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The estimation of chemical reaction properties such as activation energies, rates or yields is
a central topic of computational chemistry. In contrast to molecular properties, where machine
learning approaches such as graph convolutional neural networks (GCNNs) have excelled for a
wide variety of tasks, no general and transferable adaptations of GCNNs for reactions have been
developed yet. We therefore combined a popular cheminformatics reaction representation, the so-
called condensed graph of reaction (CGR), with a recent GCNN architecture to arrive at a versatile,
robust and compact deep learning model. The CGR is a superposition of the reactant and product
graphs of a chemical reaction, and thus an ideal input for graph-based machine learning approaches.
The model learns to create a data-driven, task dependent reaction embedding that does not rely on
expert knowledge, similar to current molecular GCNNs. Our approach outperforms current state-
of-the-art models in accuracy, is applicable even to imbalanced reactions and possesses excellent
predictive capabilities for diverse target properties, such as activation energies, reaction enthalpies,
rate constants, yields or reaction classes. We furthermore curated a large set of atom-mapped
reactions along with their target properties, which can serve as benchmark datasets for future work.
All datasets and the developed reaction GCNN model are available online, free of charge and open-
source.

I. INTRODUCTION

Machine learning models to predict molecular prop-
erties have seen a large surge in popularity in the last
decade, leading to new developments and impressive
performances on the prediction of quantum-mechanical
properties,1–3 biological effects4–6 or physicochemical
properties,7–9 to name just a few. In particular, graph-
based approaches are on the rise, and have proven both
powerful and useful in fields such as drug discovery.10

Many representations and model architectures have
been developed for the property prediction of molecules.
Popular approaches range from conventional machine
learning models on fingerprints or descriptors,11 graph-
convolutional neural networks on 2D graphs,1,3,8,9 and
spatial convolutions on 3D coordinates2,12,13 to natu-
ral language processing on string representations,14,15

amongst others. In contrast, the development of rep-
resentations and architectures to predict the properties
of chemical reactions, i.e. the transformation from one
molecule to another, lags behind. Recent studies in-
clude the prediction of reaction yields via a random
forest model on selected descriptors16, a random for-
est model on structure-based fingerprints17 or a molec-
ular transformer model on reaction strings.18 Reaction
barriers were successfully predicted with both linear re-
gression and neural network models on expert-selected
features19 or Gaussian Process Regression on selected
computational results.20 Reaction rates were estimated
via deep neural network models on expert features,21

as well as selectivities via different models on expert-
curated descriptors.22 With the notable exception of the
seminal work of Schwaller et al.18, all these approaches
rely on manually created sets of descriptors or features,
which hinders the ability to transfer model architectures
and representations to new tasks. Recent advances to-

wards a more data-driven reaction representation mainly
concern the field of retrosynthesis,23–26 forward reaction
prediction,27–32 or learning the potential energy surface
of a reaction.33 Furthermore, a dual graph-convolutional
neural network was recently proposed for the prediction
of activation energies, but is unable to handle imbalanced
reactions.34 General architectures which can address a
variety of reaction properties are still scarce, mainly due
to a lack of a general reaction representation.

Within the field of cheminformatics, the condensed
graph of reaction (CGR),35,36 which is a superposition
of the reactant and product molecules of a reaction, was
found to be a suitable reaction representation for a di-
verse set of tasks. It can be easily constructed from
an atom-mapped reaction by assigning dual labels to
each bond and atom according to their properties in
the reactants and products, respectively. Amongst oth-
ers, CGRs were successfully used for structure-reactivity
modeling,37–39 reaction condition prediction,40,41 atom-
mapping error identification42 and reaction similarity
searches.35 Toolkits are available to generate or process
CGRs, such as the python library CGRTools.43 Despite
these promising results, the condensed graph of reaction
has not been utilized as input representation to more
complex models, yet.

