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Abstract

Human analysis of research data is slow and inefficient. In re-
cent years machine learning tools have advanced our capability
to perform tasks normally carried out by humans, such as image
segmentation and classification. In this work, we seek to further
improve binary classification models for high throughput iden-
tification of different microstructural morphologies. We utilize
a dataset with limited observations (133 dendritic structures,
444 non-dendritic) and employ data augmentation via rotation
and translation to enhance the dataset six-fold. Then, trans-
fer learning is carried out using pre-trained networks VGG16,
InceptionV3, and Xception achieving only moderate F1 scores
(0.801 to 0.822). We hypothesize that feature engineering could
yield better results than transfer learning alone. To test this, we
employ a new nature-inspired feature optimization algorithm,
the Binary Red Deer Algorithm (BRDA), to carry out binary
classification and observe F1 scores above 0.93.

1 Introduction

Materials science is centered around the concept of understanding, extract-
ing, and exploiting relationships between structure, property, processing, and
characterization of materials. Images of a material’s crystal or microstructure
can be invaluable in establishing structure-processing-property linkages. How-
ever, the human eye itself can only resolve objects as small as ∼50µm. Inves-
tigating smaller details than this requires microscopy like optical microscopy,
transmission electron microscopy (TEM), scanning electron microscopy (SEM),
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atomic force microscopy (AFM) and others. Each of these techniques offers
different resolution limitations along with other advantages and disadvantages.

Analysis of microstructure images can yield an enormous amount of infor-
mation about a material! For example, some alloys exhibit a dendritic structure
characterized by the presence of myriad snow-flake like dendrites that form dur-
ing the solidification process of casting molten metals. Dendrites can form when
the interface of the solid cast and the liquid alloy has a lower temperature as
compared to the remaining melt resulting in a temperature gradient known
as constitutional undercooling [1]. Since dendrites can modify the mechani-
cal properties in beneficial or detrimental ways, [2] it is important to classify
microstructures of materials as dendritic and non-dendritic.

Traditionally, humans have leveraged training and extensive domain knowl-
edge to interpret and categorize microscopy images. This poses challenges for
interdisciplinary research as well as automated, human-out-of-the-loop experi-
mentation. Moreover, even highly trained humans are still prone to errors and
bias during materials characterisation. This gave rise to the implementation of
computational methods on the study of dendritic microstructures which started
back in 1998 to focus on the evolution of the said microstructures using phase
field modelling [3]. Later attempts have been made on three dimensional re-
construction of microstructures captured from different microscopes which has
helped in getting better insights about the mechanical properties [4, 5]. But all
these works were simulation based and time-consuming.

An alternative to physics-based models are statistical, data-driven models
that trade accuracy for speed by leveraging correlations and patterns in data.
Machine learning models have been used extensively to analyze various mi-
crostructural morphologies over the last two decades[6]. One such example is
the development of optimal morphology derivation from a given microstruc-
ture using Bayesian optimization and kinetic Monte Carlo simulation[7]. Trans-
fer learning has been deployed for microstructure reconstruction and structure
property predictions [8] while support vector regression and multi-layer percep-
tron (MLP) is used to predict information related to dendrite formation in order
to improve high-temperature creep and fatigue resistance [9]. Different types
of industry relevant titanium alloy microstructures can now be classified using
convolution neural networks [10]. Particle swarm optimization algorithm has
been deployed to classify the casting techniques resulting in dendritic and non-
dendritic microstructures in aluminium metal matrix composites [11]. Advanced
computer vision techniques have even been utilized in order to generalize mi-
crostructure morphology classification beyond individual alloy systems[12, 13,
14].

In this work, we turn to a recently reported, nature-inspired algorithm called
Binary Red Deer Algorithm (BRDA) [15] to implement feature engineering to
classify microstructural morphologies as dendritic or non-dendritic. For refer-
ence we also present a comparative study between transfer learning approach
and the BRDA feature engineering approach in classifying microstructural mor-
phologies. We show that BRDA outperforms advanced transfer learning tech-
niques and has promise in the evolving field of computer vision in materials
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informatics.

