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______________________________________________________________________________________________________________________________________________ 

ABSTRACT: Accurate prediction of the sensitivity properties of high-energy materials (HEMs) and the study of their decomposition 
mechanisms are two major focuses within energetics research. Due to the hazards associated with the synthesis and handling of 
energetic materials, predictive models for HEM sensitivity are of great importance in enabling the safe and efficient development of 
future HEMs. Traditional predictive modeling of HEM decomposition via machine learning algorithms generally displays limited 
interpretability, while mechanistic studies of HEMs typically focus on small subsets of structurally analogous compounds lacking 
generalizability. This study aims to bridge the gap between predictive modeling and computational mechanistic analysis of HEMs, 
with the goal of providing chemically interpretable models for HEM sensitivity property prediction. Herein, we disclose the use of 
multivariate linear regression (MLR) modeling for the prediction of the decomposition temperature and impact sensitivity of HEMs. 
We report an explosophore-based approach to sensitivity property prediction featuring an ensemble of quantum mechanical 
parameters and computational workflows that enable rapid parameterization and modeling of energetic functional groups. We then 
employ these methods to accurately predict sensitivity properties of nitrogen-rich tetrazole and azide HEMs. These statistical MLR 
models are readily interpreted based on the principles of physical organic chemistry, producing structure-property relationships to 
guide the rational design of new HEMs. Furthermore, we extend our explosophore-based approach to predict the sensitivity 
properties of HEMs containing multiple, non-equivalent energetic functional groups through the identification of molecular triggers 
for the bulk decomposition of HEMs. Finally, we showcase the viability of our methods towards ab initio virtual screening of HEMs 
through predictive modeling of external test sets of tetrazole HEMs using structures and parameters generated exclusively in silico. 

______________________________________________________________________________________________________________________________________________

Introduction 
An important consideration in the design of energetic materials 
is their sensitivity to decomposition induced by external 
stimuli. The practicality of any high energy material (HEM) is 
immediately constrained by its ability to be safely synthesized, 
formulated, and stored without significant risks of deflagration 
or detonation. In contrast to numerous studies that aim to 
predict the performance properties (detonation velocity, 
detonation pressure, etc.) of HEMs,1–3 analogous methods for 
the prediction of the sensitivity properties of HEMs 
(decomposition temperature (Tdec), impact sensitivity (IS), 
friction sensitivity, electric spark sensitivity) remain elusive. In 
the absence of robust predictive tools, the development of new 
energetic materials is often subject to time-consuming cycles of 
synthesis and characterization in which chemical insight is 
gained almost entirely through empirical trial-and-error.4 As 
such, the ability to precisely tune the properties of HEM 
candidates based on their chemical structures offers the 
potential to accelerate the development of new HEMs for 
military and civilian applications. Streamlined methods for the 
ab initio design of HEMs can also minimize hazardous 
experimental work associated with the preparation of these 
materials. Benefits of such methods extend further to the 
synthesis of fine chemicals,5 where energetic motifs such as 
nitrogen-containing heterocycles, azides, and nitro groups are 
commonly encountered in synthetic intermediates and in 

bioactive molecules.6 Therefore, understanding the 
decomposition thresholds of these motifs is also a component 
of improved safety in process development chemistry. 

Numerous experimental and computational studies have 
provided valuable insight into the decomposition of HEMs.7–11 
However, the narrow scope of such studies often results in 
limited applicability for the streamlined screening of large 
numbers of HEM candidates. Mechanistic studies of HEM 
decomposition are usually performed on datasets consisting of 
a single molecule or a narrow set of related molecules.7,12–15 
Conclusions drawn from such studies can lead to poor 
generalizability when applied to structurally dissimilar 
compounds. Furthermore, the decomposition of energetic 
materials is often governed by multiple mechanisms with 
comparable activation energies, hindering rational design of 
HEMs based on a single mechanistic proposal.16 Additionally, 
theoretical mechanistic studies involving excited states and 
transition state calculations remain a computationally 
expensive exercise, limiting their applicability for virtual 
screening of large numbers of structurally diverse compounds. 
Analogous challenges of limited generalizability and ballooning 
resource utilization are also encountered in other areas of 
chemistry such as asymmetric catalysis, organic methodology 
development, and battery research. These constraints are 
increasingly addressed by the implementation of data-driven 
approaches which aim to construct quantitative structure-



 

property relationships (QSPRs) to aid prediction and guide 
rational design. In this vein, multivariate linear regression 
(MLR) statistical modeling is an attractive approach for 
developing QSPRs due to its inherent interpretability when 
used in conjunction with physically relevant molecular 
descriptors.17 We sought to utilize an MLR-based approach to 
construct sensitivity property models which would reveal key 
mechanistic features in HEM decomposition for energetic 
material families at the forefront of current research. 

Many commercial HEMs suffer from a combination of harsh 
nitration conditions in synthesis (RDX, HMX, TNT, CL-20), 
significant toxicity (RDX, Pb(N3)2, AP), or deleterious 
environmental impacts in storage and use. In light of these 
factors, nitrogen-rich explosives have garnered significant 
attention as replacements for canonical primary and secondary 
explosives.18–20 However, a lack of reported structure-property 
relationships for nitrogen-rich functionalities such as organic 
azides and nitrogen-containing heterocycles hampers the 
rational design of new heterocyclic explosives and structural 
tuning of existing HEMs. 