In this study, we therefore adapt a graph-convolutional
neural network to encode the condensed graph of reaction
instead of a molecular graph, and successfully predict
reaction properties such as activation energies, reaction
enthalpies, rate constants, yields or reaction classes. The
developed architecture is general, versatile, and provides
a large improvement in accuracy compared to current
reaction prediction approaches over a broad field of tasks.
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Figure 1. Schematic depiction of the CGR (middle) for the
dissociation of water, constructed from the atom-mapped re-
actants (right) and the atom-mapped products (left). Top:
Example of balanced reaction. Bottom: Example of imbal-
anced reaction. In the CGR, each atom and each bond has
two labels, one corresponding to the reactants, another to the
products, or a None label (‘x’) for imbalanced reactions.

II. METHODS

A. Condensed graph of reaction

The CGR is a simple superposition of the reactant
and product graphs of the molecules in a reaction. The
atom mapping of the reaction links the two graphs,
and thus provides an important input to correctly con-
struct the CGR. Fig. 1 depicts the atom-mapped reac-
tant molecules in gray (left), as well as the atom-mapped
product molecule in red (right) for the dissociation of
water. In the middle, the resulting CGR is visualized.
The two-colored atoms represent the dual properties of
each atom before and after the reaction. The bonds un-
dergoing changes are depicted as dashed lines, and the
labels indicate the bond type before and after the reac-
tion. Usually, changes in an atom concern its charge,
hybridization, multiplicity or its environment, whereas
changes in a bond concern its bond type.43 Usually la-
bels that are the same for reactants and products, e.g.
[1,1] for the bond from O2 to H3, or H/H for H3 are col-
lapsed into a single label,43 but we deliberately keep both
labels, as each label is used later to construct a part of
the atomic and bond features vectors of the CGR graph
representation.

B. D-MPNN architecture

In the following we briefly summarize the architec-
ture of molecular directed message passing neural net-
works (D-MPNNs), a class of graph-convolutional neural
networks (GCNNs), to provide context to the necessary
changes and adaptions to generalize from molecules to
reactions. We only discuss the directed message passing
architecture from Ref. 8, but the described changes can
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Figure 2. Architecture of a standard graph convolutional neu-
ral net (top) and adaption to reactions via input of the con-
densed graph of reaction (bottom). Each atom and bond
fingerprint now consists of two parts, one describing the reac-
tants (gray), the other the products (red). If a bond does not
exist in reactants or products, or an atom is missing in an im-
balanced reactions, the corresponding parts of the fingerprint
(white, crossed out) are set to zero. The white vectors corre-
spond to the hidden atomic and molecular representations.

be easily adapted to any other graph-based architecture.
In general, GCNNs take the graph of a molecule as

input, where atoms correspond to vertices in the graph,
and bonds to edges. The vertices and edges are usu-
ally associated with feature vectors, which describe the
identity of an atom, as well as the type of a bond. The
vertex or edge features are updated iteratively through
exchanging information with their neighbors to create a
learned representation of each atom. A representation of
the whole molecule is then obtained by an aggregation
function, often a simple sum or mean of the atomic rep-
resentations. The molecular embedding is then passed
to a readout function, in most cases a feed-forward neu-
ral network (FFN) to relate it to a target property. The
whole architecture, i.e. the graph convolutions, aggre-
gation and FFN are usually trained at the same time,
end-to-end.

In the case of D-MPNNs, messages are associated with
directed edges instead of vertices, in contrast to regular
MPNN architectures. The architecture of Yang et al.8 is
schematically depicted in Fig. 2, top panel. For a molec-
ular graph G, initial atom features {xv|v ∈ V } for all
vertices V are constructed from a one-hot encoding of the
atomic number, degree, formal charge, chirality, number
of hydrogens, hybridization and aromaticity of the atom,
as well as the scaled atomic mass, resulting in vectors
of length 133. Initial bond features {evw|vw ∈ E} for
all edges E describe the bond type, whether the bond
is conjugated, in a ring, and contains stereochemical in-
formation, resulting in vectors of length 28. The initial
directed edge features h0

vw are constructed via appending
the features of the first atom of a bond, xv to the respec-
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Table I. Summary of employed datasets.