2 Methods

An image dataset consisting of two different types of micrographs, dendritic
and non-dendritic, has been considered in this work. The number of images in
the dendritic class is 133 while that in the non-dendritic class is 444 which are
quite low from a machine learning standpoint. Consequently, we have performed
a data augmentation on this dataset by translating and rotating the images at
various angles which has given us a six-fold increase in the number of images
per class. The number of images after data augmentation in the dendritic and
non-dendritic class are 826 and 2568, respectively. Following this, we have used
transfer learning and feature engineering approaches as elaborated in subsec-
tion 2.2 and subsection 2.3 respectively to develop binary classification models
on the augmented dataset.

2.1 Dataset

The dataset originates from the Dissemination of Information Technology
for Promotion of Materials Science (DoITPoMS), a web-based initiative which
started in the Materials Science and Metallurgy Department at Cambridge Uni-
versity [16]. This comprises a collection of micrographs covering a wide range of
specimen types like ceramic, metal or alloy, device, composite, polymer, foam,
etc. and microscopy techniques like optical micrography, SEM or TEM. Infor-
mation related to chemical composition and processing technique is also avail-
able as metadata for every microstructure. Additionally, in some cases mi-
crostructures corresponding to a particular specimen are available at different
magnifications. In this work, we have considered microstructures from 21 differ-
ent alloy systems including both dendritic and non-dendritic classes. Figure 1
shows some example images used to build the proposed binary classification
models.

2.2 Transfer Learning Approach

Three different pre-trained CNN architectures; VGG-16 [17], InceptionV3

[18] and Xception [19] have been used. These networks have been trained and
validated separately using the augmented dataset. Transfer learning approach
has been implemented to train the classification models. Initially, all the layers
were frozen and the weights corresponding to the ImageNet dataset [20] were
used to validate the networks on the augmented microstructural dataset. Sub-
sequently, a number of different hyperparameter combinations were tried by
freezing and unfreezing different layers. For frozen layers, weights correspond-
ing to training on the ImageNet dataset were used. Figure 2 and Figure 3
show the architectures along with the frozen and unfrozen layers for VGG16 and
InceptionV3 networks, respectively, that have given the maximum validation
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Figure 1: Example microstructures considered in this work.

accuracy on the augmented dataset where grey boxes indicate the frozen layers.
In the case of VGG16, the first four convolution layers have been frozen. This
is followed by three repeating units of three convolution layers separated by
a maxpool layer. For each of these three units, a general pattern of freezing
the middle convolution layer has been observed. The remaining two fully con-
nected layers and softmax layers have been trained on the augmented dataset.
In InceptionV3, the first five convolution layers have been frozen. The layers
at the end in the form of fully connected and softmax have been trained with
respected to our dataset. In between, we have three different types of inception
modules (L1, L2 and L3) where convolution layers have been frozen at random
based on a trial and error approach. In the case of Xception transfer learning
did not prove to be efficient and all the layers were trained on the augmented
dataset. The validation accuracies for VGG16, InceptionV3 and Xception con-
sidering the discussed architectures are 0.8313, 0.8688 and 0.8594 respectively.

2.3 Feature Engineering Approach

Since InceptionV3 has given the maximum validation accuracy among the
three pre-trained networks, it is used as a feature extractor on the augmented
dataset. This gives 12,289 features per image. This feature set is used to train
two machine learning classifiers, random forest (RF) [21] and MLP [22]. The
classification accuracies for RF and MLP are 0.4198 and 0.5556 respectively. In
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Figure 2: Architecture of VGG16 network depicting the frozen and unfrozen
layers

Figure 3: Schematic diagram showing (a) Architecture of Inception3 net-
work depicting the frozen and unfrozen layers, (b) Inception module 1
(L1), (c) Inception module 2 (L2) and (d) Inception module 3 (L3)

order to improve upon the classification results, a meta-heuristic optimization
algorithm, BRDA, has been deployed. BRDA reduces the size of the feature
vector to 6072 features per image. Following this feature selection, RF and MLP
have been trained on the optimized feature set and the classification accuracies
are 0.9735 and 0.9855 for RF and MLP, respectively. BRDA has been delineated
in subsection 2.4.
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2.4 Binary Red Deer Algorithm (BRDA)

