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Abstract

Biocompatible molecules with electronic functionality provide a promising substrate for

biocompatible electronic devices and electronic interfacing with biological systems. Syn-

thetic oligopeptides composed of an aromatic π-core flanked by oligopeptide wings are

a class of molecules that can self-assemble in aqueous environments into supramolecular

nanoaggregates with emergent optical and electronic activity. We present an integrated

computational-experimental pipeline employing all-atom molecular dynamics simula-

tions and experimental UV-visible spectroscopy within an active learning workflow us-

ing deep representational learning and Bayesian optimization to design π-conjugated

peptides programmed to self-assemble into elongated pseudo-1D nanoaggregtes with a

high degree of H-type co-facial stacking of the π-cores. We consider as our design space

the 694,982 unique π-conjugated peptides comprising a quaterthtiophene π-core flanked

by symmetric oligopeptide wings up to five amino acids in length. After sampling only

1181 molecules (∼0.17% of the design space) by computation and 28 (∼0.004%) by

experiment, we identify and experimentally validate a diversity of previously unknown

high-performing molecules and extract interpretable design rules linking peptide se-

quence to emergent supramolecular structure and properties.
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1 Introduction

Self-assembling π-conjugated peptides containing a π-core flanked by peptide wings represent

a highly tailorable molecular building block for the bottom-up self-assembly of biocompati-

ble supramolecular networks capable of long-range charge transport.1–12 Specific peptide se-

quences can promote secondary structures within the multi-molecular assemblies akin to beta

sheets and guide the quadrupolar association of the π-cores into π-stacked nanostructures

with long-range electronic delocalization. Wielding control over the molecular self-assembly

of these nanomaterials to tailor the emergent structural, optical, and electronic properties

can enable their functional applications as biocompatible, peptide-based field-effect tran-

sistors, photoconductors, or solar cells.2,4,7,13 The availability of 20 distinct natural amino

acids and various π-cores make these systems extremely tunable and versatile in their optical

and electronic properties.14–16 For example, we have previously tuned the steric volume of

amino acids directly adjacent to the π-core to engineer tighter or looser packing of the assem-

blies15,17 and controlled the supramolecular chirality of the nanoaggregates by modulating

the length of an alkyl spacer between the peptide wings and the π-core.18 However, most

of these materials have been developed by serendipity, intuition, or minor iterative mod-

ifications of existing molecules. Systematic data-driven screening approaches present the

potential for much deeper and more efficient exploration of sequence space and the discovery

of molecules with superior structural and functional properties.

The primary goal of the present work is to discover members of the Xn-quaterthtiophene-

Xn (Xn-4T-Xn) family of π-conjugated peptides capable of self-assembling into pseudo-1D

nanoaggregates with in-register stacking of the quaterthtiophene π-cores guided by the Xn

peptide wings containing n=1-5 amino acids. Overlap of the π-cores is a structural pre-

requisite to supramolecular π electron delocalization and the emergence of charge transport

functionality. We chose to explore the quaterthiophene π-core due to its demonstrated ap-

plications in organic electronic field-effect transistors and photovoltaics19,20 and also our pre-

vious measurements of high charge mobilities in oligopeptide-quaterthiophene conjugates.14
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The peptide wing containing n=1-5 amino acids is denoted as Xn, where each X is one of the

20 natural amino acids. We limit the wing length to a maximum of five residues in order to

simplify synthetic manipulation. We place two additional design constraints on the peptide

wings. First, we require the oligopeptides to be head-to-tail invariant such that they are

chemically symmetric about the quaterthtiophene core: one peptide wing is mirror symmet-

ric to the other and each molecule possesses two C-termini. This symmetry imposes parity

between the left and right sides of the molecular building blocks to promote the formation of

linear supramolecular aggregates. Second, we require that the Xn sequence contain at least

one acidic residue (i.e., Asp, Glu) and no basic residues (i.e., Arg, His, Lys). The acidic

side-chains together with the two carboxyl C-termini allows us to wield pH control of the

oligopeptide protonation state such that they possess a formal negative charge of at least

(-4)e at high pH and are formally charge neutral at low pH. It has been previously shown

through molecular modeling calculations and fluorescence correlation spectroscopy that in-

termolecular Coulombic repulsion and enhanced molecular solvation at high pH disfavors

assembly and maintains the system as a mixture of monomers and small oligomers.21 Acidi-

fication protonates the ionizable groups to eliminate the Coulombic repulsion and serves as a

trigger for large-scale supramolecular assembly. Under these two constraints, the Xn-4T-Xn

family comprises 694,982 unique molecules possessing oligopeptide wings containing between

n=1-5 amino acids. The design challenge is to discover the members of this design space

that self-assemble into the most highly ordered linear nanoaggregates.

The large volume of sequence space means that no more than a tiny fraction of molecular

candidates can be experimentally explored due to the time and labor costs associated with

oligopeptide synthesis and assays. Edisonian trial-and-improvement experimental search is

therefore highly inefficient and limited. Chemical intuition can help focus the search, but

prior knowledge is restricted to a small number of previously studied candidates and also

introduces human bias that can impede the discovery of high-performing, non-intuitive solu-

tions. Computational modeling presents a means to conduct high throughput in silico screen-
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ing of molecular space. For example, Frederix et al. identified design rules for the assembly of

tripeptide sequences by exhaustively simulating all possible amino acid combinations using

coarse grained molecular dynamics simulation.22 For more complicated molecules and larger

molecular search spaces, exhaustive enumeration becomes intractable and it is profitable

to combine computational screening with data-driven modeling and active learning. The

essence of this approach is to train on-the-fly sequence-property relationships over all com-

putational screening data collected to date and use these models to guide subsequent rounds

of the computational screen within a virtuous feedback loop.23–26 For example, Li et al. used

machine learning algorithms such as random forests, gradient boosting, and logistic regres-

sion to predict the assembly and formation of hydrogels from possible peptidic precursors.27

Nagasawa et al. employed artificial neural networks and random forests for the discovery of

conjugated polymers for organic photovoltaic applications.28 In the context of π-conjugated

peptides, we previously combined coarse-grained molecular simulation with deep representa-

tional learning and Bayesian optimization to identify molecules predicted to exhibit superior

assembly into pseudo-1D linear aggregates29 and we recently synthesized and tested pery-

lene dimide based peptide-π conjugated materials based on quantitative structure property

relation models trained over molecular simulation data.17,30

A deficiency of data-driven virtual screening is the weak coupling between computation

and experiment. High-throughput virtual screening using computation is used as an initial

coarse filtration of the design space that identifies a manageably small number of candidates

for synthesis and testing in a subsequent low-throughput experimental screen.31,32 The serial

nature of this process means that there is no provision to incorporate experimental feedback

into the data-driven search of the design space. This is a lost opportunity since the exper-

imental data can serve as a source of high-quality information to better guide the search

and correct for approximations and uncertainties inherent in the computational models. A

hybrid data-driven search comprising parallel computational and experimental screens has

the potential to offer the best of both worlds – high-throughput approximate computation
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to achieve broad coverage of the design space and low-throughput experimentation directed

towards the most promising candidates. The enabling component of such a procedure is a

data-driven model capable of constructing on-the-fly sequence-property relationships from

experimental and computational screens that operate asynchronously and in parallel and

measure/predict different properties of the molecular system. The trained model is then

used within an active learning paradigm to select the most promising molecules for subse-

quent rounds of computational and experimental screening.

