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ABSTRACT: The traditional manual analysis of microplastics has been criticized for its labor-intensive, inaccurate identification 
of very small microplastics (less than 10 µm), and the lack of uniformity between instrumentation techniques. There are already three 
automated analysis strategies for microplastics based on vibrational spectroscopy: laser direct infrared (LDIR)-based particle analysis, 
Raman-based particle analysis, and focal plane array-Fourier transform infrared (FPA-FTIR) imaging. We compared the perfor-
mances of these strategies in terms of their quantification, detection limit, size measurement, and material identification accuracy and 
analysis speed by analyzing the same standard and environmental samples. Unfortunately, the automated analysis results are not 
consistent in terms of quantification and material identification. The number of particles smaller than 60 μm recognized by Raman-
based particle analysis is far greater than that recognized by LDIR-based particle analysis. Raman-based particle analysis has a sub-
micrometer detection limit but should not be used in the automated analysis of microplastics in environmental samples because of 
the strong fluorescence interference. LDIR-based particle analysis provides the fastest analysis speed, but we suggest using a reliable 
detection limit of approximately 60 μm and manually cross-check between the material identification results and the reference data-
base used. Misidentification could occur due to the narrow tuning range from 1800 – 975 cm-1 and dispersive artefact distortion of 
infrared spectra collected in reflection mode.  FPA-FTIR imaging provides relatively reliable quantification and material identifica-
tion for microplastics in environmental samples greater than 20 µm but might provide an imprecise description of the particle shapes. 
Optical photothermal infrared (O-PTIR) spectroscopy can detect submicron-sized environmental microplastics (0.5-5 μm) intermin-
gled with a substantial amount of biological matrix; the resulting spectra are searchable in infrared databases without the influence 
of fluorescence interference, but the process would need to be fully automated.  

INTRODUCTION 
It is almost certain that microplastics, plastics smaller than 5 

mm 1, exist in every environment of Earth’s surface 2, and all 
species may be exposed to microplastics 1,3. Microplastics are 
emerging pollutants known for their interaction with other pol-
lutants 4 and potential toxicity to organisms 5. Therefore, the 
accurate and efficient analysis of microplastics in different ma-
trices represents a critical first step in assessing and describing 
the microplastic pollution. The entire analysis process of micro-
plastics includes sampling, pretreatment, identification and 
quantification, but the ‘analysis’ in this study is specifically de-
fined as the identification and quantification of microplastics. 

Manual analysis of microplastics requires an operator to vis-
ually recognize, count, and measure microplastics under a ste-
reomicroscope. Then, these suspected microplastics will be 
transferred into Fourier transform infrared (FTIR) spectroscopy, 
Raman spectroscopy, or pyrolysis-gas chromatography−mass 
spectrometry (Pyr-GC-MS) instruments to identify each their 
polymer type 6. Particles smaller than 100 μm are challenging 
to recognize visually 7 and transfer into an instrument to identify 
their material types. Nile red staining can assist visual recogni-
tion of microplastics but cannot identify polymer types 8. In ad-
dition, most studies consider only a part of the visually recog-
nized microplastics to identify their polymer types 9,10, but only 
1.4% of suspected microplastics identified visually were 

confirmed as polymers 11. This overall process is labor intensive, 
potentially inaccurate, easily affected by operator-related fac-
tors, and the rest of particles less than 100 um remain unidenti-
fied.  Unfortunately, these smaller microplastics usually have a 
higher abundance in the environment 2 and possess stronger 
toxicological effects 12. 

We define the term ‘automated analysis of microplastics’ as 
a strategy that could automatically recognize, count, measure 
the size of, and identify the material types of microplastics to 
quantify them. Such an approach should have low detection 
limits and be labor-free, efficient, and accurate. Although tech-
nologies such as secondary ion mass spectrometry (SIMS) 13 
and single particle-inductively coupled plasma mass spectrom-
etry (SP-ICP-MS) 14 have been applied for detecting microplas-
tics in recent years, they are more challenging to adapt for en-
vironmental samples 14. In contrast, the automated analysis of 
microplastics based on vibrational spectroscopy (both Raman 
and infrared) is more compatible with existing studies and sam-
ple pretreatment methods. There exist three strategies for the 
automated analysis of microplastics: laser direct infrared 
(LDIR)-based particle analysis 15, Raman-based particle analy-
sis 16, and focal plane array (FPA)-FTIR imaging 2,17-19. They 
are based on different instruments and principles. Quantitative 
results from manual analyses of microplastics are difficult to 
compare between different research groups 20-22. Naturally, a 
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new question arises: Are we measuring the same metrics among 
these automated microplastics analysis strategies?  