Red Deer Algorithm (RDA) is a recently proposed nature inspired meta-
heuristic optimization algorithm [23] which is derived from the mating behavior
of a sub-species of red deer known as Scottish red deer. During a breeding
season, the male red deer (RD) begin the mating ritual by roaring which at-
tracts the female counterparts called hinds. These male RDs’ are categorized as
commanders, ones having higher roaring intensity, and the rest are called stags.
Every commander forms a harem, a group of hinds that mate with that particu-
lar commander. Harem size depends on the power of the commander defined by
its fitness value. Besides, a commander also has the ability to mate with hinds
belonging to other harems. Stags, on the other hand, mate randomly with their
nearest hinds. This phenomenon of mating ensures a competitive evolution at
each stage of the algorithm which explores the entire space of RDs’. In this
work, we aim to use a binarized form of RDA called Binary Red Deer Algo-
rithm (BRDA) for feature selection in order to choose an optimized subset of
features from the whole set of features obtained from the augmented dataset
using InceptionV3. The aim here is to maximize the classification accuracy
simultaneously minimizing the number of features. Therefore, in this work, fea-
ture selection is modeled as a binary optimization problem, where the solutions
are limited to {0,1}. In the BRDA, we first randomly initialize a vector of real
numbers called RD of size m, the total number of features in the feature set.

RD = [X1, X2, X3, ..., Xm] (1)

RD is converted into a binary vector (BRD) comprising only 0 and 1 using
the Sigmoid function shown in Equation 2. Here 1 indicates that the corre-
sponding feature is selected in the feature subset and vice versa for 0. The
real values of RD are converted into binary values using a threshold of 0.5 as
expressed in Equation 3.

S(x) =
1

1 + e−x
(2)

Xi =

{
1 if S(Xi) > 0.5

0 if S(Xi) ≤ 0.5
(3)

where i ∈ [1,m]. The quality of the RDs at every iteration of the algorithm is
evaluated by a fitness function as expressed in Equation 12.

2.4.1 Initialization of the RD population

At first, a RD population of size N is initialized randomly. Based on fit-
ness values, the top RDs represent the males (N1), and the rest of the RDs
represent the hinds (N2). The fraction of the RD to be considered as male is a
hyperparameter for BRDA and needs to be specified manually.
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2.4.2 Roaring of male RDs

In order to successfully roar and attract hinds, the male RDs may change
their positions according to Equation 4. If the fitness value of the male RDs at
the new position is better than that in the original position, then the position of
the RD is updated and roaring is considered to have been successful. Otherwise,
the old position is retained.

new =

{
old+ a1 × ((upper − lower)× a2 + lower) if a3 ≥ 0.5

old− a1 × ((upper − lower)× a2 + lower) if a3 < 0.5
(4)

Here, old is the original position of the male RD whereas new is the posi-
tion to which a male RD moves during the roaring procedure. a1, a2 and a3
are randomly generated numbers from a uniform distribution of 0 and 1 while
upper = 1 and lower = −1 are the upper and lower bounds of the search space
of the entire RD population.

2.4.3 Distinguishing Commanders from Stags

Among the male RDs, the top N3 are selected as commanders according to
Equation 5

N3 = floor (γ ×N1) (5)

where γ ∈ [0, 1] is a hyperparameter which is to be specified manually. Each of
these commanders competes with the N1 − N3 number of stags randomly and
two new solutions, New1 and New2 are generated as expressed in Equation 6
and Equation 7 respectively. The position of the commander is updated using
the solution which results in the best fitness value among the commander, the
stag, and the two new solutions.

New1 =
Commander + Stag

2
+ (b1 × ((upper − lower)× b2) + lower) (6)

New2 =
Commander + Stag

2
− (b1 × ((upper − lower)× b2) + lower) (7)

Commander + Stag represents addition of the two vectors corresponding to
commander and stag respectively. b1 and b2 are generated using a uniform
distribution function in [0,1].

2.4.4 Formation of Harems

Since this is a minimization problem, better quality of solution is determined
by a lower fitness value. Therefore, we find the power of each commander
according to Equation 8

Pj = F − fj (8)

where Pj and fj are the power and fitness value of the j th commander re-
spectively and j ∈ [1, N3]. F is the sum of fitness values of all commanders.