In this work, we develop and deploy a hybrid computational/experimental active learn-

ing approach for the data-driven design of Xn-4T-Xn π-conjugated oligopeptides capable

of self-assembling into pseudo-1D linear aggregates. We perform high-throughput computa-

tional screening using all-atom molecular dynamics simulations that predict the structural

morphology of the self-assembled oligopeptide nanoaggregates. We conduct low-throughput

experimental oligopeptide synthesis and characterize their assembly using UV-visible spec-

troscopy. We integrate the computational and experimental screening results to construct

on-the-fly sequence-property models that performs asynchronous on-demand selection of the

next batch of samples for computational or experimental screening. After sampling only

1181 (∼0.17%) of the 694,982 molecules in the design space by computation and only 28

(∼0.004%) by experiment, we discover and experimentally validate a diversity of previously

unknown high-performing oligopeptides capable of spontaneously assembling supramolecu-

lar aggregates with a high degree of H-type character and extract interpretable design rules

linking peptide sequence to emergent supramolecular structure and properties.

2 Methods

In this section, we first present a high-level overview of the hybrid computational/experimental

active learning workflow schematically illustrated in Fig. 1. We then present the methodolog-

ical details of each component. For the interested reader, a more comprehensive explication
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of the theoretical underpinnings of these techniques, discussion of their numerical implemen-

tation, and the codes used to conduct this work are provided in the Supporting Information:

Supporting Methods.33

Figure 1: Schematic of the hybrid computational/experimental active learning workflow
for the discovery of self-assembling Xn-4T-Xn π-conjugated peptides. We perform sepa-
rate computational and experimental active learning loops within a shared low-dimensional
latent space embedding of the molecular design space learned using regularized autoen-
coders (RAE). Each active learning loop then consists of three parts. (i) Evaluating the
quality of a given molecule k in the Xn-4T-Xn design space by either performing high-
throughput all-atom molecular dynamics simulations to measure the average number of con-
tacts per molecule κ(k) and radius of gyration Rg

(k) of the self-assembled nanoaggregate or
low-throughput experimental synthesis and measurement of the blue-shift λ(k) in the mode
of the UV-vis spectrum. (ii) Fitting surrogate models using Gaussian process regression
(GPR) to predict the performance of untested candidates given the accumulated simulation
and experimental data collected to date. Two separate GPRs are maintained for the two
computational objectives GPRκ and GPRRg . Importantly, we build a multi-fidelity GPR
(mfGPR) as our experimental surrogate model GPRλ that also incorporates data from the
computational GPRs to improve prediction accuracy beyond what would be possible from the
limited experimental data alone. (iii) Employing Bayesian optimization (BO) to interrogate
the GPR model and select the next most promising molecular candidates for computation
as those lying on the κ-Rg Pareto frontier and for experimentation as those with large values
of λ. The molecular renderings in this figure, and throughout the paper, are generated using
the Visual Molecular Dynamics (VMD) software.34

7



2.1 Overview

We operate a high-throughput computational screening loop to perform all-atom molecu-

lar dynamics (MD) simulations to predict the structural morphology of the self-assembled

nanoaggregates produced by particular Xn-4T-Xn sequences. The results of the computa-

tional screen are used to fit two surrogate sequence-property models relating oligopeptide

sequence to the radius of gyration Rg and number of intermolecular contacts κ within the

structure. The computational loop seeks to simultaneously maximize κ and Rg to produce

pseudo-1D nanoaggregates with in-register π-stacking. We do not a priori know the ap-

propriate relative weights of κ and Rg and so adopt an a posteriori optimization strategy

in which we map out the family of Pareto optimal solutions populating the κ-Rg Pareto

frontier.35 We construct the sequence-property models over a low-dimensional embedding

of the molecular design space extracted using regularized autoencoders36 (RAE) and fit

the models using Gaussian process regression37 (GPR). The GPR predictions are passed to

multi-dimensional Bayesian optimization38,39 (BO) routines to select the next most promis-

ing molecules to simulate for the computational screen.

We simultaneously operate a low-throughput experimental screening loop. In this loop,

we synthesize Xn-4T-Xn oligopeptides and characterize their assembly by the blue-shift λ in

the mode of the UV-visible spectrogram between the unassembled (high-pH) and assembled

(low-pH) states as a quantitative measure of the degree of H-type (i.e., co-facial) aggregation.

Again we construct a surrogate sequence-property model relating oligopeptide sequence to

the spectral shift where we use the same low-dimensional embedding furnished by the RAE.

Importantly, the regression model we use to fit this relationship is a multi-fidelity GPR

(mfGPR)40 that we train over both the experimental measurements and the computational

predictions. Despite measuring different observables of the molecular system – κ and Rg vs.

λ – the mfGPR can make use of the voluminous computational predictions to supplement

the scarce experimental measurements to furnish a higher accuracy sequence-property model

for the spectral shifts than would be possible using the experimental data alone. The com-
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putational and experimental screening loops operate asynchronously and in parallel and the

data-driven GPR models are continually updated with each new batch of screening data.

The goal of the hybrid computational/experimental screening process is to discover and

experimentally validate Xn-4T-Xn molecules with unprecedentedly large values of λ indica-

tive of exceptional in-register π-stacking and H-type character that is a prerequisite for

supramolecular electronic delocalization and emergent optical and electronic functionality.

2.2 All-atom molecular dynamics simulations

All-atom molecular dynamics simulations of Xn-4T-Xn molecules were conducted using the

GROMACS 2019.2 simulation suite.41 Simulations were initialized in the unassembled state

by randomly placing 24 Xn-4T-Xn molecules within a 10×10×10 nm3 simulation box with

three-dimensional periodic boundary conditions and then solvating the system with TIP3P

water.42 Peptides were modeled in the electrically neutral state corresponding to low-pH

conditions and treated with the AMBER99SB-ILDN forcefield.43 The system was relaxed to

T = 300 K and P = 1 bar by steepest descent energy minimization, NVT equilibration44 and

NPT45 equilibration. We subsequently conducted 200 ns NPT production runs to observe the

spontaneous assembly of supramolecular nanoaggregates. Production runs were of sufficient

duration that structural metrics of nanoaggregate formation stabilized over the course of the

run. Simulation snapshots were extracted and saveed every 1 ps for analysis.