Therefore, for technique validation, we designed a compara-
tive study of the performance of these strategies in the auto-
mated analysis of microplastics. The same standard micro-
plastic sample and environmental microplastic sample were an-
alyzed with different strategies. The comparative targets in-
cluded the detection limit, size measurement, material identifi-
cation, quantification results, and analysis speed. Additionally, 
the performances of optical photothermal infrared (O-PTIR) 
spectroscopy 23,24 and Raman mapping (Raman imaging) 25,26 
were compared with that of Raman-based particle analysis for 
detecting microplastics smaller than 5 μm. The sample prepara-
tion requirements of different strategies were also discussed. 

EXPERIMENTAL SECTION 

Microplastic sample preparation 

Eight virgin microplastic particle powders (Table S1) were 
purchased from Ante Plastic Materials Co., Ltd. (China). Dif-
ferent from the commonly used polystyrene microspheres 27, 
these standard microplastic powders are irregular particles, in-
cluding polyethylene (PE), polyethylene terephthalate (PET), 
polyvinyl chloride (PVC), polyamide (PA), and polystyrene 
(PS), with particle sizes ranging from approximately 1 μm to 
300 μm. Then, these different microplastic powders with differ-
ent polymer types and sizes were independently suspended in 
absolute ethyl alcohol to be used as the standard microplastic 
sample (Fig. 1). 

 

 Figure 1. Flow chart of the comparative study between different 
strategies for the automated analysis of microplastics. 

Environmental microplastics (Fig. S1) were extracted with 
ZnCl2 (1.7 gꞏcm-3) from the soil of one of the world’s largest 
plastic waste recycling bases 28. The environmental microplas-
tics were filtered through 150 mesh, 500 mesh, and 3000 mesh 
metal sieve stacks. Environmental microplastics with a size of 
approximately 30-100 μm were rinsed from the sieve with ab-
solute ethyl alcohol and used as the environmental samples #1 
and #2 (Fig. 1). Environmental microplastics smaller than 5 μm 
were filtered onto a membrane (polyethersulfone, pore 0.45 μm, 
Supor-450, Pall Corporation), ultrasonic extracted with abso-
lute ethyl alcohol, and used as environmental sample #3 (Fig. 
1). 

LDIR-based particle analysis 
Agilent 8700 LDIR (Agilent Solutions, Inc., USA) is a novel 

technique that illuminates samples with a mid-IR quantum cas-
cade laser (QCL), which tunes from 1800 – 975 cm-1 at a spec-
tral resolution of 0.5 cm-1, as the light source instead of FTIR’s 
globar.  Infrared light from the QCL is directed to the sample, 
scattered light would reflect off the sample, and would be sub-
sequently directed to a thermoelectrically cooled mercury-

cadmium-telluride (MCT) detector for signal processing. Ag-
ilent 8700 LDIR only accepts glass slides for loading samples. 
The particles dispersed in the ethanol solution are dropped onto 
Kevley low-E slides (Fig. S2a). First, the instrument obtains a 
bright image with a large-field-of-view camera (optical resolu-
tion of approximately 24 μm). Then, it uses single wavelength 
light (1800 cm-1) with a 0.72 numerical aperture (NA) objective 
for a theoretical spatial resolution of 4.7 μm (0.61*10,000/1800 
cm-1/0.72) to survey, count, locate and measure the particles in 
this image. Third, it measures the infrared spectrum of each par-
ticle in reflection mode. Finally, Clarity software (version 
1.3.42, Agilent, USA) is used to automatically compare the 
spectrum with the reference spectral library to identify the ma-
terial types. Spectra with a match quality smaller than 0.65 were 
listed as “Undefined.”. The reference spectral library contains 
polymer and non-polymer materials (e.g., coal, alkyd varnish, 
and chitin). Selected optical images of the particles of interest 
can be acquired and studied in detail under the objective (visible 
resolution of 1 μm). In this work, the detection threshold was 
set to 20 μm. The optical image of the particles in environmen-
tal sample #1 was re-acquired under the objective after regular 
analysis (to check for consistency). 