In order to elucidate these QSPRs, we employed an 
explosophore-based approach to describe and classify HEMs 
based on the presence of energetic functional groups known as 
explosophores (Figure 1A), typical examples of which include 
nitro groups, nitramines, azides, and nitrogen-containing 
heterocycles. Explosophores are widely acknowledged to be 
responsible for the initial mechanistic steps leading to the 
deflagration or detonation of an HEM.21 As such, detailed 
molecular description of explosophores is paramount in the 
development of chemically interpretable predictive models 
that can guide the design of next-generation HEMs. To enable 
this study, we compiled a highly diverse sensitivity property 
database containing over 400 HEMs reflecting prevailing 
trends in energetics research (Figure 1B).22 

To capture the mechanistic importance of explosophores, we 
designed a general set of structural and quantum mechanical 
descriptors that can be applied to any type of explosophore, 
yielding a rich description of the chemical structures 
responsible for decomposition events. This descriptor 
ensemble includes natural bond orbital (NBO) analysis, 
Hirshfeld surface analysis, vibrational frequencies, charges, 
and the molecular geometry of explosophores. With this 
descriptor set in hand, we employed MLR modeling to develop 
chemically interpretable predictive models for the 
decomposition temperature and impact sensitivity of tetrazole 
and azide HEMs (Figure 1C). Through several case studies, we 
demonstrate the versatility of our explosophore-based 
approach for accurate prediction of HEM sensitivity properties 
and identification of structure-property correlations useful in 
rational design, as well as for corroboration of proposed 
decomposition mechanisms. 

Dataset Curation 

We first compiled a sensitivity property dataset comprised of 
386 energetic materials synthesized by the research groups of 
Klapötke and Shreeve.23 The structural diversity contained 
within our dataset is extensive, featuring compounds 
representative of nearly every major explosophore class in 

numbers sufficiently large for the application of MLR modeling. 

For each of the HEMs in our dataset, sensitivity properties (i.e., 
Tdec and IS) and experimental crystal structures were obtained 
from literature sources.24 Notably, HEMs containing metal 
centers and ionic structures with associated energetic 
counterions and oxidizers (perchlorate, guanidinium, etc.) 
were excluded as the presence of these auxiliary components 
substantially alters the sensitivity properties of HEMs, 
precluding efforts to study the decomposition mechanisms of 
explosophores on organic molecules.25 

Consistency between the methods used to collect experimental 
HEM sensitivity properties is also a requirement for the 
compilation of high-quality datasets for predictive modeling. 
Differential scanning calorimetry (DSC) is typically employed 
to measure the decomposition temperature of energetic 
materials, the precision of which is dependent on the rate at 
which a sample is heated. As such, our dataset contains 
compounds subjected to the same DSC procedure.26 Impact 
sensitivity measurements are typically conducted using 
mechanical tests and are often not reported with a high degree 
of precision.27 In our study, we transformed experimental IS 
measurements to a logarithmic scale (log(IS)).28 

The diversity of the compounds in our dataset required several 
simple yet important filtering steps prior to the generation of 
data subsets appropriate for MLR modeling. Perhaps 
intuitively, different explosophores impart different levels of 
sensitivity to a given HEM. Therefore, it is challenging to 
develop an interpretable MLR model using a training set that 
includes molecules spanning several different explosophore 
classes. To address this issue, we utilized Python scripts to sort 
and categorize HEMs using SMARTS queries and SMILES 
keys.29 The result of this selection was the creation of a number 
of subsets (i.e., monoazides, polyazides, tetrazoles, 
ditetrazoles) that maintained structural diversity about the 
constraint of a common explosophore. Statistical models 
generated from these datasets could then be used to extract 
chemical insight characteristic of a specific explosophore class. 

Figure 1. (A) Examples of explosophores contained within an 
HEM. (B) Plot of decomposition temperature (Tdec) vs. impact 
sensitivity (log(IS)) for our HEM database. The two properties 
are poorly correlated for major HEM classes. (C) Explosophore 
families modeled in this study with representative examples
from each family. 



 

Parameter Acquisition 

Utilization of available experimental crystal structures for the 
HEMs in our compound library was initially convenient for 
featurization efforts in lieu of structures calculated using 
molecular mechanics. HEM sensitivity properties are also 
influenced by the solid state structure of the crystal lattice.30,31 
As later discussions will illustrate, we also demonstrate that 
our methods can be used to model compounds lacking 
experimental crystal structures in order to support 
streamlined ab initio screening of HEM candidates. 

With the 3D structures of our HEMs as input geometries, we 
conducted DFT optimizations (B3LYP/6-31+G(d,p)) and single 
point calculations (M06-2X/def2-TZVP) in the gas-phase. 
Extraction of a suite of geometric and electronic parameters for 
the explosophores in these HEMs (Figure 2) was then 
conducted using automated computational tools (disclosed in 
the SI). These parameters included NBO charges, electrostatic 
potential (ESP) charges, predicted NMR shifts, NBO orbitals, 
Sterimol descriptors, vibrational frequencies, and a series of 
geometric descriptors such as bond angles, distances, and 
dihedral angles. Mathematical combinations of these 
parameters could provide additional parameters for evaluation 
such as bond orders and HOMO–LUMO gap energies (see SI for 
details). Lastly, parameters calculated from Hirshfeld 
isosurfaces were obtained to explore correlations between 
crystal packing and HEM sensitivity.32 

QSPR for Tetrazole HEMs  

Workflow: Explosophores are the key reactive moieties 
responsible for the initiation of HEM deflagration and 
detonation. The viability of our explosophore-based approach 
to sensitivity prediction was initially explored using subsets of 
our larger dataset featuring HEMs containing only a single 
explosophore. Our workflow proceeds by first identifying an 
explosophore family of interest, followed by interrogation of a 
sensitivity property for prediction (Tdec or log(IS)). This 
selection process typically yielded datasets of 30–50 
compounds suitable for MLR modeling. Of the HEMs in a 
selected explosophore class, compounds with multiple, non-
equivalent instances of the explosophore are treated 
separately (vide infra). Once a dataset was curated, we then 
parameterized each molecule using our ensemble of chemical 
descriptors. 