Dataset Datapoints Ref. expl. H bal. split task span MAEbase unit epochs

Ea ωB97X-D3a 23,923 44 yes yes directed scaffold regression 0 to 205 25 kcal/mol 100
Ea E2/SN2 3,626 45 yes yes random regression 0 to 65 11 kcal/mol 100
Ea SNAr 443 20 no yes random regression 13 to 42 2.9 kcal/mol 500
∆H Rad-6-RE 63,849 46 yes yes directed scaffold regression -6 to 12 1.8 eV 100
log(k) Rate constants 779 47 yes yes random regression -5 to 10 1.9 unitless 100
Yield Phosphatases 33,355 48 no yes scaffold regression 0 to 1b 0.10 unitless 100
Pistachio 1,074,765 49 no no random multiclass class. 937c - - 30
USPTO-1k-TPL 445,117 50 no no predefined multiclass class. 1000c - - 30

a pretraining on 32,731 datapoints at the B97-D3 level of theory
b 4 datapoints have yields higher than 1 due to uncertainties in the assay evaluation.
c Number of classes

tive bond features, evw, and passing the concatenated
vector to a single neural network layer

h0
vw = τ(Wicat(xv, evw)) (1)

with Wi ∈ Rh×hi and h being the hidden size (default

300), and hi the size of cat(xv, evw), here 147, and τ()̇
being a nonlinear activation function. The directed edge
features are then updated via an appointed number of
message passing steps t = T (default 3),

ht+1
vw = τ(h0

vw + Wh

∑
k∈{N(v)\w}

htkv) (2)

where Wh ∈ Rh×h and N(v)\w denotes the neighbors of
node v excluding w. The hidden states are then trans-
formed back to atom features,

hv = τ(Wocat(xv,
∑

w∈N(v)

hTwv)) (3)

with Wo ∈ Rh×ho , and ho being the size of xv and h.
The atomic representations hv can then be aggregated
to a molecular feature vector

h =
∑
v∈G

hv (4)

and optionally augmented with precomputed molecular
features f as cat(h, f). The molecular fingerprints are
then passed to one or multiple FFN layers.

To adapt the D-MPNN architecture to reactions, two
main changes are necessary. First, the list of bonds
now encompasses all pairs of atoms that have a bond
in either the reactants, or the products, or both, i.e.
E = Ereac

⋃
Eprod of the reactant Greac and product

Gprod graphs. Likewise, the list of atoms comprises all
atoms that are present in either reactants, products or
both, V = V reac

⋃
V prod. Second, the initial atom and

bond feature vectors now contain two parts, extracted
from the reactant and product graphs separately, one cor-
responding to the reactants, the other to the products,
or the difference between reactants and products. If an

atom or bond only occurs on one side of the reaction, its
respective feature vector is set to zero on the other side.
For atoms, we do not repeat the one-hot encoding of the
atomic number, since it cannot change during a chemical
reaction, but the scaled mass information is kept for both
reactants and products, to not lose isotope information
in case of imbalanced reactions. We tested the combina-
tion of reactant+product, product+difference(reactant-
product) and reactant+difference(product-reactant) and
found that reactant+difference usually performs best.
All results reported in this study were obtained with this
setting, i.e. xv = cat(xreac

v , x̃diff
v ) with length 165, where

the tilde denotes the vector missing the atomic num-
ber information, and evw = cat(ereac

vw , ediff
vw ) with length

28. All options are available in the provided code on
GitHub51 and can be tuned as hyperparameters. The
bottom panel of Fig. 2 schematically depicts the adapted
architecture, where the gray parts of the initial finger-
prints correspond to the reactants, and the red parts to
the products. The two changes thus only concern the
creation of the graph object, as well as the initialization
of the edge and vertex features. The remaining parts of
the model, i.e. Eq. (1)-(4), are unchanged.

C. Data preparation

We utilized four reaction databases from literature as
provided, as well as cleaned and atom-mapped four more,
which we made openly available on GitHub.52 Table I
provides a compact overview over all employed datasets.

1. Computational activation energies of forward and
reverse reactions at the ωB97X-D3/def2-TZVP
level of theory (as well as at the B97-D3/def2-
mSVP level of theory for pretraining) were used
as provided in Ref. 44. The dataset features a di-
verse set of reactions transforming unimolecular re-
actants into uni- or multi-molecular products, and
is already atom-mapped.