The fitness of a particular Xn-4T-Xn molecule was defined within our molecular simula-

tions based on its ability to form pseudo-1D linear nanoaggregates with in-register stacking

of the π-cores. We quantified this structurally via the the average number of contacts per

molecule κ and the radius of gyrationRg
46 of the self-assembled nanoaggregates averaged over

the terminal 50 ns of our production runs. An intermolecular contact is defined according to

our previously reported “optical distance” dopticali,j that measures the minimum intermolecular

distance between any pair of aromatic rings within the π-cores of molecules i and j.29,47–49

We have previously shown that adopting a threshold of dopticali,j < 0.7 nm by which to define
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an intermolecular contact assures close proximity and in-register π-stacking between at least

one pair of aromatic rings.29,48–50 Maximizing κ promotes π-π stacking while simultaneously

maximizing Rg encourages the formation of high-aspect ratio linear nanoaggregates. In gen-

eral, we found maximization of either objective function alone was insufficient to promote

in-register stacked pseudo-1D nanoaggregates: high κ in the absence of high Rg corresponds

to globular structures with promiscuous multi-molecular π-stacking, whereas high Rg in the

absence of high κ corresponds to weakly associated elongated threads lacking π-core over-

laps. As we will show, the hybrid computational/experimental active learning framework

learns the appropriate balance between κ and Rg that is most predictive of high-performing

experimental candidates with large values of λ.

2.3 Chemical space embedding

Each Xn-4T-Xn molecule in our design space is differentiated by the identity of the peptide

wing containing between one and five amino acids. We represent each candidate molecule as

a linear amino acid graph where each node is an amino acid and the edges reflect their linear

connectivity (Fig. S1 in the Supporting Information). The molecular design space of 694,982

molecules is large, discrete, and high-dimensional. It is possible to perform active learning

directly over this space using, for example, kernel models,23,51–56 but superior search efficien-

cies can be achieved by first projecting the molecular design space into a smooth, continuous,

low-dimensional space that is more amenable to the construction of robust regression mod-

els and deployment of optimization algorithms.26,29 We learn a bespoke latent space for the

Xn-4T-Xn family using a regularized autoencoder36 (RAE), a deterministic variant of the

popular variational autoencoder (VAE) architecture,57 trained on our entire molecular de-

sign space (Fig. S2). This encoder-decoder architecture consists of a message passing neural

network58,59 encoder and a decoder performing explicit graph matching to ensure end-to-end

invariance of node permutations. The encoder60–62 accepts graphical representations of the

Xn peptide sequences the nodes of which are featurized by the 553 single amino acid physio-
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chemical properties contained in the AAindex database and the edges of which are featurized

by the 135 pairwise amino acid contact potentials and mutation matrices.63 The bottleneck

layer defining the interface between the trained encoder and decoder contains a nonlinear

latent embedding of the molecular design space ξ learned by the encoder that preserves

relationships between molecular candidates and is sufficiently informative for the decoder

to accurately reconstruct the molecular graphs (Fig. S3). We determine an appropriate di-

mensionality d=32 for the latent space using exploratory hyperparamter tuning optimizing

the RAE reconstruction loss.64,65 This low-dimensional latent space defines a smooth and

continuous representation ξ of the molecular design space over which fit (mf)GPR surrogate

models and conduct BO-enabled active learning.

2.4 Computational active learning

The goal of the computational active learning loop is to drive computational discovery of

candidate Xn-4T-Xn molecules that simultaneously maximize the average number of con-

tacts per molecule κ and the radius of gyration Rg of the self-assembled aggregates. This

amounts to searching for molecules residing upon the κ-Rg Pareto frontier, for which the dual

objective functions necessitate a multi-objective optimization strategy. We seeded the active

learning screen by conducting MD simulations of 228 initial candidate molecules. To ensure

broad initial sampling of the candidate space, we selected 100 molecules as those residing

closest to the centroids of a 100-cluster k-means partitioning of the RAE latent space. The

remaining 128 molecules were hand-selected to comprise a diversity of peptide wing lengths,

residue hydrophobicity, aromaticity, polarity, and presence of heteroatoms. We used the

computational predictions of κ and Rg to train two independent Gaussian process regression

(GPR) surrogate models37 κ̂ = f(ξ) and R̂g = g(ξ) that perform supervised learning of map-

pings from the latent space coordinates to the two structural observables. The predictions

of the two GPRs are passed to a multi-objective BO routine that seeks to simultaneously

maximize κ and Rg using the method of random scalarizations.38,39 The trained GPRs for
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κ and Rg are used to construct two independent BO upper confidence bound (UCB)66 ac-

quisition functions defining the relative desirability of each candidate Xn-4T-Xn molecule in

maximizing each of these two objectives. We then collapse these two acquisition functions

into a single scalarized acquisition function constructed as a randomly weighted linear sum.

The scalarized acquisition function is then used to perform univariate Bayesian optimization.

A particular random scalarization corresponds to a particular choice of relative weightings

between the two design objectives and defines a vector within the 2D κ-Rg space along which

to maximize. Under sufficiently many repeated random scalarizations, the random vectors

span the κ-Rg Pareto frontier to discover a family of Pareto optimal solutions. We perform

batched selection over different random scalarizations and choices of the UCB hyperparam-

eter balancing the BO exploit-explore tradeoff to propose 25 new candidate molecules per

round. MD simulations of these 25 molecules are performed and the three part active learn-

ing cycle is iteratively repeated. We assess convergence of the iterative screen by monitoring

the set of Pareto optimal points that define the κ-Rg Pareto frontier and terminate sampling

once the Pareto frontier ceases to advance with additional rounds of sampling. We conducted

38 rounds of computational screening over which we considered 1181 candidate molecules. A

full accounting of the molecules identified in each round of the computational active learning

loop is provided in the Supporting Information: Data Availability.33

2.5 Experimental active learning

The experimental active learning loop aims to maximize the blue-shift λ in the mode of the

UV-visible spectrogram between the unassembled (high-pH) and assembled (low-pH) states.

The magnitude of this spectral shift λ has been experimentally shown to correlate with co-

facial H-type assembly that results in formation of the desired pseudo-1D linear stacks.14,67,68

We seeded the experimental search with a set of 11 molecules hand selected from the 228

molecules comprising the initial computational round to comprise a diversity of oligopeptide

wing lengths and predicted values of κ and Rg. We trained a GPR model λ̂ = h(ξ) to predict
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the spectral shift λ as a function of latent space coordinates. In this case we have only a single

objective function λ but we wish to construct a multi-fidelity surrogate model incorporating

both direct experimental measurements of λ and computational predictions of κ and Rg. The

rationale is that the computational predictions for κ and Rg should be correlated with and

predictive of the experimental measurements of λ. This is expected to be the case since κ and

Rg are structural measures of the degree of in-register π-stacking in elongated nanoaggregates

that are prerequisites for H-aggregate character manifested in measurements of λ. A multi-

fidelity model trained to learn a nonlinear mapping from the low-fidelity computational

predictions to high-fidelity experimental measurements can take advantage of the abundant

computational data to produce a superior model than that obtained by training over only

the sparse experimental data alone. Indeed, by the terminal round of experimental active

learning, incorporation of computational screening data within the multi-fidelity paradigm

leads to a ∼27% improvement in the predictive accuracy of our surrogate model compared

to a single-fidelity model fitted only over the experimental observations (Fig. S4).