With experimental and descriptor datasets in hand, we applied 
MLR modeling to develop QSPRs for HEM sensitivity according 
to the general workflow described in Figure 3. First, an initial 
set of MLR models is generated for the sensitivity property of 
interest using forward stepwise regression. Multiple leading 
models are considered in terms of the number of parameters in 
the model, avoidance of cross-terms, and the recorded 
regression statistics (see SI for details). Notably, consideration 
of the univariate correlations between descriptors and 
sensitivity properties was a useful tool for model selection and 
the construction of additional descriptors to improve model 
performance. Secondly, univariate correlations can be explored 
to identify outlier compounds, i.e., compounds where the 
presence of a neighboring structure (e.g., acyl azides in an azide 
dataset) alters the properties of an explosophore in a manner 
that categorically differentiates it from the remainder of the 
test set. Inclusion of such compounds has the capacity to 
disproportionately influence the overall model. All suspected 
model outliers were verified using a one-tailed Grubbs outlier 
test at the 0.05 significance level.33 When deemed appropriate, 
removal of such outliers was conducted and new models were 
generated to produce improved predictions. In the following 
sections, we apply this general workflow to generate accurate 

Figure 2. An explosophore-based approach to chemical 
featurization of energetic materials. The graphic above depicts 
geometric, quantum mechanical, and solid-state 
parameterization of tetrazole HEMs. 
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Figure 3. Workflow schematic for (A) computational 
featurization of HEMs and (B) statistical modeling of HEMs for 
mechanistic study and rational design. 



 

and interpretable structure-property relationships for 
nitrogen-rich HEMs. 

Tetrazoles: Tetrazoles are emerging as an increasingly 
important class of energetic materials due to their potential to 
replace nitrated compounds and lead-based primary 
explosives.18,34 Unlike their canonical nitro counterparts, 
tetrazoles do not require forcing nitration conditions for their 
synthesis and pose lower environmental toxicity.35 The 
decomposition mechanisms of tetrazoles have been previously 
investigated in a number of experimental and computational 
studies, with the prevailing decomposition mechanism being a 
stepwise extrusion of molecular nitrogen for both 1,5- and 2,5-
substituted tetrazoles (Figure 4A and 4B).7,8,36–39 Among these 
studies, a number of dynamic isomerization events are 
observed for various tetrazole substituents (-H, -OR, -NHR), 
leading to a variety of possible decomposition pathways and 
rendering the development of generalizable reactivity trends 
challenging. Furthermore, the existence of two constitutional 
tetrazole isomers (i.e., 1,5- and 2,5-tetrazoles) requires 
separate mechanistic consideration in the context of a 
traditional mechanistic study, and the generality of trends 
observed in such studies would be challenged by the diversity 
of substituents encountered in tetrazole energetics. 

To address these challenges using our explosophore-based 
approach on tetrazole HEMs, several considerations were 
made to adequately parameterize the structural and electronic 
properties of the tetrazoles in our study: 1) tetrazoles have two 
different substitution patterns, 2) tetrazoles can bear a 
plethora of substituents that significantly influence their 
energetic properties, and 3) many of the tetrazoles in our 
dataset contain multiple tetrazole explosophores. To 
adequately parametrize both tetrazole substitution patterns, 
we constructed descriptors based on a mechanistic analysis of 
reported decomposition mechanisms of 1,5- and 2,5-tetrazoles 
and devised a numbering scheme for shared bonds and 
common features for tetrazoles of either substitution pattern 
(Figure 4A and 4B).7,8,36–39 Notably, several key features are 
maintained regardless of the tetrazole substitution pattern: the 
bond broken in a stepwise extrusion of molecular nitrogen is 
the single bond between N2 and N3, a triple bond is formed 
between N1 and N2 in the liberation of nitrogen, N3 substituted 
with R1 and has a lone pair, and there is a double bond between 
C4 and N5. Recognition of these similarities allowed for a 
universal description of the tetrazole system through the 
framework of our descriptor collection workflow. In the case of 
symmetric ditetrazoles, both tetrazole moieties in each 

molecule were treated as equivalent and thus only one of the 
two tetrazoles was parameterized for modeling. This 
assumption of symmetry is validated by the analysis of the 
experimental crystal structures of these symmetric 
ditetrazoles, revealing that ten out of eleven constitutionally 
symmetric ditetrazoles in our crystal structure database are 
also structurally symmetric in the solid state. With these 
considerations in mind, we curated and parameterized several 
distinct tetrazole datasets to develop QSPRs for the 
decomposition temperature and impact sensitivity of these 
HEMs. 

Prediction of Tetrazole Sensitivity Properties from Crystal 
Structures: Parameters were collected for a total of 33 
tetrazole HEMs including twenty-four 1,5-tetrazoles and nine 
2,5-tetrazoles from crystal structures. Using forward stepwise 
linear regression, we identified a 3-term statistical model for 
tetrazole decomposition temperature (Figure 5A). This model 
yielded predicted values of Tdec within 44 °C of the 
experimental value for 87% of all 31 tetrazoles in the dataset 
with reported Tdec values, with an MAE of 19 °C for the 27 
tetrazoles comprising the training set.40 The remaining four 
compounds that were predicted with larger errors are shown 
in Figure 5A and 5C (gray entries). 