2. Computational activation energies for competing
E2/SN2 were furthermore taken from Ref 45, and
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atom-mapped manually using heuristic substitu-
tion patterns. The resulting database is published
along with this study.

3. Experimental activation energies for SNAr reac-
tions were taken as provided from Ref. 20. All reac-
tions were already atom-mapped, and furthermore
contained information about the solvent each reac-
tion was carried out in, as well as the computational
activation energy at the ωB97X-D/6-311+G(d,p)
level of theory. The solvent descriptors and com-
putational activation energies were passed to the
model as molecular fingerprints f .

4. Computational reaction enthalpies were taken from
the Rad-6-RE database46 and atom-mapped via
Grzybowski’s algorithm.53 Imbalanced reactions
were discarded, since Ref. 46 claims to only re-
port balanced reactions. We thus assumed that
imbalanced reaction correspond to an error. Both
forward and reverse reactions were taken into ac-
count. The resulting database is published along
with this study. We note that reaction enthalpies
could also be modeled via training a single model
to predict molecular enthalpies,54,55 and converting
the enthalpies of reactants and products into the re-
spective enthalpies of reaction. This approachs was
followed by Stocker et al.,46 however, in this work
we instead want to highlight the direct prediction
of reaction enthalpies.

5. Reaction rate constants were taken from Ref. 47
and atom-mapped via Grzybowski’s algorithm.53

Models were then trained on the logarithm of the

rate constants at 1000K, log(k(1000K)
kref

), with k in

cm3mol−1s−1 (bimolecular) or s−1 (unimolecular)
depending on the reaction mechanism, and kref =
1 in the same units. The resulting database is pub-
lished along with this study.

6. Experimental reaction yields for 218 phosphatase
enzyme sequences on 157 substrates were extracted
from Ref. 48. The original article features 167 sub-
strates, but only substrates that contained a sin-
gle phosphate group were kept. Since the reaction
outcomes were not reported in Ref. 48, the prod-
uct for multi-phosphate substrates are not known
with certainty, and were thus not included. The
different enzymes were represented as simple one-
hot encoding and passed to the model as molecular
fingerprints f . Products and the respective atom-
mappings were calculated manually with a simple
set of heuristic rules. The resulting database is pub-
lished along with this study.

7. The reaction names of one million reactions from
an in-house preprocessed and cleaned version of
Pistachio49 (processing analogous to Ref. 56) were

taken with atom-mappings as provided. Since Pis-
tachio is not open-source, the resulting database is
not published along with this study.

8. The reaction names of the atom-mapped USPTO-
1k-TPL dataset recently curated by Schwaller et
al.50 were used as-is.

D. Dummy baselines

The mean absolute error of a dummy baseline model
predicting the mean of the target values in each dataset
is given in Table I. Comparing against such a simple
baseline helps to judge the quality of a predictive model,
where low errors on a dataset with narrow target range
can otherwise be mistaken for a satisfactory performance.

E. Other Baselines

We furthermore examined more complex baseline mod-
els. First, the dual GCNN model of Grambow et al.34

was trained with hyperparameters similar to the CGR
GCNN approach (MPNN depth of 3, hidden size of 300,
one FFN layer, no dropout) on all datasets comprising
balanced reactions, termed ‘Grambow’ in the following.
We note that the model does not accept imbalanced re-
actions as input, so that no baseline could be computed
for the imbalanced datasets in Table I.

Second, the recently developed BERT deep learning
reaction fingerprints50 were utilized as input to a regu-
lar FFN, where we used a default hidden size of 300 and
two FFN layers. The fingerprints were computed using
the open-access rxnfp software on non-atom-mapped re-
action SMILES.57

Third, Morgan fingerprints58 were calculated for the
reactants and products separately, and either subtracted
(‘Morgan Diff’) or concatenated (‘Morgan Concat’), and
again served as input to an FFN of hidden size 300 and
two FFN layers. Morgan fingerprints at radius 3 and
length 1024 were calculated via RDKit.59

We furthermore tried to utilize ISIDA descriptors35,43

as inputs to an FFN, but found the calculation to be
computationally infeasible for larger datasets, since the
descriptors extract a dataset-dependent set of reaction
fragments from all available reactions, and thus need to
hold the full set of reactions and all their fragments in
memory at the same time.

