents a very significant challenge for DP5 and 
will evaluate its performance in a regime where even the most 

PI = JKL1− 𝑝)

N

)OP

Q
R

 

(3) 

Atomic DP5 probabilities are combined to form the 
molecular probability 𝑃N by equation 3, where 𝑛 is the 
number of atoms in the molecule and 𝑝) is the DFT-
NMR prediction error probability for atom 𝑖 
 

 

DP5 =
P(correct|PI)

P(incorrect|PI) + P(correct|PI)
		 

(4) 

The DP5 probability is calculated by applying Bayes 
Theorem to the molecular probability calculated in 
equation 3, where	P(correct|PI) gives the probability 
of a  molecule being correct given its calculated 
molecular probability PI. 

 

Figure 3. The GUI accompanying DP5 pictorially overlays atomic 
DP5 probabilities onto the molecular structure. This clearly 
displays regions of the structure that are expected to be correct 
and conversely regions that may require revision. This 
functionality will help chemistry assess and revise structure 
proposals. This structure revision example has been taken from 
a real-world case study of an incorrectly assigned molecule in 
the literature (see Results) 
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experienced chemists have acknowledged the difficulty of the 
challenge. The results of this study are shown in Figure 6.  
 
Discussion 
The results of the combinatorial cross-validation study are 
presented in Figure 4. In case 1, all incorrect pairs of structure 
and spectra with maximum errors <10ppm are considered 

equally. This represents the situation where an experienced 
chemist should be able to accurately and reliably predict 
whether a chemically reasonable proposed structure is likely to 
be correct or incorrect based on the DFT-NMR prediction errors 
alone. There is very little overlap between the DP5 probability 
distributions for the correct and incorrect structure proposals, 
the modal DP5 probability for correct structures being the 
minimum possible value (see supporting information section 

Figure 4.  Schematic diagram of cross validation analysis used to evaluate the performance of DP5. A) The experimental spectra of the 
5140 (𝑛) molecules from the NMRShiftDB training set are permuted to produce 𝑛4	pairs of structures and experimental spectra. B) These 
pairs are separated into 𝑛 correct pairs and 𝑛4 − 𝑛	incorrect pairs, all incorrect pairs with max errors <10ppm are considered in case 1. 
C) In case 2 the incorrect pairs are assigned sampling weights to force their MAE distribution to approximate that of the correct pairs, 
this leads to an expected number of ~5330 incorrect combinations. All DP5 probabilities in this study are calculated using a leave-one-
out scheme. (see supporting information section S3.2). 
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S2.8). The incorrect structures display the opposite pattern, 
with the modal value at close to zero. This result highlights the 
DP5 probability’s ability to differentiate reliably between 
correct and incorrect structures in these situations. Therefore, 
DP5 will perform as well as an experienced chemist when 
classifying structures based on DFT prediction errors alone. 
When paired this way, the correct and incorrect pairs show 
different MAE distributions, with the incorrect pairs displaying 
a larger modal MAE and a greater variance. The DP5 probability 
would be even more useful if it could reliably differentiate 
incorrect structure proposals following the same MAE 
distributions as the correct structures.  
This is tested in Figure 4, case 2. The incorrect pairs are assigned 
weights to ensure that they follow the same MAE distribution 
as the correct pairs (see supporting information section S3.2). 

This represents the radically more challenging situation where 
the correct and incorrect structure proposals are practically 
indistinguishable by their DFT prediction errors. In this situation 
an expert chemist would have significant difficulty deciding 
whether a proposed structure is correct or incorrect, and in 
some cases this may be impossible without collecting additional 
information. The results of this study are particularly exciting, 
as despite this test proving to be more demanding, the DP5 
probability is still able to correctly differentiate many correct 
and incorrect structures. This is shown by the DP5 probability 
frequency distributions, with the correct pairs maintaining a 
strong peak at the maximum possible value and the incorrect 
pairs having significant density towards zero.  
To further test the efficacy of DP5 analysis, the system was 
evaluated against thirteen challenging real-world examples, 