In this model, the term v(C4=N5) is the normalized vibrational 
stretching frequency of the C4=N5 double bond. We observed 
that this frequency is influenced by the substituent on the C4 
carbon,41 efficiently accounting for inductive effects and 
conjugation with the surrounding π-orbitals of the tetrazole. 
The negative sign of this descriptor in the model indicates that 
electron-withdrawing substituents lead to a lower 
decomposition temperature. The R1–N3 σ* occupancy 
descriptor is based on NBO analysis. As per the model equation, 
tetrazoles with a larger σ* occupancy have a lower 
decomposition temperature. The R1–N3 σ* occupancy is 
controlled by the electronegativity of the substituent on 
nitrogen N3 (H < C < N < O) and the tetrazole substitution 
pattern (1,5 < 2,5); the parameter correlates with the NBO 
charge on N3 with a correlation coefficient of -0.78, 
demonstrating its relationship to the electronic properties of 
the ring substituent. Lastly, the max R B1 descriptor is a 
Sterimol parameter that quantifies the maximal B1 distance of 
either of the two ring substituents.42 This statistical model is 
consistent with the main decomposition pathway proposed in 
literature, which features a rate-limiting cleavage of the N2–N3 
bond followed by nitrogen extrusion from the ring-opened 
intermediate (Figure 4A and 4B).7,8,36–39 Electron-demanding 
substituents at the R1 and R2 positions stabilize the ensuing 
formal negative charge on the C4–N5 motif and a sterically 
hindered R1 substituent favors the rupture of the ring near N3.  

As a next step, we sought to validate our tetrazole models using 
the trigger hypothesis, which states that the bulk 
decomposition of an energetic material is dominated by the 
initial decomposition of the explosophore with the lowest 
activation energy prior to the initiation of an exothermic chain 
reaction.43 We explored this idea in the context of the 
ditetrazole HEMs in our dataset: in cases where an HEM 
contained two non-identical tetrazole units, we hypothesized 
that the molecule’s bulk Tdec would be closely related to the 
lower predicted Tdec of either of the two tetrazole 

 
Figure 4: (A) Atom numbering scheme used in tetrazole 
featurization and proposed decomposition pathways for 1,5-
and (B) 2,5-tetrazoles. (C) Observed natural Lewis structures 
for the tetrazole HEMs studied in this work. 



 

explosophores. As such, we used our statistical model for Tdec 
(Figure 5A) to generate predictions for an external test set of 
12 non-symmetric ditetrazoles and selected the lower of the 
two predicted values as the predicted Tdec for the HEM. This 
model predicted nine non-symmetric ditetrazoles with a mean 
absolute error of 25 °C (Figure 5A and 5C, green entries). This 
result serves as a good external validation for our original 

models and verifies the applicability of the trigger hypothesis 
for prediction of tetrazole decomposition temperature. 
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Figure 5. (A) Plot of predicted vs. experimental values of Tdec and the corresponding 3-term MLR model equation for the crystal 
structure tetrazole dataset. (B) Plot of predicted vs. experimental values of Tdec and the corresponding 3-term MLR model for the 
tetrazole dataset generated from ab initio conformational searches. (C) Table containing the structures and experimental and 
predicted values of Tdec and log(IS) for each tetrazole HEM in our initial tetrazole dataset. Listed predictions correspond to the 
models reported in (A), (B) and Figure 7. 



 

Upon closer inspection of our models for Tdec, it became clear 
to us that several of the tetrazoles in the dataset possessed 
natural Lewis structures containing formal charges (“charged” 
NBO structures; highlighted in purple in Figure 6). The 
presence of these alternative Lewis structures had a significant 
impact on the accuracy of our Tdec predictions: while the MAE 
for tetrazoles with standard Lewis structures is 17 °C, the MAE 
for tetrazoles with “charged” Lewis structures is 46 °C. We thus 
sought to develop an expanded set of descriptors to better 
account for these electronic structures in future modeling 
efforts (vide infra). 

The effects of charged tetrazole Lewis structures were also 
observed when we applied this workflow to the prediction of 
tetrazole impact sensitivity, which yielded models with poorer 
performance. Our best model for log(IS) using the crystal 
structure dataset (Figure 5A) necessitated the removal of six 
compounds before satisfactory model statistics were obtained 
(R2 = 0.86, Q2 = 0. 83, MAE = 0.17, K-fold R2 = 0.75). This can 
largely be attributed to the contributions of 9 out of 31 
tetrazole HEMs with “charged” Lewis structures; while the 22 
tetrazoles with “uncharged” Lewis structures were modeled 
with an MAE of 0.34, the remaining 9 compounds with 
“charged” NBO structures had an MAE of 0.47. While the MLR 
equation of the log(IS) model retained good interpretability 
(Figure 7A), its shortcomings highlighted the necessity for 
construction of parameters that accounted for multiple natural 
Lewis structures.  

Tetrazole Decomposition Temperature Prediction from 
Conformational Searches: Motivated by our initial success in 
identifying QSPR models for the decomposition temperature of 
structurally diverse tetrazole HEMs using descriptor sets 
constructed from crystallographic data, we sought to extend 
our methods to accommodate ab initio virtual screening of 
HEMs. Our reliance on crystal structure data would necessitate 
time-consuming and potentially hazardous laboratory work to 
test model predictions. To this end, we developed a second 
workflow for QSPR modeling of tetrazole sensitivity properties 
wherein 2D structural formulae were converted into 3D 
conformers using molecular mechanics with MacroModel 
version 11.8. All conformers within a 5.0 kcal/mol energy 
difference of the lowest energy conformer were subjected to 
the same DFT optimizations and single point calculations for 
parameter acquisition as described in the original workflow. 
With multiple conformations for each compound in hand, we 
generated two descriptor datasets for statistical applications: 
1) the minimum energy conformer of each HEM according to 
DFT calculations and 2) Boltzmann averaging of descriptor 
values across all conformations. 