Raman-based particle analysis 
WITec ParticleScout (version 5.3.14.106) is software used 

with a WITec alpha300 R confocal Raman imaging system 
(WITec GmbH, Germany). First, it obtains a large-area image 
by the image-stitching and focus-stacking function. Then, it 
surveys, measures, and locates particles in this image. Next, it 
acquires the Raman spectrum of each particle with the Autofo-
cus setting and identifies them by linking the WITec TrueMatch 
database. The logic of WITec ParticleScout in detecting micro-
plastics is similar to that of Agilent 8700 LDIR. 

The WITec alpha300 R spectroscope used was equipped with 
a 532 nm laser. The grating used had a groove density of 600 
lines per millimeter and a Blaze wavelength (BLZ) of 500 nm. 
The Raman shift ranged from 0-4000 cm-1. A 20x darkfield ob-
jective (EC Epiplan-Neofluar HD, Zeiss) with 0.5 NA was used 
in the analysis of standard samples #1, #2, and #3 and environ-
mental samples #1 and #2 (Fig. 1). A 100x bright field objective 
(EC Epiplan-Neofluar Dic, Zeiss) with 0.9 NA was used to an-
alyze standard sample #4 and environmental samples #3 (Fig. 
1). The pixel sizes of visible light images taken under the 20× 
and 100× objectives were 0.61 μm and 0.12 μm, respectively. 
According to the Rayleigh criterion, the lateral resolution 
(0.61λ/NA) of the Raman spectra acquired under the 20× and 
100× objectives were 0.65 μm and 0.36 μm, respectively, and 
the axial resolutions in the air (1.4λ/NA2) were 3 μm and 0.92 
μm, respectively. The vignetting of the image was corrected in 
real time to prevent it from affecting particle recognition. The 
threshold of finding particles from the dark field images was 
automatically set by ParticleScout. The spectrum of each parti-
cle was automatically acquired with signal optimization settings 
(integration time: 1 s; accumulation number: 3 or 5 times; and 
laser power: 5 mW). Autofocus setting was performed for the 
Raman shift range of 2800-3200 cm-1, and the steps under the 
20× and 100× objectives were set to 2 μm and 0.2 μm, respec-
tively. The Raman Database of Weathered Microplastics built 
in our previous study 28 and a commercial polymer database (ST 
Japan 5.2) containing 4568 Raman spectra were used to confirm 
polymer types through WITec TrueMatch Database software. 
Spectra with a hit index quality (HQI) smaller than 60 were 
listed as ‘Unknown.’ In addition, the Raman mapping per-
formed to detect the microplastics in standard sample #4 fol-
lowed the same Raman spectroscopy approach. ParticleScout 
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was also used to count and measure particles from the Raman 
map. 

Additionally, Raman spectra are typically affected by auto-
fluorescence interference 28,29. Another two WITec alpha300 R 
instruments equipped with 488 and 785 nm lasers were used to 
measure the Raman spectra of some particles in the environ-
mental samples to compare the performance of different lasers 
in reducing fluorescence interference. 

FPA-FTIR imaging and data process 
A LUMOS Ⅱ FT-IR imaging microscope (Bruker Optics 