F. Model parameters

A hyperparameter search for the optimal hidden size,
number of layers, number of message passing steps and
dropout rate was computed via 20 steps of Bayesian
Optimization for the CGR GCNN, Grambow’s dual
GCNN and all fingerprint models as implemented in
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Table II. Comparison of performances (mean absolute errors) and the respective number of trainable parameters of regression
tasks between the CGR graph convolutional model of this study, Grambow’s dual GCNN of Ref.34 and the best performing
FFN on reaction fingerprints. Intervals correspond to the mean and standard deviation of five folds. Best performance per
dataset highlighted in bold.

Dataset unit CGR default CGR opt Grambow default Grambow opt best FP opt

Model performance:
Ea ωB97X-D3 (pretr. B97-D3) kcal/mol 4.84 ± 0.29 4.25 ± 0.19 6.35 ± 0.26 5.26 ± 0.15 10.94 ± 0.29
Ea E2/SN2 kcal/mol 2.64 ± 0.10 2.65 ± 0.09 2.76 ± 0.08 2.86 ± 0.07 3.37 ± 0.10
Ea SNAr kcal/mol 0.86 ± 0.12 0.86 ± 0.09 1.09 ± 0.20 0.95 ± 0.23 1.11 ± 0.13
∆H Rad-6-RE eV 0.16 ± 0.01 0.13 ± 0.01 0.40 ± 0.01 0.07 to 0.43a 0.64 ± 0.01
log(k) Rate constants unitless 0.41 ± 0.05 0.41 ± 0.02 0.60 ± 0.05 0.45 ± 0.04 0.66 ± 0.08
Yield Phosphatases unitless 0.063 ± 0.002 0.062 ± 0.001 0.081 ± 0.002 0.068 ± 0.003 0.063 ± 0.004

Model size:
Ea ωB97X-D3 (pretr. B97-D3) 378,601 10,371,601 361,801 24,877,601 6,381,601
Ea E2/SN2 378,601 2,817,101 361,801 16,754,401 361,201
Ea SNAr 380,401 6,395,201 361,807 8,278,201 79,201
∆H Rad-6-RE 378,601 10,371,601 361,801 20,035,401 6,381,601
log(k) Reaction rates 378,601 6,393,701 361,801 8,269,801 2,049
Yield Phosphatases 444,001 6,692,001 362,019 11,080,001 646,201

a See SI for details on the Rad-6-RE model performance

Chemprop.8 Optimized models are termed ‘opt’ through-
out this study. More details are given in the Supporting
Information. All models were trained with a batch size
of 50, ReLU activation functions, mean aggregation be-
tween the MPNN and FFN step, and explicit hydrogens
as specified in Table I. Learning rates were increased
linearly from 10−4 to 10−3 for two epochs, and then de-
creased exponentially from 10−3 to 10−4. Prior to hy-
perparameter optimization, no dropout, three iterations
of message passing and a hidden size of 300 were used
(termed ‘default’). Regression models used mean abso-
lute error as the metric for evaluation and early stopping;
classification models instead used accuracy as metric. All
models were trained on five different data splits to arrive
at a split-independent estimate of the true model perfor-
mance. Split sizes of 80/10/10 for training, validation
and test set, were used if not indicated otherwise. Ta-
ble I lists the split types for each dataset. Scaffold splits
were performed on the reactant side of the Ea ωB97X-
D3, ∆H Rad-6-RE and Yield Phosphatases databases,
where multiple molecular scaffolds were identified. Both
the Ea ωB97X-D3 and the ∆H Rad-6-RE datasets com-
prise forward and reverse reactions, so that special care
was taken to enforce that each pair of forward and re-
verse reactions was placed in the same set. Otherwise,
the test set error of a model is unrealistically low, and
does not reflect the true model performance. Random
splits were performed on the Ea E2/SN2, Ea SNAr and
log(k) Rate constants databases since they consisted of
too few scaffolds to perform a meaningful scaffold split.
A random split was furthermore performed on the Pista-
chio dataset. For the USPTO-1k-TPL dataset, the split
into training and test data was taken from Ref. 50, and
the training set was split into a training and validation
set randomly.