As previously discussed, the multiple natural Lewis structures 
encountered within the tetrazole dataset (Figure 6) prompted 
us to construct additional NBO parameters. Due to the 

aromaticity of tetrazoles, we started by constructing minima, 
maxima, sums, and averages of NBO orbital occupancies, 
energies, bond orders, and energy gaps for the calculated 
localized π NBOs. Importantly, multiple Lewis structures were 
unified by identifying NBOs that are related by resonance. For 
instance, the natural Lewis structure of some tetrazoles 
contained an N2=N3 double bond (“charged” NBO structures) 
whereas in the majority of tetrazoles it is localized as a N1=N2 
double bond (“uncharged” NBO structures). Hence, these π 
orbitals were treated as a single structural feature for the 
design of additional descriptors. Closer inspection of the σ NBO 
energies and orbital occupancies of tetrazoles with “charged” 
NBO structures revealed systemic alterations based on the 
calculated Lewis structure of the tetrazole. Analogous feature 
engineering was thus also performed on σ NBO orbitals. Taken 
together, these improvements offered a more uniform 
description of the π-system and the σ skeleton of tetrazoles in 
a manner agnostic of their Lewis structures. 

Statistical models were generated with this new descriptor set 
following the same general workflow outlined in Figure 3. 
Intriguingly, the Boltzmann-averaged descriptor dataset 
provided better statistical models for thermal decomposition, 
while the minimum energy conformer dataset proved more 
effective for prediction of the impact sensitivity (vide infra). 
This result is consistent with the observation that many of the 
tetrazoles in our experimental dataset have a melting point 
below their decomposition temperature. Consequently, these 
tetrazoles have a high degree of conformational flexibility prior 
to decomposition, which is suitably approximated by the 
Boltzmann averaging of the descriptor set. However, 
decomposition initiated by impact occurs in the solid state, in 
which HEMs generally adopt a single conformation in a crystal 
lattice. The statistical model for Tdec derived from the 
Boltzmann-averaged parameters (Figure 5B) carries excellent 
statistical metrics, yielding predicted Tdec values within 30 °C 
of the experimental value for 90% of the 31 tetrazoles in the 
dataset, with an MAE of 16 °C for the 28 tetrazoles comprising 
the training set. The improved performance of this statistical 
model as compared to the model using descriptors derived 
from the crystal structure conformers is also attributed to the 
expanded set of NBO descriptors used in this second 
generation of modeling. This improvement is highlighted by 
the inclusion of the average N1–N2/N2–N3 σ bond order 
descriptor, which was constructed to account for tetrazoles (3 
out of 31) that have a double bond between N2 and N3 in their 
natural Lewis structures. Closer inspection of this descriptor 
reveals a correlation coefficient with the N2–N3 σ bond order of 
0.87, while the descriptor is not correlated with the N1–N2 σ 
bond order (correlation coefficient = 0.04). The large positive 
model coefficient for the average N1–N2/N2–N3 σ bond order in 
the MLR equation (Figure 5B) supports a rate-determining N2–
N3 bond breakage in the decomposition of both tetrazole 
classes. The X=X* maximum occupancy descriptor is the highest 
occupancy in any π* orbital within the tetrazole ring, 
accounting for any tetrazole resonance structures. The third 
descriptor in the model is the average calculated NMR shift of 
all 4 nitrogen atoms in the ring. 

To validate this model with an external test set, the 
decomposition temperatures of our set of 12 non-symmetric 
ditetrazoles were predicted. The ditetrazoles were 

Figure 6. Zwitterionic Lewis structures observed in the 
tetrazole HEMs studied in this work. 



 

parameterized in the same fashion as the training set using 
structures generated from conformational searches and 
subsequent DFT computations. As before, the lower predicted 
value between the two tetrazole moieties was adopted as the 
predicted property for the HEM in accordance with the trigger 
hypothesis. This resulted in good predictions for the 
decomposition temperature for 9 of the 12 ditetrazoles, giving 
a MAE of 16 °C. The total MAE for all 12 ditetrazoles was 31 °C.  

Tetrazole Impact Sensitivity Prediction from 
Conformational Searches: Tetrazole impact sensitivity was 
successfully modeled using the minimum energy conformer 
descriptor set (Figure 7B). This model yielded log(IS) 
predictions for 87% of the 31 tetrazoles within 0.39 of the 
experimental value with a training set MAE of 0.17. As in the 
model for Tdec (Figure 5B), the parameter X=X* maximum 
occupancy appears with a positive coefficient in the model for 
log(IS). The ave R L parameter is a Sterimol parameter that 
describes the average length of both substituents on each 
tetrazole. Three of the four log(IS) outliers (Figure 7B, gray 
points) contained a 5-amino-1H-tetrazol-1-ol subunit and were 
predicted with a higher impact sensitivity than the 
experimental value, suggesting that this motif may result in 
intermolecular interactions not captured in the conformational 
search model. This is further supported by the log(IS) model 
based on the crystal structure (Figure 7A), which gave better 
predictions for all these three compounds (Figure 5C). The 

improved performance of the crystal structure model may be 
attributed to the Hirshfeld parameter de mean describing the 
average intermolecular distance between molecules in the 
solid state. The inclusion of the de mean term in this model 
supports the notion that tighter crystal packing increases the 
sensitivity of tetrazole HEMs. 

Prediction of the ditetrazole test set using this impact 
sensitivity model in conjunction with the trigger hypothesis 
failed to produce good predictions (Figure 7B, green triangles). 
We propose two explanations for this outcome. Firstly, many of 
the ditetrazoles used in the external test set are fully 
conjugated. Our model for tetrazole impact sensitivity largely 
featured descriptors that describe the π-system of isolated 
tetrazole motifs. Consequently, the extended conjugation of the 
non-symmetric ditetrazole test set might produce cooperative 
effects that our model fails to explain. An alternative 
explanation is that the trigger hypothesis is simply not 
applicable for impact-initiated decomposition of tetrazoles. 
The investigation of this question is an area of ongoing 
research. 