We construct multi-fidelity surrogate models fusing the computational (low-fidelity) and

experimental (high-fidelity) data using the multi-fidelity Gaussian process regression (mfGPR)

formalism.40 The mfGPR model is then passed to a standard BO routine38 employing an

expected improvement (EI) acquisition function38,69,70 and the Kringing believer71 batched

sampling. We use the BO to propose a batch of molecules for the next round of sampling,

which we manually down-select to 8-9 molecules for experimental synthesis and character-

ization. By incorporating “human-in-the-loop” curation of the selected molecules we hope

to balance purely data-driven candidate proposal with chemical intuition and thereby incor-

porate some degree of prior knowledge and human experience into the search process with-

out, we hope, corrupting the search with too much bias. The success of this collaborative

human-machine paradigm has been previously demonstrated in the data-driven discovery of

molecular organic light emitting diodes.32 The experimental measurements are fed back into

the low-throughput experimental active learning loop that is executed asynchronously and
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in parallel with the high-throughput computational loop. We execute three rounds of ex-

perimental active learning over the course of the 38 rounds of computational active learning

that are executed at computational rounds 0, 14, and 22. Given the good performance of

the candidates studied in the third experimental round together with the relatively modest

advances in the Pareto frontier observed over computational rounds 23-38, we elected to

terminate our experimental screen after its third round. A full accounting of the molecules

identified in each round of the experimental active learning loop is provided in Table 1 and

in the Supporting Information: Data Availability.33

2.6 Nonlinear manifold learning of low-dimensional assembly path-

ways

After completing the hybrid computational/experimental screen we subjected the ensemble

of 1181 molecular simulation trajectories of Xn-4T-Xn candidate molecules to nonlinear di-

mensionality reduction in order to resolve the structural assembly pathways. In doing so, we

sought to gain mechanistic understanding of the molecular assembly mechanisms differenti-

ating the top performing molecules identified by our screen. We performed nonlinear dimen-

sionality reduction using diffusion maps manifold learning72,73 to project the configurational

coordinate space into a low-dimensional space preserving the leading high-variance collective

dynamics of the system.29,47,74–77 Diffusion maps take as an input a pairwise distance matrix

measuring the configurational similarity between all 118,100 simulation snapshots harvested

from the ensemble of 1181 simulation trajectories. We define these pairwise distances us-

ing the smooth overlap of atomic positions (SOAP) kernel78–81 between the heavy atoms

constituting the 4T π-cores as a distance metric that is naturally invariant to rotations,

translations, and permutations of atoms, and which – as a π-core-centric metric – can be

applied between oligopeptides with different wing lengths. The influence of the wings is

implicitly retained through their impact on the configurations adopted by the π-cores. A

density-adaptive variant of diffusion maps82 is then applied to furnish embeddings of the as-
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sembly trajectories into a 2D manifold that exposes the assembly pathways and mechanisms

followed by the various Xn-4T-Xn molecules.

2.7 Oligopeptide synthesis

General Information. N,N -Dimethylformamide (DMF) was purchased from Sigma-Aldrich.

N -Methyl-2-pyrrolidone (NMP) was obtained from Advanced ChemTech. Dichloromethane

(DCM) and n-hexane were freshly distilled prior to storage. All solvents were stored over 4

Å molecular sieves and were subsequently degassed by sparging with nitrogen gas at least 30

min prior to use. O-(Benzotriazol-1-yl)-N,N,N ′,N ′-tetramethyluronium hexafluorophosphate

(HBTU) was purchased from Oakwood Products Inc. Tetrakis(triphenylphosphine)palladium

was obtained from Strem Chemicals. Wang resin (preloaded with amino acid) and Fmoc-

protected amino acids were obtained from Advanced Chem Tech. 5-Bromo-2-thiophenecarboxylic

acid was obtained from Accela Chem Bio Co. Ltd. All other reagents and starting materials

were obtained from Sigma-Aldrich and were used as received. Details of the synthesis for

individual oligopeptides is provided in the Supporting Information: Peptide Synthesis.

Electrospray Ionization Mass Spectrometry (ESI-MS). ESI samples were col-

lected using a Thermo Finnigan LCQ Deca Ion Trap Mass Spectrometer in negative mode.

Samples were prepared in a 1:1 MeOH:water solution with 1% ammonium hydroxide. ESI

spectra for each synthesized peptide are provided in the Supporting Information: ESI Spec-

tra.

Reverse-Phase High Performance Liquid Chromatography (HPLC). HPLC pu-

rification was performed on an Agilent 1100 series (semipreparative/analytical) and a Varian

PrepStar SD-1 (preparative) instrument using Luna 5 µm particle diameter C8 with TMS

end-capping columns with silica solid support. An ammonium formate aqueous buffer (pH

8) and acetonitrile were used as the mobile phase. HPLC traces for each synthesized peptide

are provided in the Supporting Information: Analytical HPLC Traces.

General Solid-Phase Peptide Synthesis (SPPS). All peptides were synthesized us-
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ing the standard Fmoc solid-phase technique with Wang resin preloaded with Fmoc-protected

amino acids. To the resin in a peptide chamber, Fmoc-deprotection was accomplished by

adding a 20% piperidine solution in DMF twice (successive 5- and 10-min treatments) fol-

lowed by washing with NMP× 3, methanol× 3, and DCM× 3. For the amino acid couplings,

3.0 equiv of the Fmoc-protected amino acid was activated with 2.9 equiv of HBTU and 10

equiv of diisopropylethylamine (DIPEA) in NMP, and this solution was added to the resin

beads. The reaction mixture was allowed to mix for 45-60 min, after which the beads were

rinsed with NMP, methanol, and DCM (3 times each). The completion of all couplings

was monitored using a Kaiser test on a few dry resin beads, repeating the same amino acid

coupling if needed. The general procedure for amino acid coupling was repeated for each

additional amino acid until the desired peptide sequence was obtained.

General N -Acylation Procedure for Peptides. Following our previous procedure,18

a solution containing 3 equiv of 5-Bromo-2- thiophenecarboxylic acid, HBTU (2.9 equiv),

and DIPEA (10 equiv) in NMP was mixed with the oligopeptide-bound resin for 3 h. The

completion of the N -acylation was assessed using a Kaiser test on a few dry resin beads.

The resin was washed with NMP, methanol, and DCM (3 times each).