7



Equation 9 represents the fraction of the total number of hinds that form a
harem with a particular commander.

N4j = floor {Pj ×N2} (9)

where N4j is the number of hinds that belongs to the j th harem.

2.4.5 Mating of Commanders

In each harem, all hinds mate with the respective commander to produce
offspring according to Equation 10.

offspring =
Commander +Hind

2
+ (upper − lower)× c (10)

Here c is a randomly generated number between 0 and 1. Besides, all the
commanders can mate with hinds from all other harems. Consequently, a new
population of RDs are generated which are stored in offspring pool

2.4.6 Mating of Stags

Each stag mates with its nearest hind irrespective which of harem the hind
belongs to. The distance between a stag and all hinds is calculated by Equa-
tion 11.

dk =

√∑
k∈N2

(
stagk − hindjk

)2
(11)

where dk is the distance between a stag and the j th hind. The hind at the
minimum distance is selected for mating, which takes place according to Equa-
tion 10, with the stag replacing the male commander. The offspring formed in
this process are added to the offspring pool.

2.4.7 Selection of Next Generation

After the mating process is completed, the offspring from the offspring pool
are shuffled with the original population. The top N RDs are selected accord-
ing to fitness values as the next generation and the rest of the solutions are
discarded.

2.4.8 Terminating the BRDA

The process is stopped when iter number of iterations are completed. The
RD with the best fitness value in the final generation represents the optimized
feature subset which is used to train the RF and MLP classifiers.
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2.4.9 Fitness Evaluation

Fitness quantifies the quality of BRDA solution. A learning algorithm based
on RF classifier is used to evaluate the performance of a particular feature
subset along with the whole feature set. The fitness function consists of two
components: classification accuracy and the number of features. Our objective is
to achieve the highest classification accuracy minimizing the number of features.
A higher classification accuracy and fewer features implies a low fitness value.
The fitness function is shown in Equation 12.

Fitness = κ× |Selected|
|Total|

+ (1− κ)× ψ (12)

where |Selected| is the number of features in the selected feature subset, |Total|
is the total number of features of the dataset, ψ is the classification error of
the feature subset, and κ ∈ [0, 1] indicates the relative weight assigned to the
number of features and the classification error.

The time complexity of BRDA is expressed as O(iter ∗N2∗(t + m)) where
t is the time complexity in calculating the fitness of a particular RD using the
RF classifier.

3 Results and Discussion

The code to build the transfer learning and feature engineering based models
have been developed predominantly by using two Python libraries, TensorFlow
Core v2.5.0 and Scikit-Learn 0.24.2. Early stopping has been deployed in
case of training the pre-trained networks to minimize the number of epochs and
obtain the optimum results [24].

Figure 4: Plots showing the performance of (a) VGG16, (b) InceptionV3

and (c) Xception networks on the augmented dataset
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Algorithm 1 Algorithm of BRDA

Input: iter, N
Output: Optimized feature set X ′ = (x1, x2, ..., xm)

Initialize RD population
Determine N1 males and N2 hinds based on fitness of RDs
for e1 ← 1 to iter do

for e2 ← 1 to N1 do
Update position of RD if fitness increases

end for
Level stags and commanders
for e2 ← 1 to N3 do

Competition between commander and stag
Update position of the commander

end for
Creation of harems
for e2 ← 1 to N3 do

Mating commander with hinds from its harem
Mating commander with hinds from other harems

end for
for e2 ← 1 to (N1 −N3) do

Select the closest hind from the nearest harem
Mating of stag with the selected hind

end for
Selection of the next generation from offspring pool
Update X ′ if a better solution is encountered

end for
return X ′
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Figure 5: Comparison between the accuracies and losses for training and
validation of the final pre-trained network architectures

Consequently, VGG16, Inception3 and Xception were stopped after 35, 37,
and 43 epochs, respectively as the ADAM optimizer [25] failed to reach any
maxima beyond this point. Figure 4 delineates the epoch wise training accura-
cies, validation accuracies, training errors and validation errors for each of the
three networks. Early stopping gives us validation accuracies of 0.8313, 0.8688
and 0.8594 and validation losses of 0.3, 0.27 and 0.28 for VGG16, Inception3
and Xception respectively and the corresponding training accuracies for these
networks are 0.9819, 0.9997 and 0.9856 while the training losses are 0.1, 0.04
and 0.045 respectively as shown in Figure 5. These results indicate that even
the best combination and frozen and unfrozen layers fail to provide a generalized
binary classifier due to overfitting. Therefore, we have tried feature engineering
as an alternative to transfer learning approach.