Performance Improvements from NBO Feature 
Engineering: The influence of NBO feature engineering on 
model performance is illustrated through comparison between 
the performance of the best Tdec and log(IS) models generated 
using the initial parameter set with the performance of the best 
models developed with the extended parameter set. A useful 
metric for the ability of a descriptor set to account for “charged” 
NBO structures is the comparison of the MAE obtained for the 
dominant natural Lewis structure and that of the charged set 
(Figure 8). Our expanded suite of descriptors substantially 
reduced the difference in MAE between these two groups of 
tetrazoles for both the prediction of Tdec (30 to -7 °C) and 
log(IS) (0.13 to -0.02). 

Tetrazole Decomposition Temperature and Impact 
Sensitivity Prediction Using an Expanded Tetrazole 
Dataset: After demonstrating proof-of-principle for ab initio 
prediction of tetrazole Tdec and log(IS), we conducted a 
comprehensive literature survey using SciFinderⁿ for 
additional energetic tetrazoles disclosed by Klapötke and 
Shreeve that did not have reported crystal structure data. This 
allowed us to add an additional 24 structures to our library and 
produce an expanded dataset of 57 tetrazole HEMs (Figure 9). 
We again used molecular mechanics to obtain a series of 
conformers for each compound and then applied our  

 
Figure 7. (A) 3-term MLR model for tetrazole impact 
sensitivity based on the crystal structure dataset. (B) 3-term 
MLR model and a corresponding plot of experimental vs. 
predicted log(IS) values for tetrazole impact sensitivity based 
on structures generated from ab initio conformational 
searches. The structures of the three training set outliers are 
displayed to the right of the plot. 

 
Figure 8. Improvements to tetrazole Tdec and log(IS) model 
performance upon the inclusion of engineered NBO 
descriptors. The difference in MAE between charged and 
uncharged Lewis structures is decreased for both Tdec and 
log(IS) upon the introduction of engineered descriptors. 
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Figure 9: (A) Plot of predicted vs. experimental values of Tdec and log(IS) for the expanded tetrazole dataset using datasets generated 
from conformational searches. MLR models for (B) Tdec, 3-term, and (C) log(IS), 4-term, for the expanded conformational search 
tetrazole dataset. (D) Table containing the structures and experimental and predicted values of Tdec and log(IS) for each tetrazole 
HEM in the expanded tetrazole dataset. Predictions correspond to the models reported in (B), (C) for the Kennard-Stone test and 
training set, as well as the non-symmetric ditetrazole dataset. 



 

statistical modeling methods towards the prediction of Tdec 
(using a Boltzmann averaged dataset) and log(IS) (using a 
minimum energy conformer dataset). The 54 tetrazoles in this 
dataset with reported Tdec values were split into a 60:40 
train:test set (33 tetrazoles in training set and 21 tetrazoles in 
test set) using the Kennard-Stone algorithm44 to provide a 
reproducible uniform distribution of sensitivity property 
values for model development. 

The training set of 33 tetrazoles resulted in a 3-term model for 
Tdec (Figure 9B) with good statistical metrics. This model 
yielded predicted Tdec values within 41 °C of the experimental 
value for 93% of the tetrazoles in the training set with an MAE 
of 17 °C. Two compounds were excluded from the training set 
due to their outlier status as evidenced by large prediction 
errors (70 °C, 78 °C). This model was then validated with two 
external validation sets: the remaining test set of 21 tetrazoles 
and the test set of 12 non-symmetric ditetrazoles. Prediction of 
the 33 compounds in these validation sets resulted in an MAE 
of 25 °C (four outliers with prediction errors of 68 °C, 72 °C, 100 
°C, and 142 °C). The experimental decomposition temperatures 
of tetrazoles used in this model span a range of over 200 °C, 
highlighting the utility of this predictive model. 

QSPR for Azide HEMs 

Prediction of Decomposition Temperature and Impact 
Sensitivity of Azide HEMs: Organic azides are of interest for 
their promise as replacements for toxic metal-based primary 
explosives.18 In addition to their direct use as energetics, azides 
are ubiquitous handles in the preparation of heterocyclic 
HEMs, bioactive molecules, and materials.45–48 However, to the 
best of our knowledge, no QSPRs have been reported 
describing the sensitivity properties of small molecule azide 
HEMs. To further extend the application of our methods for 
sensitivity property prediction, we turned our attention to the 
35 azide-containing HEMs in our compound library (Figure 
12D). Many of these HEMs included multiple azide functional 
groups per molecule (10 of 35 HEMs, for a total of 54 azide 
explosophores) in addition to non-azide explosophores. As was 

the case with the tetrazole/ditetrazole datasets, we initially 
modeled azides containing only one azide explosophore, and 
then expanded the scope of our prediction to encompass HEMs 
with multiple azide explosophores. 

During curation of the azide dataset, it became apparent that 
acyl azides possess Tdec values that are categorically lower than 
the Tdec of azides attached to other functionalities. The best Tdec 
model generated (vide infra for modeling workflow) for the full 
azide dataset (N = 34, R2 = 0.75, Q2 = 0.69) contained an 
appreciable univariate correlation (R2 = 0.47) between Tdec and 
the σ*(C‒N3) occupancy descriptor (Figure 9). For the full azide 
dataset, the correlation coefficient corresponding to this plot is 
given as -0.69; however, upon removal of the nine acyl, iminyl, 
and peroxyl azides, this correlation coefficient is given as +0.68. 
This categorical difference is easily visualized in Figure 10 and 
carries an intuitive interpretation. In analogy to a concave 
upward nonlinear Hammett plot, this indicates that these 
azides follow a different decomposition mechanism than the 
remainder of the azide HEMs.49 This finding is in agreement 
with the literature, as acyl azides can readily undergo a Curtius 
rearrangement to furnish the corresponding isocyanate with 

Figure 10. Univariate correlation between the lowest 
predicted azide Tdec and the σ*(C‒N3) occupancy descriptor. 
Categorical differences between acyl azides (red), iminyl 
azides (blue), peroxo azides (gray), and the remaining azide 
HEMs (black) are apparent. The linear fit corresponding to the 
entire azide dataset of 34 HEMs given by the red trace is driven 
by outlier azides. The linear fit corresponding to the remaining 
26 azides is given by the black trace. 