General On-Resin Stille Coupling Procedure. The solid-supported N -acylated

oligopeptide (1 equiv) was transferred to a Schlenk flask equipped with a reflux condenser.

The resin was dried under vacuum. Pd(PPh3)4 (4 mol %, relative to resin loading) was added

to the reaction vessel. An approximately 15 mM solution of the 5,5′-bis-trimethylstannyl-

[2,2′]-bithiophene (0.50 equiv) was prepared in DMF and was added to the reaction flask via

syringe. The mixture was heated to 80◦C for 18 h and was agitated constantly by bubbling

nitrogen through the solution. The mixture was allowed to cool to room temperature. The

peptide was subjected to the general cleavage and workup procedure to yield the crude

product and then further purified by HPLC.

General Peptide Cleavage and Workup Procedure. Following dimerization, the

resin was returned to the peptide chamber and again subjected to a wash cycle: 2×NMP,
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2×methanol, and 2×DCM. The resin was then treated with 9.5 mL of trifluoroacetic acid,

250 µL of water, and 250 µL of triisopropylsilane for 3 h. The peptide solution was filtered

from the resin beads, washed three times with DCM, and concentrated by evaporation under

reduced pressure. The crude peptide was then precipitated from the solution with 40-50 mL

of diethyl ether and isolated through centrifugation. The resulting pellet was triturated with

diethyl ether to yield the crude product, which was dissolved in approximately 20-25 mL of

water. 30 µL of potassium hydroxide (1 M) was added if needed to solubilize the peptides

in water and lyophilized.

2.8 UV-visible spectroscopy

UV-vis spectra were obtained using a Varian Cary 50 Bio UV-vis spectrophotometer. Spec-

troscopic samples were prepared by diluting the peptide solution to the appropriate con-

centration in Millipore water to achieve an optical density near 0.1, 0.2, and 0.3 in the

monomeric/basic solution. The pH was then adjusted by adding 20 µL of 1M KOH (basic)

followed by addition of 40 µL of 1M HCl (acidic). Approximate concentration of the peptides

were 2.25 µM, 4.50 µM, and 6.75 µM for optical density of 0.1, 0.2, and 0.3 respectively.

3 Results and Discussion

3.1 Hybrid computational/experimental active learning discovers

novel high-performing oligopeptides

We report in Fig. 2 the results of our hybrid computational/experiment active learning

screen to the molecular design space of 694,982 Xn-4T-Xn candidate molecules. We conduct

38 rounds of computational screening to simulate a total of 1181 Xn-4T-Xn molecules inter-

leaved with three rounds of experimental screening in which we synthesize and test a total

of 28 molecules. A full accounting of the molecules identified in each round of the compu-
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tational and experimental active learning loops are provided in the Supporting Information:

Data Availability.33 Round 0 of the computational and experimental screens commence si-

multaneously, respectively screening 228 and 11 molecules. The two screens then proceed

asynchronously and in parallel. The high-throughput computational loop considers 25 can-

didate molecules per round and iterates more rapidly than the low-throughput experimental

screen that considers 8-9 molecules per round. We track the progress of the experimental

screen via the measured spectral blue shifts λ upon assembly as a measure of the prevalence

of H-type co-facial π-stacking (Fig. 2a). We track the progress of the computational screen

via the advancement in the κ-Rg Pareto frontier that we quantify through the mean distance

from the origin of all ni molecules cumulatively simulated over the first i rounds (Fig. 2a,b),

d
(i)
Pareto =

1

ni

ni∑
k=1

√
(κ(k))2 + (R

(k)
g )2. (1)

We recall that large values of the average number of π-core contacts per molecule κ and

radius of gyration of the self-assembled aggregates Rg are anticipated to lead to correlate

with the formation of pseudo-1D nanoaggregates with high degrees of H-type character.

Round 1 of the experimental screen is performed upon completing computational Round

14, at which time a total of 578 candidate molecules have been computationally assessed.

These computational screening data are passed to the experimental surrogate model and

Bayesian optimization within the multi-fidelity hybrid computational/experimental active

learning framework in order to better inform the design of experimental Round 1 than would

be possible by analyzing the 11 experimental data points alone. Under our human-in-the-

loop selection protocol, we selected nine molecules for Round 1 of experimental screening by

filtering a 35-molecule list outputted from our BO routine. Down-selection was performed on

the basis of high anticipated performance based on our previous experimental and compu-

tational work15,29 and maintenance of a diversity of peptide wing compositions and lengths.

This human-in-the-loop selection process serves as a simple means to inject prior knowledge
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Figure 2: Progress and convergence of the hybrid computational/experimental active learning
screen for high-performing Xn-4T-Xn molecules within the design space of 694,982 candi-
dates. (a) A total of 38 computational rounds of screening are performed and interleaved
with three rounds of experimental screening. The experimental screens are conducted at
computational Rounds, 0, 14, and 22. Convergence of the computational screen is tracked
by d(i)Pareto, the mean distance from the origin of all molecules cumulatively simulated over the
first i rounds, as a measure of the advancement of the optimal frontier (red circles). Conver-
gence of the experimental screen is tracked by the measured spectral blue shift λ quantifying
the degree of H-type co-facial π-stacking within the self-assembled nanoaggregates (blue
violin plots). The grey shaded area represents the computational rounds used to verify con-
vergence of the active learning but not used to inform any additional rounds of experimental
design. (b) Round-by-round advancement of the computational κ-Rg Pareto frontier over
the course of the 38 screening rounds. Within each frame, the points corresponding to Xn-
4T-Xn candidates collected within that round are shown in red, those points collected in
previous rounds are shown in grey, the Pareto frontier defined by the Pareto optimal points
is shown as a black solid line, and the shaded green area indicates the advancement of the
Pareto frontier relative to Round 0.

into the data-driven search process, which can be particularly valuable in the early stages of

the search where the models are trained over small numbers of data points, by directing the

search process to regions of molecular design space that are anticipated to be particularly

profitable.
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Round 2 of the experimental screen is conducted after completing computational Round

22, at which point we have simulated 780 candidate molecules. Again, the totality of these

computational screening data are used to augment the multi-fidelity experimental surrogate

model and used to pick eight candidate molecules for experimental testing down-selected from

the 75 top candidates proposed by the BO routine. We inject one addition piece of human

intuition into the down-selection process by making a single Tyr to Ala amino acid mutation

of one of the predicted sequences – YEVGA to AEVGA – based on prior understanding that

aromatic side chains are known to π-stack with the π-cores and therefore liable to disrupt

favorable in-register 4T stacking.29 This modification is substantiated by both observing

low-ranking candidates possessing bulky aromatic residues in the first two experimental

rounds (EYIQG: rank 18/28, VEF: rank 23/28, GFGFD: rank 25/28) along with previous

experimental work noting the presence of aromatic residues resulting in reduced UV-vis

blue-shifts.15

We continue to conduct an additional 16 rounds of computational screening (Rounds

23-38) while experimental Round 2 is being completed in anticipation of possibly conducting

a fourth experimental round. After a relatively rapid growth in dPareto over the course of

computational Rounds 0-20, we observed the emergence of a plateau at dPareto≈3.3 by Round

29 and only a 0.7% increase in dPareto relative to Round 22 (Fig. 2a). This observation is

mirrored by a relatively modest advancement of the Pareto frontier between Rounds 23-38

(Fig. 2b). Experimentally, the mean spectral shift λ in experimental Round 2 is 46% better

than Round 0, and the top performing Round 2 candidate is 3% superior to that in Round

0. The diminishing returns evinced by the computational dPareto and the successful discovery

of a molecule with superior λ impelled us to terminate our search after experimental Round

2 / computational Round 38.