GmbH, Germany) equipped with 32×32 Focal-Plane Array 
(FPA) detectors and can acquire 1024 infrared spectra in a sin-
gle scan at a minimum spatial resolution of 5 μm. The logic of 
FPA-FTIR imaging in detecting microplastics is different from 
the particle recognition-spectrum measurement mode of parti-
cle analysis. FPA-FTIR spectroscopy detects microplastics 
from hyperspectral chemical imaging rather than visible light 
imaging or single-wave imaging. As early as 2015, FPA-FTIR 
imaging was used to identify microplastics from environmental 
matrix 11,18,30. However, the visualization of microplastics based 
on the integration of a single peak cannot cope with different 
polymer types, and the considerable amount of data makes this 
approach unable to be widely used in the automated analysis of 
microplastics 31. Within the past two years, multivariate statis-
tics, data mining, and machine learning methods, such as prin-
cipal component analysis32, cluster analysis 32, random decision 
forest (RDF) classifiers 33, and partial least squares discriminant 
analysis 17, were applied to process hyperspectral imaging. 
These methods make it possible to reduce the dimensionality of 
hyperspectral infrared imaging and detect and quantify micro-
plastics. Two software programs, siMPle developed by Primpke 
et al.34 and Purency Microplastics Finder (Purency GmbH, Aus-
tria), can be applied in processing FPA-FTIR imaging. 

In this work, the FPA detectors measured the infrared spectra 
in reflection mode with a spectral resolution of 8 cm-1 and 2 
scans. The wavenumber ranged from 4000-750 cm-1. Except for 
standard sample #3 (Fig. 1), which was measured at a spatial 
resolution of 5 μm (no binning), the other samples (Fig. 1) were 
measured at a spatial resolution of 10 μm (2×2 binning). The 
background was measured with the same parameters and was 
subtracted from the results. Then, the hyperspectral data were 
imported into Purency Microplastics Finder (version 3.49) run-
ning with a machine learning model (version PMF_R2021a) 
based on the RDF classifiers 33 to detect, measure, and classify 
the microplastics. The spectra from 3600-1250 cm-1 were used 
for the Purency calculations. This process only detected the mi-
croplastics, and other particles were listed as ‘Unknown.’ 

The machine learning model in Purency Microplastics Finder 
was trained with the transmission spectrum imaging data ob-
tained with an aluminum oxide filter 33. Although the Kevley 
low-E slides were designed for reflective infrared measure-
ments and were used in the LDIR spectral measurements, the 
infrared spectra of the Kevley low-E slides (Fig. S3b) differed 
from the infrared spectra of aluminum oxide (Fig. S3a) and 
were not compatible for the Purency Microplastics Finder. 
Therefore, the edges of the microplastics loaded on the Kevley 
low-E slide are poorly recognized (Fig. S5). The quantification 
and size measurement of standard sample #1 and environmental 
sample #1 acquired by the Bruker-Purency Microplastics 
Finder strategy could not be compared with those acquired by 
the LDIR-based or Raman-based particle analysis; only the re-
sults of the material identification and operational speed were 
compared. Another three samples were loaded on a polished sil-
icon wafer (Fig. S2b) to compare the quantification and size 

measurement results between the FPA-FTIR imaging and Ra-
man-based particle analysis strategies (Fig. 1). Reflection mode 
was used to maintain consistency between these methodologies 
within this study.  We noticed that the FTIR reflection spectrum 
of the polished silicon wafer had a different band shape in the 
polyethylene particles and a smaller absorption baseline than 
the transmission spectrum (Fig. S4). 

Note that the FPA-FTIR imaging strategy was not run under 
the optimal settings to meet the sample preparation require-
ments of different strategies, which may adversely affect the re-
sults. 

O-PTIR measurements 
O-PTIR spectra and imaging was measured on a commercial 

instrument, mIRage+R (Photothermal Spectroscopy Corp., 
USA). The system is equipped a QCL with the wavenumber 
ranged from 1800-800 cm-1, but the principles and working 
mode of O-PTIR are different from QCL-IR (LDIR). The O-
PTIR technique can be described as the “pump-probe” tech-
nique, whereby the QCL infrared laser (the pump) is used to 
excite the sample and induce a “photothermal IR effect,” where 
slight sample expansion and refractive index changes occur, 
which are probed in reflection mode via a visible laser beam 
(532 nm).  The intensity change of the visible light is propor-
tional to the absorption of infrared radiation 35,36. O-PTIR uses 
a visible light probe to detect the photothermal event induced 
by the incident infrared radiation 35,36. The O-PTIR instrument 
was equipped with a 532 nm laser as the probe and a 40× ob-
jective (0.78 NA), so the theoretical resolution of O-PTIR is ap-
proximately 500 nm. The system is also equipped with an 
iHR320 imaging spectrometer (Horiba, Japan) and could sim-
ultaneously acquire Raman spectrum excited by the 532 nm la-
ser at the same time, same spot, and same resolution during the 
measurement of O-PTIR spectra. 