 

Figure 11. An iterative approach to modeling HEMs with 
multiple explosophores. Based on the trigger hypothesis, each 
HEM is represented by one of its explosophores. After an initial 
phase of MLR modeling, the explosophore that is predicted to 
be most reactive (lowest Tdec or lowest log(IS)) in the Nth

iteration is taken forward for dataset of the next iteration N+1. 
During the MLR modeling steps, judicious removal of outliers 
may significantly improve the model performance. A 
quantitative metric for outlier selection is a decreased 
difference between R2 and Q2 upon removal of a suspected 
outlier HEM. 



 

the liberation of molecular nitrogen.50 This concerted reaction 
mechanism is not accessible to other classes of azides, which 
most likely decompose via transient nitrene species and the 
liberation of molecular nitrogen.44 As such, models generated 
including these azides are a useful tool in mechanistic 
classification but fail to provide the detailed chemical 
interpretability we desired. This mechanistic divergence 
prompted us to exclude the nine acyl, peroxo, and iminyl azides 
in our dataset from further Tdec modeling efforts.  

After this initial exploration, we systematically developed 
models for Tdec for the remaining 26 azide HEMs in our study. 
We first generated an initial training model using the 19 HEMs 
containing only a single azide explosophore (Figure 11, Step 1) 
see SI for model equation and statistics). We then applied an 
iterative workflow to expand the scope of our prediction to the 
remaining 7 HEMs with multiple azide explosophores per 

molecule. This iterative process is described as follows and is 
demonstrated in detail in the SI. First, the training model for 
HEMs with one azide explosophore was used to generate Tdec 
predictions for each azide explosophore in every HEM in the 
dataset (Figure 11, Step 2). For HEMs with multiple azide 
explosophores, the azide group predicted to be the most 
sensitive (i.e., lowest predicted Tdec) is added to the training 
dataset for a subsequent generation of modeling (Figure 11, 
Step 3). At this point, all HEMs were now included in this 
updated training set. A new generation of models was 
produced from this training set, and the azide explosophore in 
each molecule with the lowest predicted Tdec was again 
compiled into a new dataset. This process was repeated until 
dataset convergence was reached, i.e., once explosophore 
selection for every HEM in the dataset was the same as in the 
previous iteration of modeling (Figure 11, Step 4). In our 
experience, convergence was achieved within 2–4 iterations of 
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Figure 12: (A) Plot of predicted vs. experimental values of Tdec and log(IS) for the azide dataset generated from experimental crystal 
structures. (B) Observed NBO natural Lewis structure for the majority of azide compounds in the dataset. 3-term MLR models for 
(C) Tdec and (D) log(IS) for the crystal structure azide dataset. (E) Table containing the structures and experimental and predicted 
values of Tdec and log(IS) for each azide HEM studied in this work. Predictions correspond to the models reported in (C) and (D). 



 

this workflow. After three iterations of modeling, our workflow 
had converged on a final training set and a corresponding 
predictive model for azide decomposition temperature (Figure 
12C).51 This model yielded Tdec predictions with 18 °C of the 
experimental value for 88% of the 26 azides in the training set 
with a MAE of 7.3 °C. 

The impact sensitivity of the azide HEMs was modeled 
following the same principles. Experimental values of log(IS) 
for 30 of the 35 compounds were distributed between 0 and 
1.1, providing a well-behaved dataset for modeling efforts. The 
five remaining azides outside of this sensitivity range were 
excluded from modeling, as extreme datapoints exert 
disproportionate influence on the models. To establish a 
starting point for modeling, a log(IS) model based only on 
HEMs bearing one azide explosophore was first constructed. 
Subsequent modeling efforts reached convergence after two 
iterations of modeling. The final model for impact sensitivity 
contained 28 compounds; this model yielded log(IS) 
predictions within 0.25 of the experimental value for 93% of 
the 30 azides in the training set with a MAE of 0.13 (Figure 
12D). Notably, acyl, iminyl, and peroxo azides were 
successfully predicted in the final model. 

Analysis of calculated NBO orbitals for the azide dataset reveals 
that most azides share a common natural Lewis structure 
(Figure 12B). The models for Tdec and log(IS) can both be 
readily understood and share analogous parameters. Both 
statistical models contain σ*(C‒N3) occupancy descriptor; the 
coefficient for this descriptor is positive for Tdec and negative 
for log(IS). This parameter serves as a good readout for the 
inductive effects of substituents on the carbon of the azide 
group. Furthermore, both models contain a parameter that 
describes the NBO LUMO orbital of the N2≡N3 triple bond. The 
Tdec model indicates that azides with lower N2≡N3 NBO LUMO 
energies are more sensitive, and the log(IS) model suggests 
that compounds with a smaller N2≡N3 NBO HOMO/LUMO 
energy gap are more sensitive. These observations provide a 
consistent mechanistic picture of azide decomposition via 
extrusion of molecular nitrogen. Lastly, both models contain a 
parameter that describes the geometry/steric environment of 
the azide. In our model for Tdec, azides with a longer azide 
carbon-terminal nitrogen are predicted to have a lower Tdec. In 
our model for log(IS), azides with bulkier substituents are more 
sensitive. 