In all, we simulated 1181 molecules comprising ∼0.17% of the 694,982 molecules con-

stituting the Xn-4T-Xn design space, corresponding to 236.2 µs of simulation time, and

requiring ∼4.97 GPU-years of parallel compute. Experimentally, we synthesized and char-

20



acterized a total of 28 Xn-4T-Xn molecules over the course of the course of eight months

corresponding to exploration of 0.004% of the molecular space.

We present in Fig. 3 an embedding of all 1181 simulated molecules and 28 experimentally

tested molecules into the κ-Rg objective function space used to identify high-performing

molecules in the computational screening loop. Molecular renderings of the self-assembled

nanoaggregates provides qualitative visual conformation thatXn-4T-Xn molecules producing

aggregates with large values of both κ and Rg do indeed tend to self-assemble into pseudo-1D

structures with good stacking of the 4T π-cores.

The primary result of our hybrid computational/experimental active learning screen

are experimental measurements of 28 Xn-4T-Xn molecules reported in Table 1. Of these

molecules, 26 are completely novel and on par with known high-performing sequences while

also possessing greater diversity amino acid sequences previously unknown to correlate with

good spectral blue shifts λ. The high values of λ for these molecules are indicative of a high

degree of H-type co-facial stacking and the potential for long-range supramolecular electronic

delocalization and emergent optoelectronic functionality. Additionally, we were encouraged

that our active learning procedure spontaneously discovered DGG-4T-GGD as a previously

known high-performing candidate.68,83 A complete list of predicted κ and Rg values from the

terminal computational surrogate model and predicted spectral shift measurements λ from

the terminal experimental surrogate model for all 694,982 molecules within the Xn-4T-Xn

design space is also provided in the Supporting Information: Data Availability.33

3.2 Molecular design rules

Our rank-ordered list of 28 experimentally assayed candidates exposes a number of oligopep-

tide design precepts, that is relationships between the placement/omission of particular

amino acids at specific positions along the oligopeptide wing and the magnitude of the

spectral blue shift λ quantifying the degree of H-type co-facial association within the self-

assembled nanoaggregates. Despite the relatively small size of the experimental data set, we
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Figure 3: Embedding of the computational and experimental molecules sampled in the active
learning screen into the κ-Rg objective function space. (a) Embedding of the 1181 Xn-4T-Xn

molecules explored in the computational screen. Points shown in the same color were sam-
pled during the same computational active learning round. The labels associated with each
point corresponds to the Xn peptide wing sequence. (b) Highlighting the 28 experimentally
tested Xn-4T-Xn molecules (colored points) superposed onto all 1181 computationally sim-
ulated points (grey points). The color indicates the round of experimental active learning
within which the molecule was tested. Encircling the plot are snapshots from our molecu-
lar simulation trajectories showing the terminal self-assembled nanoaggregates. The heavy
atoms constituting 4T π-cores are rendered as gold space-filling spheres and the Xn peptide
wings as semi-transparent ball-and-stick representations. For the experimentally tested can-
didates we also report the measured values of the spectral blue shift λ. A full accounting
of the computed κ and Rg values and measured λ values for all molecules considered in our
screen is provided in the Supporting Information: Data Availability.33

were able to extract three statistically significant design rules. First, the nine top-ranked

molecules within the 28 assayed candidates contain a distal Asp or Glu residue at the

C-terminus and a Gly or Ala residue in the position most proximate to the π-core. A
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Table 1: Rank-ordered list of the 28 experimentally tested Xn-4T-Xn molecules
sampled over the course of the active learning screen.

Rank Peptide wing, Xn Measured spectral shift, λ (nm) Discovery round Previously known?
1 DGG 55.06 ± 1.00 2 Yes68,83

2 DG 53.42 ± 4.16 0 N
3 ESA 50.01 ± 0.53 2 N
4 EGG 49.97 ± 1.00 0 Yes14

5 ETGG 45.80 ± 0.62 2 N
6 DGA 44.15 ± 1.49 2 N
7 DDDAA 42.07 ± 0.46 2 N
8 DVAA 41.65 ± 1.15 0 N
9 DSG 40.32 ± 1.15 1 N
10 AEVGA 40.15 ± 1.12 2 N
11 DVAG 35.70 ± 1.49 0 N
12 DNDN 29.58 ± 4.76 1 N
13 DANN 25.70 ± 0.32 2 N
14 VEFAG 21.75 ± 2.07 0 N
15 VEVEV 18.43 ± 0.62 0 N
16 VD 18.02 ± 2.66 0 N
17 AAD 15.98 ± 1.00 0 N
18 EYIQG 15.01 ± 7.18 1 N
19 EV 14.70 ± 1.20 0 N
20 DT 14.70 ± 1.20 1 N
21 AAED 13.68 ± 1.46 0 N
22 SSD 13.68 ± 1.15 1 N
23 VEF 11.99 ± 1.68 0 N
24 DLAG 11.49 ± 0.46 2 N
25 GFGFD 10.97 ± 1.77 1 N
26 DGL 10.25 ± 1.20 1 N
27 IDSV 7.70 ± 3.83 1 N
28 EN 4.33 ± 1.49 1 N

statistical analysis using a one-sided Mann-Whitney U test84 reveals a statistically signifi-

cant (p=0.0001) increase in the measured blue shifts λ associated with the presence of the

(D/E)Xn(A/G) motif. In our prior work on π-conjugated oligopeptides, we typically syn-

thesized the peptide wings with the ionizable residue responsible for actuating pH-triggered

assembly located at the C-terminus to locate it as far away as possible from the π-core.

Our motivation for this design choice was that the hydrophilic and polar nature of these

residues which, together with their steric bulk, was anticipated to disrupt good supramolec-

ular assembly of the π-cores.14,15,68,85–88 Interestingly, our active learning screen appears to
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have also learned this design rule without any explicit human instruction and furnished post

hoc support for this intuitive choice. Similarly, our recent computational and experimental

work.29,30,89 is consistent with prior chemical intuition85 that the placement of small non-

polar residues adjacent to the π-core should promote good co-facial stacking of the cores.