BRDA used for feature optimization, has a number of parameters as shown
in Table 1 which need to be specified at the start of the algorithm. The opti-
mum values of these parameter has been determined experimentally following
a trial and error approach. Each of these parameters have been plotted with
respect to the corresponding accuracies obtained by the RF and MLP classifiers
as shown in Figure 6. From the independent plots, we are able to determine the
optimum values of these parameters. While determining a particular parameter,
the remaining parameters are set to arbitrary values. This implies that each of
these parameters, if set to their optimum values, can alone provide an optimized
subset which can lead to accurate classification results which are close to the
actual classification results when all the parameters with their optimum values
are combined together. Therefore, a single parameter itself can bring a signifi-
cant change to the entire model performance and parameter tuning becomes an
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important step of experimentation.

Figure 6: Experimental determination of the parameters of BRDA (a) RD
population (N) (b) Number of male RDs (N1) (c) Ratio of the number of
commanders to total number of male RDs (γ) and (d) Total number of
iterations for which BRDA is executed (iter)

Without BRDA, RF and MLP give poor classification results with accuracies
of 0.4198 and 0.5556, respectively. As shown in Figure 7, the area under the
ROC curves (AUC) for each of these classifiers without using BRDA are 0.478
and 0.532 respectively. These poor values of classification metrics are indication
of improper classification of dendritic and non dendritic micrographs which can
be seen from the true positive rate (TPR) and false positive rate (FPR) values
as shown in Figure 8. TPR values are 0.4987 and 0.5073 and those of FPR are
0.775 and 0.8743 for RF and MLP classifiers respectively without using BRDA
are However, after deploying the BRDA feature optimization algorithm, we note
a drastic improvement in the classification results with accuracies of 0.9735 and
0.9855 and AUC of 0.97 and 0.979 for RF and MLP classifiers respectively.

Besides, the F1 scores for RF and MLP classifiers are 0.963 and 0.969 respec-
tively after the implementation of BRDA in contrast to the same without BRDA
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Table 1: Optimal parameter settings of the proposed FS method called BRDA

Parameter Meaning Value

N RD population 260

N1 Number of male RDs 20

γ
Ratio of the number of commanders
to the total number of male RDs

0.57

iter Total number of iterations for which BRDA is executed 120

Figure 7: Performance of (a) RF and (b) MLP classifiers with and without
using BRDA

which are 0.488 and 0.598 respectively. The F1 scores indicate that applying
BRDA reduces the number of images falsely classified as the other category
significantly. Figure 8 gives a comparative plot depicting the classifier evalua-
tion metrics before and post implementation of BRDA. It has been established
from the FPR values that the number of microstructural images which were
incorrectly classified without using using BRDA has reduced significantly. FPR
post implementation of BRDA are 0.39 and 0.25 for RF and MLP respectively.
Figure 7 provides a better understanding on the performance of the classifiers
with and without BRDA by the help of ROC curves.

4 Conclusion

This work focuses on a comparative study between transfer learning and
feature engineering approaches in classification of dendritic and non-dendritic
microstructural morphologies. Transfer learning using VGG16, InceptionV3 and
Xception fails to provide proper generalization in microstructural characteri-
zation. Consequently, we have utilized a feature engineering approach using a
meta-heuristic optimization algorithm called Binary Red Deer Algorithm which
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Figure 8: Comparison between the accuracies of RF and MLP classifiers
with and without using BRDA

improves the performances of two machine learning classifiers drastically. Pa-
rameter tuning plays an important role in the optimization of the feature set
and therefore impacts the classification results in turn. This work provides
an uncommon example of where feature engineering has outperformed transfer
learning. BRDA therefore brings significant promise in the field of materials
informatics and we will aim to extend its use beyond materials characterization
in future contributions.
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