Notably, very low mean absolute errors were achieved for both 
Tdec and log(IS) (7.3 °C and 0.13, respectively), testifying to the 
accuracy of this method for predictive modeling of azide-
containing HEMs. Good statistical performance was achieved 
with removal of very few outliers, despite the diversity of the 
dataset with regards to the presence of various additional 
explosophores. Furthermore, the statistical models were 
constructed from descriptors unique to the azide moiety and 
were thus largely agnostic of other explosophores contained in 
the molecule. This corroborates that the azides likely serve as 
triggers for explosive decomposition, even in the presence of 
other explosophores. 

 

 

Conclusion 

In summary, we report a series of computational and statistical 
methods that enabled prediction of decomposition 
temperature and impact sensitivity across a structurally 
diverse scope of tetrazole and azide HEMs. The key conceptual 
innovation in this approach is the decision to interrogate the 
structural and quantum mechanical properties of HEMs at the 
level of their explosophores, providing the ability to describe 
and interpret mechanistic events leading to decomposition 
while also modeling sensitivity properties. The advantages of 
this descriptor suite are compounded by the fact that 
descriptors are localized at the level of individual chemical 
bonds but can readily be expanded to larger chemical motifs, 
allowing a common set of parameters to be generated for an 
explosophore of user-specified structure and a sensitivity 
property of interest. A comprehensive account of the 
computational methods used to construct these models is 
disclosed in the SI. 

To the best of our knowledge, this work contains the first 
QSPRs for the sensitivity properties of tetrazole and azide 
HEMs in the reported literature. The models disclosed herein 
contain interpretable terms such as charges, NBO orbitals, and 
steric parameters, thereby offering chemical insight to guide 
the development of new HEMs with improved sensitivity 
properties. In contrast to literature precedence, the models in 
this work were trained and tested on new HEM datasets with 
high structural diversity, demonstrating the generality of our 
methods for chemical featurization of HEMs. Internal and 
external validation of our models further supports their 
validity as useful heuristics for rational design and mechanistic 
study. 

The marriage of our explosophore-based lens for sensitivity 
property prediction with the trigger hypothesis subsequently 
allowed us to predict sensitivity properties for HEMs of 
increased structural complexity. Accurate sensitivity property 
predictions for HEMs containing multiple azide and tetrazole 
explosophores were obtained through simultaneous modeling 
of each of the explosophores in these HEMs, an ability unique 
to our explosophore-based approach. Successful modeling of 
sensitivity properties through this workflow lends support to 
the notion that specific explosophores act as molecular triggers 
for the bulk decomposition of HEMs. However, our efforts to 
predict the impact sensitivity of conjugated non-symmetric 
ditetrazoles in accordance with the trigger hypothesis proved 
unsuccessful, highlighting a limitation of this approach. Impact 
sensitivity predictions for these molecules may require the 
construction of additional descriptors that better capture the 
electronic structures characteristic of these HEMs. 

Finally, we demonstrated the application of our methods 
towards streamlined virtual screening of HEMs. In contrast to 
our earlier models that utilized parameters calculated from 
experimental crystal structures, we successfully predicted the 
sensitivity properties of tetrazoles whose 3D structures were 
obtained from 2D structural formulae alone. Future expansions 
of this computational workflow to other compound classes, 
while not demonstrated in this work, have the potential to 
enable virtual screening of various other HEM families to 
improve the identification of viable synthetic targets prior to 
any experimental work. Derivatization of our workflow to 
include HEMs with ionic structures or even composite 
energetic formulations would further support the rational 
design of future energetic materials. 
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(42)    Brethomé, A. V; Fletcher, S. P.; Paton, R. S. 
Conformational Effects on Physical-Organic 
Descriptors: The Case of Sterimol Steric Parameters. 
ACS Catal. 2019, 9 (3), 2312–2323. 

(43)    Jensen, T. L.; Moxnes, J. F.; Unneberg, E.; Christensen, D. 
Models for Predicting Impact Sensitivity of Energetic 
Materials Based on the Trigger Linkage Hypothesis 
and Arrhenius Kinetics. J. Mol. Model. 2020, 26 (4), 65. 

(44)    Shoaf, A. L.; Bayse, C. A. The Effect of Nitro Groups on 
N2 Extrusion from Aromatic Azide-Based Energetic 
Materials. New J. Chem. 2019, 43 (38), 15326–15334. 

(45)    Schilling, C. I.; Jung, N.; Biskup, M.; Schepers, U.; Bräse, 
S. Bioconjugation Viaazide–Staudinger Ligation: An 
Overview. Chem. Soc. Rev. 2011, 40 (9), 4840–4871. 

(46)    Xie, S.; Sundhoro, M.; Houk, K. N.; Yan, M. Electrophilic 
Azides for Materials Synthesis and Chemical Biology. 
Acc. Chem. Res. 2020, 53 (4), 937–948. 

(47)    Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic 
Azides: An Exploding Diversity of a Unique Class of 
Compounds. Angew. Chem. Int. Ed. 2005, 44 (33), 
5188–5240. 

(48)    Döhler, D.; Michael, P.; Binder, W. H. CuAAC-Based 
Click Chemistry in Self-Healing Polymers. Acc. Chem. 
Res. 2017, 50 (10), 2610–2620. 

(49)    Schreck, J. O. Nonlinear Hammett Relationships. J. 
Chem. Educ. 1971, 48 (2), 103–107. 

(50)    Ghosh, A. K.; Sarkar, A.; Brindisi, M. The Curtius 
Rearrangement: Mechanistic Insight and Recent 
Applications in Natural Product Syntheses. Org. 
Biomol. Chem. 2018, 16 (12), 2006–2027. 

(51)    For details of data selection and the modeling process, 
a tutorial of the iterative approach to the modeling of 
explosive properties, and a detailed discussion of 
model outliers, see the SI. 