Again, the active learning screen appears to have also learned this design rule within the

sequence-property surrogate model and is consistent with a physical rationale that the small

steric volume of these amino acids is conducive to in-register π-stacking of the 4T cores. It

is more challenging, however, to differentiate between the performance of Gly vs. Ala, with

Gly leading to more favorable spectral shifts within a DGX motif – λDGG = (55.05±1.00)

nm and λDGA = (44.15±1.49) nm – whereas Ala performs better within a DVAX motif –

λDVAG = (35.70±1.49) nm and λDVAA = (41.65±1.15) nm. The absence of a simple modu-

lar decomposition of the influence of each amino acid position in the Xn wing reflects the

complexity of the self-assembly process and the important role of multi-body interactions,

amino acid context, and wing length.

Second, consistent with the favorability of core-adjacent Gly and Ala residues, the non-C-

terminal amino acids within the Xn peptide sequences of the top-performing molecules tend

to also be enriched in small hydrophobic residues such as Ala, Gly or Val (one-sided Mann-

Whitney U test, p-value=0.004). Interestingly, residues containing polar hydroxyl groups

such as Ser and Thr are also over-represented within high-performing sequences when Ser

or Thr are non-terminal residues and Asp or Glu are C-terminal such as ESA: rank 3/28,

ETGG: rank 5/28, and DSG: rank 9/28 (one-sided Mann-Whitney U test, p-value=0.03).

Other polar residues like Asn also perform relatively well in the π-core proximate position

when Asp occupies the distal slot (DNDN: rank 12/28; DANN: rank 13/28).

Third, the presence of larger hydrophobic and bulky aromatic residues such as Leu, Ile,

Phe, and Tyr at any location are correlated with poorer performing candidates such as

DLAG: rank 24/28, DGL: rank 26/28, EYIQG: rank 18/28, and IDSV: rank 27/28, with the

poorest-performing candidates enriched in these four amino acids (one-sided Mann-Whitney
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U test, p-value=0.002). We have previously shown that favorable interactions between these

large hydrophobic residues and the aromatic π-cores can disrupt supramolecular association

between the cores.29 This observation is also consistent with our prior observation that

oligopeptides possessing oligophenylenevinylene π-cores exhibited larger spectral blue shifts

when the peptide wings contained small Gly and Ala residues compared to larger Ile and

Val residues.15

Finally, although no Pro containing molecules were sampled in the experimental screen,

we note that a number of simulated molecules containing a Pro residue lie at or near the κ-Rg

Pareto frontier and were highly ranked in predicted blue shift λ by the terminal mfGPR surro-

gate model (e.g., DPG: rank 329/694,982, AEPP: rank 183/694,982, SDPD: rank 10/694,982,

EAP: rank 13/694,982, DDPA: rank 23/694,982, GEPG: rank 15/694,982). This finding is

somewhat surprising because Pro has been largely unexplored in previous experimental and

computational π-conjugated peptide studies. Proline, with its unique conformational prop-

erties including its conformational rigidity and absence of hydrogen bond donor capacity,

appears to be quite favorable in promoting good in-register stacking between the π-cores

and the formation of high-aspect ratio nanoaggregates. We suggest that experimental test-

ing and further computational exploration of the molecular mechanisms underpinning these

predictions may be a profitable avenue for future investigations.

3.3 Molecular assembly pathways

Having extracted design rules linking amino acid sequence to the degree of H-type stacking

within the nanoaggregates, we then sought to analyze our library of molecular simulation tra-

jectories to resolve the molecular self-assembly pathways promoted by the high-performing

peptide sequences to gain mechanistic understanding of the link between sequence and the

emergent supramolecular structure. We hypothesized that the ensemble of simulation trajec-

tories for 1181 different Xn-4T-Xn molecules collected over the course of our computational

screen may admit a low-dimensional clustering within the configurational phase space of

25



assembly pathways, and that the high-performing molecules should follow similar assem-

bly pathways to reach the terminal pseudo-1D nanoaggregates. We report in Fig. 4a-b a

2D embedding into the leading two collective variables ψ2 and ψ3 discovered by diffusion

maps. By correlating these collective variables with candidate physical observables, we find

ψ2 to be strongly correlated with the instantaneous radius of gyration Rg of the system

(ρ(ψ2, Rg) = 0.93) and ψ3 moderately strongly correlated with the instantaneous number

of contacts per molecule κ (ρ(ψ3, κ) = 0.69). In addition to providing good physical in-

terpretability of the low-dimensional manifold containing the molecular assembly pathways

learned by diffusion maps, the emergence of two collective variables strongly correlated with

κ and Rg provides post hoc support for our selection of two observables as the dual objec-

tive functions of our computational screen as the leading variables governing the long-time

self-assembly dynamics.

In Fig. 4c-f we illustrate the temporal evolution of the self-assembly pathways for partic-

ular Xn-4T-Xn molecules over the ψ2 − ψ3 manifold. Each molecular trajectory begins at

the right-most edge of the of the manifold corresponding to the initial monodisperse state.

Lateral leftward movement across the manifold correspond to condensation of the system

to smaller Rg values due to the formation of nanoaggregates. Vertical upward movement

corresponds to the accumulation of inter-molecular contacts between the π-cores and an el-

evation in κ. The assembly pathways of the top-performing candidates typically terminate

in the upper-left corner of the manifold that contains pseudo-1D nanoaggreates contain-

ing κ≈3 intermolecular contacts and Rg≈2 nm corresponding to elongated linear stacks.

One prototypical class of assembly pathways for high-performing molecules is exemplified by

EGG-4T-GGE (rank 4/28), which traverses the upper edge of the manifold (Fig. 4c). This

assembly route corresponds to the rapid formation of small oligomeric stacks, the formation

of which is likely promoted by the small size of the peptide wing, that ultimately associate

into an elongated aggregate with good in-register and global stacking. DVAG-4T-GAVD

(rank 11/28) is another high-performing candidate that is prototypical of a different assem-
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Figure 4: Two-dimensional diffusion map embedding of 118,100 simulation snapshots har-
vested from the molecular simulations of 1181 Xn-4T-Xn molecules collected over the course
of the computational active learning screen. Each point represents one simulation snapshot
projected into a 2D low-dimensional manifold spanned by the leading collective variables
ψ2 and ψ3 learned by diffusion maps. Coloring the points by (a) the log radius of gyra-
tion log(Rg) of the self-assembled nanoaggregate and (b) average number of contacts per
molecule κ within the aggregate exposes the strong correlation of the two learned collective
variables with these two physical observables (ρ(ψ2, Rg) = 0.93, ρ(ψ3, κ) = 0.69). All assem-
bly trajectories commence in a monomeric dispersion contained at the rightmost edge of the
manifold. Progression from right-to-left corresponds to a reduction in Rg as the system self-
assembles, and progression from bottom-to-top to the formation of more molecular contacts.
The temporal progression of the self-assembly pathways over the manifold for molecules (c)
EGG-4T-GGE, (d) DVAG-4T-GAVD, (e) DLAG-4T-GALD, and (f) EYIQG-4T-GQIYE, in
which points are colored temporally. Grey points in panels c-f represent the embedding of
118,100 simulation snapshots shaded in panels c and e by logRg, and panels d and f by κ.
Insets show representative molecular renderings throughout the trajectory.

bly route followed by high-performing molecules (Fig. 4d). This pathway commences with an

initial rapid hydrophobic aggregation of the system corresponding to a rapid leftward lateral

motion over the manifold. The absence of any early upward vertical motion is indicative of
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no initial substantive increase in κ due to the larger peptide wings seemingly preventing good

π-core stacking. This initial collapse is, however, then followed by a more gradual structural

ripening as the cores do achieve good stacking and we observe late upward motion over the

manifold corresponding to an increase in κ.