Figure 5. Test set of real-world structure reassignment problems taken from chemical literature. In each example an incorrect structure 
was initially published (S#a) which was later reassigned to the corresponding correct structure (S#b) 
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Figure 5. Not only are the correct and incorrect structures 
almost indistinguishable to an expert chemist, these structures 
have already been incorrectly assigned and revised in the 
literature.1,34–38 The results of this study are striking and are 
presented in Figure 6. In all cases the DP5 probabilities of the 
incorrect structures are equal to or close to one, illustrating that 
DP5 can reliably pick out even the most subtle inconsistencies 
in molecular structures. These results illustrate the power of 
DP5 analysis: even for these extremely difficult examples, DP5 
differentiates between the correct and incorrect structures 
There are three examples where the DP5 probabilities of the 
correct and incorrect structure are both equal to zero (S12, S2, 
S13). This result is not surprising due to the complex and subtle 
rearrangements involved in these revisions. These results 
however do not show a weakness, but rather a distinct 
advantage of the DP5 probability over DP4. Being a single 
structure probability, DP5 is able to question the initial structure 
and the revision independently, if both structures are 
improbable DP5 can assign low probabilities to both. In these 
situations, when all the candidate structures are unlikely, DP4 
probabilities must still sum to one and DP4 will typically 
randomly show overconfidence in one of the structures. This 
behaviour was clearly displayed when the analysis was repeated 
using DP4. Only in these three cases did DP4 assign any 
confidence to the incorrect structures and in two cases (S12 and 
S2) DP4 assigned the most confidence to the incorrect 
structures. The low DP5 probabilities for S8, S9 and S13, suggest 
DP4 may have assigned these structures correctly by chance. 
These results highlight the consequences of the underlying 
assumptions of the DP4 methodology. For DP4 probabilities to 
be reliable, the correct structure must be present in the list of 
candidates. When this is true, DP4 is more reliable and precise 
than DP5 as it is more sensitive to slight differences in NMR 
spectra and as more information is available within the 
calculation. This makes DP4 the perfect system when the 
correct structure is guaranteed to be in the list of proposals. 
However, in cases where none of the candidate structures may 
be correct, only the DP5 probability can reflect this and can be 
calculated to assess the reliability of the DP4 calculation. 
These examples show how DP5 can serve as a valuable tool 
whenever a new molecule is made, increasing confidence when 
proposed structures are correct, highlighting cases where they 
are not and also playing a stern jury when an improbable but 
correct structure has been proposed. These results show how 
utilising DP5 analysis may have prevented these incorrectly 
assigned structures from being published.  
A very interesting feature that these results illuminate is the 
value of the maximum possible DP5 probability. This value is 
dependent on many factors including, the dataset of atomic 
environments, the atomic representation chosen, and, most 
notably, the inherent uncertainty in the DFT NMR predictions. 
Using this state-of-the-art and highly-optimised set of 
conditions, DFT NMR predictions still have a MAE of 1.57ppm. 
As a result, even if a proposed structure is correct, the DP5 
probability has to take into account the possible variance in 
NMR predictions and reflect this uncertainty. Therefore, when 
using this set of DFT conditions, the user can never be more 

than 72% confident that a structure is correct using one 
dimensional DFT NMR predictions alone. However, one can 
sometimes be 100% confident that a structure is incorrect. This 
value acts as a metric for assessing the accuracy of DFT NMR 
calculations and the reliability of the DP5 calculations. We 
expect that the use of even larger databases and even higher 
levels of theory will raise this limit. Equivalently, this can be 
interpreted as acknowledging that an incorrect structure could 
possibly produce a set of errors equally or more convincing than 
the correct structure, just as two molecules may produce similar 
experimental spectra. However, this is seldom a problem in 
organic chemistry as in most real-world applications, there are 
additional constraints on the potential structures that need to 
be considered. For example, in robot-controlled syntheses, the 
particular sequence of reactions is known limiting the potential 
products. In most cases, a DP5 probability of 73%, combined 
with this additional data, will give the chemist much higher 
levels of certainty their structure is correct. In cases where 

Figure 6. (top) DP5 probabilities calculated for the thirteen 
incorrectly published structures, and corresponding revised 
structures. DP5 assigns much greater confidence to the revised 
structures and also displays the three cases where both the 
initially proposed and revised structures are equally improbable. 
(bottom) DP4 probabilities calculated for the same thirteen 
examples. These results show how the DP5 probability can be 
used to test the reliability of a DP4 calculation, as only DP5 can 
discern if any of the structure proposals are likely to be correct. 
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multiple structures give high DP5 probabilities for the same 
spectra, this is a good indication of where DP4 can be applied in 
conjunction with DP5 to give even more accurate relative 
probabilities.  
 
Conclusions 
headings as appropriate. In conclusion, we have developed a 
new measure to quantify molecular structural uncertainty, the 
DP5 probability. This work represents a leap forward in 
quantification of structural uncertainty as, instead of a 
comparative dimensionless parameter, the probability of a 
structure being correct is quantified. This system was rigorously 
evaluated by a cross validation study and it was found that DP5 
could perform as well as a human in classifying correct and 
incorrect structure proposals and in some cases could classify 
structures indistinguishable to a chemist. DP5 was evaluated 
against thirteen real-world examples of structures that were 
incorrectly published and subsequently revised in the literature. 
In all these challenging cases, DP5 expressed the maximum 
concern for the incorrect structures and was on average 41% 
more confident in the revised structures. The DP5 probability 
can be calculated fully automatically and so should find wide 
applications in uses cases such as high throughput reaction 
screening, automated chemical synthesis and drug discovery. In 
addition, DP5 may be run on a single molecule basis and the 
results explored utilizing the GUI, helping to guide the 
development of complex syntheses. This work also suggests 
how DP5 may be developed to help further to accelerate 
chemical discovery. Utilizing the DP5 alongside generative 
models and other machine learning methods to automatically 
guide structure determination being an attractive possibility. 
The DP5 system is available as open-source software at 
https://github.com/Goodman-lab/DP5 
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