The O-PTIR instrument was employed to measure the O-
PTIR and Raman spectra of standard PVC particles ranged from 
about 0.5-5 μm and environmental microplastic sample #3 (Fig. 
1). The IR power, probe power, scan rate, and step size were 
adjusted and optimized based on-demand. O-PTIR spectra can 
be directly transferred into KnowItAll Information System 
(Wiley, USA) for spectral matching and deconvolution analysis. 

Quality assurance and quality control 
The LDIR-based particle analysis strategy analyzed the sam-

ples first. Then, the samples were stored in separate hermetic 
boxes and were transported to different laboratories in-person 
to avoid vibration and sample damage by third-party carriers. 
Each comparison group (Fig. 1) was completed within one 
week to ensure the consistency of the particles. The area of Ra-
man-based particle analysis and FPA-FTIR imaging were 
slightly larger than those of the LDIR-based particle analysis, 
which made it easier to compare particles. Particles were cross-
checked in terms of their position and shape to compare the size 
measurement and material identification results for the same 
particle. Two particle size standards of 10.12±0.06 μm (4K-10, 
Duke Standards, Thermo Scientific, USA) and 100±1.5 μm 
(4K-100, Duke Standards, Thermo Scientific, USA) were used 
to validate the size measurement results of the Raman-based 
particle analysis. 

RESULTS AND DISCUSSION 

Quantification and detection limits 
Since manta and neuston nets are often used in the sampling 

of microplastics and metal sieves are used for prefiltration 6,22, 
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the width of the particles is used as the size. The number of 
particles smaller than 60 μm recognized by the LDIR-based 
particle analysis is much smaller than that recognized by the 
Raman-based particle analysis (Fig. 2a, c), which means the 
LDIR-based particle analysis is not accurate in the quantifica-
tion of microplastics smaller than 60 μm. Thus, the percentage 
of microplastics smaller than 60 μm is expected to be underes-
timated in studies using LDIR-based particle analysis 15,37,38. 
The Raman-based particle analysis is based on darkfield images 
with a resolution of 0.61 μm, which helps recognize very small 
particles. For standard sample #1, the quantitative results of mi-
croplastics under Raman-based particle analysis are much 
higher than those under LDIR-based particle analysis (Fig. 2b). 
For environmental sample #1, the number of microplastics de-
tected by Raman-based particle analysis is smaller than that de-
tected by LDIR-based particle analysis (Fig. 2d) because of the 
differences in material identification, which then affects the 
quantification of the microplastics. 

In standard sample #2, the microplastics smaller than 30 μm 
quantified by Raman-based particle analysis are much more 

abundant than those quantified by FPA-FTIR imaging (Fig. 2e) 
due to 2x2 binning for a 10 μm pixel resolution. In standard 
sample #3, the microplastics quantified by FPA-FTIR imaging 
with a 5 μm-pixel resolution (no binning) are more similar to 
those quantified by Raman-based particle analysis (Fig. 2f). 
However, the number of microplastics in environmental sample 
#2 detected by Raman-based particle analysis is much lower 
than that detected by FPA-FTIR imaging (Fig. 2g), similar to 
the difference observed for environmental sample #1 between 
the LDIR-based particle analysis and Raman-based particle 
analysis results (Fig. 2d). 

The difference in the quantitative results is affected by the 
detection limit, particle recognition, size measurement, and ma-
terial identification of the microplastics. Different strategies 
have different detection limits (Fig. 2h). We do not suggest us-
ing the lowest detection limit to quantify microplastics because 
these strategies are often inaccurate for quantifying microplas-
tics close to the detection limit (Fig. 2a, c). We recommend us-
ing a more reliable detection limit based on the consideration of 
the spatial resolution of the spectroscopic technique (Fig. 2h).

Figure 2. Quantification results of different strategies for the same sample (a-g) and the detection limits of different strategies (h). 