Trajectories that terminate within the bulk of the manifold and far away from the upper-

left corner typically fail to form nanoaggregates containing globally connected pseudo-1D

stacks. DLAG-4T-GALD (rank 24/28) is emblematic of a poor-performing molecule that

initially builds a reasonable number of intermolecular contacts, but then fails to further

condense into an in-register stacked nanoaggregate (Fig. 4e). Differing only in a V to L

mutation relative to the high-performing DVAG-4T-GAVD, the presence of the bulkier hy-

drophobic Leu residue appears to preclude structural ripening into the desired elongated

stack. Finally, molecules rich in large hydrophobic side chains such as EYIQG-4T-GQIYE

(rank 18/28) tend to exhibit moderate leftward motion over the manifold corresponding to

hydrophobic collapse but accompanied with unfavorable downward motion indicative of the

formation of very few intermolecular π-core contacts (Fig. 4f). This behavior can be at-

tributed to the bulky aromatic hydrophobes that stack against the π-cores and prevent the

formation of core-core contacts.

Whereas Fig. 4 provided anecdotal insights into the self-assembly trajectories traced out

by particular representative Xn-4T-Xn molecules, in Fig. 5 we present the entire distribution

of trajectory end points for all molecules considered in our active learning screen. In Fig. 5a-

b we illustrate the end points of the 1181 molecules sampled in our computational screen

colored by the Rg and κ values of the terminal nanoaggregates and in Fig. 5c the 28-molecule

subset of these candidates that were experimentally tested colored by the measured spectral

blue shift λ. Focusing on the 28 experimental molecules, we observe observe a clustering of

17 molecules in the upper left region of the manifold that we bound by a purple box. As

anticipated by the understanding exposed by the diffusion map, these molecules tend to be

high-performers comprising nine of the top 11 experimentally-tested molecules with spectral
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blue shifts λ ≥35 nm. Further, the molecules within the box possess a mean spectral shift of

λ=31 nm compared to the mean value for those outside the box with λ=21 nm (one-sided

Mann-Whitney U test, p-value = 0.07) The co-localization of (low-Rg-high κ) with high λ

within the diffusion map embedding provides a strong post hoc substantiation for the use

of the former measures as a computational proxy for the latter within the active learning

screen, and demonstrates the power and value of the high-throughput computational screen

in focusing and guiding the low-throughput experimentation.

4 Conclusions

In this work, we have reported an integrated computational/experimental iterative design

strategy to discover synthetic π-conjugated oligopeptides within the Xn-4T-Xn family with

the capacity to self-assemble into highly-ordered linear aggregates with in-register stacking of

the π-cores. These supramolecular assemblies are desirable as biocompatible nanoaggregates

possessing emergent optoelectronic properties and potential applications as peptide-based

field-effect transistors, photoconductors, or solar cells. The Xn-4T-Xn design space consist-

ing of symmetric oligopeptide wings containing between one and five amino acids comprises

694,982 candidate molecules, making its exhaustive exploration impracticable by either sim-

ulation or experiment. By fusing computational and experimental data streams within an

integrated computational-experimental active learning framework, we perform a data-driven

efficient traversal the space of Xn-4T-Xn peptides that minimizes computational and ex-

perimental burden required to discover and validate new high-preforming candidates. Our

platform employs a combination of all-atom molecular dynamics simulations, deep repre-

sentational learning, single- and multi-fidelity Gaussian process regression, and single- and

multi-objective Bayesian optimization. A computational active learning loop serves as a

high-throughput and cheaply available experimental proxy used to refine a surrogate model

that predicts the experimental performance of untested candidates. Using this platform, we
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Figure 5: Terminal locations of the Xn-4T-Xn self-assembly trajectories over the 2D diffusion
map manifold. End points of the 1181 molecules considered in our computational screen
colored by the (a) log of the radius of gyration log(Rg) and (b) average number of contacts
per molecule κ computed over the terminal 50 ns of the trajectory. The 118,100 simulation
snapshots used to construct the diffusion map embedding are shown in grey. (c) Terminal
locations of the 28 experimentally tested molecules colored by their measured spectral blue
shift λ and annotated with the sequence of the peptide wing. The purple box bounds a
cluster of high-performing experimental candidates residing in the upper-left region of the
manifold possessing high values of λ.

discovered a diversity of high-performing new molecules experimentally validated to form

pseudo-1D linear nanoaggregates after sampling only 1181 molecules (∼0.17% of the design

space) by computation and 28 (∼0.004%) by experiment. Subsequent interrogation of our

experimental screening data exposed molecular design rules linking sequence to the emergent
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structure and function of the self-assembled nanoaggregates. Analysis of the computational

screening results revealed two prototypical assembly mechanisms and pathways shared by

the high-performing molecules: (i) hierarchical assembly of small in-register supramolec-

ular oligomers that undergo further assembly into a single linear aggregate with ordered

π-stacking and (ii) rapid hydrophobic collapse followed by slow structural ripening and the

emergence of in-register ordering of the π-cores.

This work provides a comprehensive simulation and experimental study of how varia-

tion in oligopeptide sequence in π-conjugated peptides impacts assembly behavior using an

integrated experimental-computational active learning platform. Our findings corroborate

prior physico-chemical understanding and chemical intuition of π-conjugated peptide assem-

bly, but also reveals new design rules and understanding of molecular assembly mechanisms.

Our hybrid computational/experimental active learning platform demonstrates the power

of tightly integrated collaboration between theory and experiment, and this paradigm is

transferable to other generic molecular design and discovery applications.

Data Availability

Data providing a full accounting of all molecules simulated and experimentally tested through-

out the active learning process with associated measurements for the average number of

contacts κ, radius of gyration Rg and spectral blue shift λ, and terminal GPR and mfGPR

predicted κ, Rg and λ; neural network weights and training codes; GPR training codes; RAE

embeddings; active learning workflow.33
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