III. RESULTS AND DISCUSSION

Table II summarizes the performances of the CGR
GCNN developed in this study, Grambow’s dual
GCNN34 and the best performing fingerprint model
(FFN on either the Bert, Morgan Diff or Morgan Con-
cat fingerprints). A full list of test performance of all
default and optimized models on all tasks is available in
the Supporting Information. The CGR approach out-
performs all other models both with its default hyperpa-
rameters, as well as after hyperparameter optimization
for all datasets. We also attempted to make comparisons
to the reaction data presented in Ref. 46 (∆H Rad-6-
RE), but for technical reasons discussed in the SI it is
difficult to fairly compare the methods on this particular
dataset. In all systems, the default hyperparameters are
close to the ideal hyperparameters, indicating that even
the small, compact default model is able to learn com-
plex target properties. In the following, we analyze the
performances on each target in detail.

A. Prediction of activation energies

The performance of the CGR model for the predic-
tion of computational and experimental activation en-
ergies was evaluated on three different datasets. The
first dataset, Ea ωB97X-D3, is by far the largest and
most diverse dataset, comprising about 24,000 computa-
tional activation energies for various elemental reactions
in the forward and reverse direction. Its wide range of
target values (0 to 205 kcal/mol) makes an accurate pre-
diction extremely challenging, so that we consider the
observed lowest errors of about 4 kcal/mol a success nev-
ertheless. For comparison, a model predicting the mean
of the dataset for each datapoint would possess a mean
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Figure 3. Comparison of test set mean absolute error between
different models for the ωB97X-D3 computational activation
energy dataset, with pretraining on B97-D3 activation ener-
gies. Error bars correspond to the standard deviation between
five folds. Best model system highlighted in red, line corre-
sponds to best performance.

absolute error of about 25 kcal/mol. Fig. 3 depicts the
performance of various default and optimized architec-
tures, where the CGR model clearly outperforms other
models. All fingerprint models perform very poorly, high-
lighting the inability of reaction fingerprints to encode
certain details of a transformation especially for diverse
datasets, even despite the large sizes of some of the op-
timized models. We furthermore note that the obtained
performance of the dual GCNN model differs from the
results in Ref. 34 due to the different, more rigorous data
splits used in this study. As mentioned in the previous
section, placing forward and reverse reactions in different
data splits, so that some of the reactions in the test set
also appear in the training set (but in reverse direction)
can severely overestimate model performance. The errors
reported in Table II and Fig. 3 thus provide a more accu-
rate estimation of the the true predictive power of Gram-
bow’s dual-GCNN model than the numbers reported in
Ref. 34.

The second dataset, Ea E2/SN2, only comprises two
chemical transformations, namely E2 and SN2 of differ-
ent electrophiles and nucleophiles. It spans computa-
tional activation energies of 0-65 kcal/mol, and possesses
only a few thousand datapoints. The baseline perfor-
mance of a model predicting the mean of the dataset for
each datapoint is about 11 kcal/mol. This reduction in
target range and chemistry helps all models to perform
better, as depicted in Fig. 4. Again, the CGR approach
outperforms all other models, but by a smaller margin.
Also, the fingerprint models feature a comparatively bet-
ter performance than with the previous dataset, since the
possible chemical transformations are very few, and dif-
ferences in the activation energies can be related to the

Figure 4. Comparison of test set mean absolute error between
different models for the E2/SN2 computational activation en-
ergy dataset. Error bars correspond to the standard deviation
between five folds. Best model system highlighted in red, line
corresponds to best performance.

Figure 5. Comparison of test set mean absolute error between
different models for the SNAr experimental activation energy
dataset. Error bars correspond to the standard deviation be-
tween five folds. Best model system highlighted in red, line
corresponds to best performance.

fingerprints of reactants and products more straightfor-
wardly.

The third dataset, Ea SNAr, is different from the
first two datasets in three regards. First, it is very
small, comprising only a few hundred reactions. Sec-
ond, it is very narrow, spanning only values between
13-42 kcal/mol, which enables even a simple baseline
model predicting only the mean of the distribution to
perform, seemingly, well with a mean absolute error of
about 3 kcal/mol. Third, additional input beyond the
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Figure 6. Mean absolute errors of the CGR GCNN model on
subsets of the Ea ωB97X-D3 dataset without pretraining.

reaction itself is provided, namely five solvent descrip-
tors to characterize the employed solvent and the com-
putational activation energy. Fig. 5 depicts the perfor-
mance of all studied models, where the CGR approach
leads to the lowest mean absolute errors, but is not
significantly better than the optimized Grambow dual
GCNN model. In literature, Gaussian Process Regres-
sion on a large set of quantum-mechanically derived de-
scriptors for this dataset yielded a mean absolute error
of 0.77 kcal/mol.20 The CGR GCNN approach comes
reasonably close to this benchmark, taking into account
that it only learns from the reaction graphs, and does not
feature any quantum-mechanical descriptors apart from
the solvent information and the computed Ea’s. The re-
quirement for quantum-mechanical descriptors as input
can greatly increase the computer time required to make
a prediction, but it may be possible to avoid this by build-
ing a model for predicting the quantum-mechanical de-
scriptors as we done recently by Guan et al.60

A comparison of the performance of the CGR archi-
tecture to the dummy baselines across the three datasets
yields another interesting insight. Even with very lit-
tle data (Ea SNAr) the CGR model can still produce a
relatively low MAE, at approximately a third of the er-
ror of the dummy model. Adding more data, the MAE
decreases to a fourth of the dummy model MAE (Ea

E2/SN2), or even a sixth (Ea ωB97X-D3), with further
reduction expected for more datapoints. An evaluation
of model performance with training set size for the Ea

ωB97X-D3 dataset without pretraining is shown in Fig. 6
for the default CGR and dual GCNN models. The CGR
GCNN model performance does not level off, indicating
that the model may achieve chemical accuracy if a suf-
ficiently large dataset was provided. A simple extrapo-
lation predicts the model to achieve chemical accuracy
with 5-10 million datapoints, which is not out of reach in
light of the current advances in high-performance com-
puting. In contrast, the dual GCNN model levels off

Figure 7. Comparison of test set mean absolute error between
different models for the computational rate constants dataset.
Error bars correspond to the standard deviation between five
folds. Best model system highlighted in red, line corresponds
to best performance.

slightly, and even if linear behavior is assumed, would
only reach chemical accuracy at 100-300 million data-
points.

B. Prediction of rate constants

Model performances for predicting rate constants (at
1000 K) are shown in Fig. 7, where again the CGR GCNN
outperforms other approaches. We note that the errors
are reported for the logarithm of the rate constant, so
that an MAE of 0.4 corresponds to deviations of about
2.5 cm3mol−1s−1 (bimolecular) or s−1 (unimolecular).
This is well within or even below the accuracy of the
rates at the employed level of theory, M06-2X/MG3S
(compared to more elaborate computational results uti-
lizing CCSD(T)-F12/RI calculations with the cc-VTZ-
F1256 and cc-VTZ-F12-CABS57 basis sets, see Ref. 47).

C. Prediction of reaction yields

A different picture arises for the prediction of reaction
yields, Fig. 8. All models perform about equally well,
and are only slightly better than a dummy baseline model
predicting the mean of the distribution (with an MAE of
0.10, see Table I). The CGR approach outperforms other
models by a slight margin, but overall, all model perfor-
mances are rather mediocre. Since the dataset contains
only 157 substrates in combination with 218 enzymes,
and the enzymes were merely one-hot-encoded, the sub-
prime performance is not surprising. In other words, the
models can pick up relations for the different substrates
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Figure 8. Comparison of test set mean absolute error between
different models for the experimental phosphatase reaction
yield dataset. Error bars correspond to the standard devia-
tion between five folds. Best model system highlighted in red,
line corresponds to best performance.

well, but can still be hampered by the crude encoding of
the protein information.

D. Prediction of reaction classes

We furthermore explored the performance of the CGR
GCNN approach on classification tasks, here the classifi-
cation of reactions into their respective name reactions.
To this aim, we predict the names of reactions of two
datasets, a preprocessed and cleaned version of Pista-
chio containing 937 class names, as well as a recently
published benchmark, USPTO-1k-TPL, containing 1000
class names. Fig. 9 depicts the top-1-accuracy (fraction
of test reactions were the correct name is ranked highest)
and top-3-accuracy (fraction of test reactions where the
correct name is found within the three highest ranked
predictions), depending on the size of the training set.
Since the reactions in both datasets are not balanced
(leaving groups are not reported on the product side), the
performance of Grambow’s dual GCNN approach could
not be evaluated. We instead compare the observed accu-
racy to a recent benchmark of Schwaller et al. (red line in
Fig. 9), who achieved a 98.9% top-1-accuracy on USPTO
1k TPL with their state-of-the-art Transformer model.50

They furthermore report 98.2% accuracy on Pistachio
name reactions, but preprocessed and cleaned the data
differently, so that no direct comparison is possible. We
note that the reaction input to the Transformer model
does not rely on atom-mapping, so that the model learns
from less information. The CGR approach outperforms
the Transformer model, but due to the differences in rep-
resentation (no atom-mapping vs. atom-mapping), a di-

Figure 9. Comparison of accuracies between different models
for the classification of name reactions via the USPTO-1K-
TPL dataset (top) or the Pistachio dataset (bottom). Error
bars correspond to the standard deviation between five folds.
The red dot and line correspond to the performance achieved
by Ref. 50.

rect comparison is somewhat biased. Nevertheless, the
observed accuracies of the CGR GCNN model indicate
that it can learn to predict name reactions easily, and
that imbalanced reactions do not hamper model train-
ing.

E. Limitations

The CGR GCNN approach developed in this study
thus provides a high-performing and flexible alternative
to other architectures, such as dual GCNN and FFNs
on various fingerprints. It is more flexible than the dual
GCNN model in that it can treat imbalanced reactions.
However, like the dual GCNN architecture it relies on

8



correct atom mapping of reactions, which increases the
workload on pre-processing steps of databases signifi-
cantly. Incorrect atom mappings add noise to the data,
so that the quality of a prediction depends to some ex-
tent on the quality of the atom-mapping of both training
and test data.

IV. CONCLUSION

We have introduced, benchmarked and validated the
use of CGRs as a suitable reaction representation to
graph-convolutional neural nets. The resulting CGR GC-
NNs outperform other current approaches on a wide vari-
ety of datasets and prediction tasks. Furthermore, they
perform well with a very limited model size, allowing
for rapid training and evaluation. We could thus suc-
cessfully extend the use of GCNNs from molecules to
reactions, creating small and convenient models for the
prediction of various reaction properties. We expect the
developed representation and architecture, as well as the
atom-mapped datasets made available along with this ar-
ticle, to seed further developments in the emerging field
of reaction property prediction.

DATA AND SOFTWARE AVAILABILITY

The CGR GCNN model architecture is available on
GitHub on the master branch of Chemprop.51 Datasets

1, 3 and 8 are available from literature,20,44,50 and were
used as provided. Datasets 2, 4, 5, and 6 are avail-
able on GitHub.52 Dataset 7 is proprietary and thus not
freely available, but does not provide an integral part of
this study, since it only complements dataset 8. For all
datasets except 7 we furthermore provide the data splits
used in this study, as well as the trained CGR GCNN
default models, along with instructions on how to create
predictions.52

SUPPORTING INFORMATION

Model performances on the Rad-6-RE database and
detailed discussion of the influence of data leakage in this
system. Details on hyperparameter searches, full list of
test set errors for all models with and without hyperpa-
rameter optimization.
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