Size measurement 
The measurement result of the Raman-based particle analysis 

for the spherical PS standard with a particle size of 10.12±0.06 
μm is 12.23±0.74 μm, and the measurement result for the stand-
ard with a particle size of 100±1.5 μm is 97.68±4.46 μm. It is 
difficult to find the equatorial plane of spherical particles. The 
particle roughness may influence edge recognition in creating a 
particle mask. Generally, the size measurement of the Raman-
based particle analysis is accurate. The size measurement of the 
LDIR-based particle analysis is linearly correlated to the Ra-
man-based particle analysis (Fig. S6a, b). However, the slope 
of the linear fit is not 1, and the intercept is not 0, indicating a 

difference between the size measurements of Raman-based and 
LDIR-based particle analysis. 

A gap persisted between the particle sizes measured by Ra-
man-based particle analysis and FPA-FTIR imaging (Fig. S6c, 
d, e). The particle sizes measured by FPA-FTIR imaging seem 
to be an order or magnitude greater than the resolution. For ex-
ample, the particle sizes measured under 2×2 binning are often 
10 μm to 20 μm (Fig. S6c). Clearly, the particle size measured 
with a resolution of 10 μm is far less accurate than that meas-
ured by Raman-based particle analysis (Fig. 3a, d). Thus, a 
higher resolution corresponds to higher accuracy in the size 
measurement. In addition, the particle size measurement under 
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FPA-FTIR imaging is also related to the recognition of particle 
edges. The uneven thickness, varying degrees of weathering, 
and uncontrolled association of naturally occurring exogenous 
matrix within one microplastic particle would affect the corre-
sponding infrared spectra; thus, creating particle masked with 
Purency Microplastics Finder is challenging (Fig. 3b). Alt-
hough Purency Microplastics Finder allowed the users to re-edit 
the particle mask to improve the accuracy of the particle meas-
urement, this step would increase the workload and was not ap-
plied in this study. Raman-based particle analysis is not affected 
by the inconsistent spectra of the particles themselves (Fig. 3e), 
but FPA-FTIR had an advantage for distinguishing adjacent 
particles with different polymer types (Fig. 3c), which also 
could be recognized by analyzing one microplastic particle at a 
time (Fig. 3f). 

 

Figure 3. Microplastic masks created by FPA-FTIR imaging (a, 
b, c) and Raman-based particle analysis (d, e, f). (a, c, d and f) are 
from the material maps of standard sample #2 (Figs. S8 and S9), 
but (b) and (e) are from environmental sample #2. The different 
colors in (a, b, and c) represent different polymer types. 

Material identification 
Raman-based particle analysis and FPA-FTIR imaging are 

consistent in identifying particles in standard sample #1, but 
they are inconsistent with LDIR-based particle analysis (Fig. 
4a). In the LDIR-based particle analysis, PET may be errone-
ously classified as alkyd varnish, polyurethane (PU), PA, and 
rubber, and PA is erroneously classified as chitin (Fig. 4a). In 
fact, both the LDIR and FTIR spectra are demonstrating band 
shapes consistent with spectral artefacts associated with the dis-
persive scatter artefacts (Mie Scatter) 39 (Fig. 4c, d), where 
when the particles sizes are in the order of the wavelengths of 
light being used to measure, spectra will be significantly dis-
torted with baseline shifts/slopes, peak shifts/splitting and band 
ratio changes. This effect, though also present in transmission 
mode, is most acute when spectra are collected in reflection 
mode. The issue is significant as spectral profile is no longer 
representative of the chemistry of the sample, but is in fact 
much more heavily dominated by the dispersive scattering arte-
facts that depend on particle shape and size. In other words, 
spectral reproducibility is significantly negatively impacted 
with “direct” IR techniques like LDIR and also FTIR. These 
dispersive scatter issues are not present in Raman and O-PTIR. 
The incorrect classification of particles is also related to the 
built-in database of Clarity. Clarity's built-in database includes 
nonplastic materials such as chitin and alkyd varnish, resulting 
in overmatching phenomena in standard sample #1. When the 
nonplastic materials were removed from the library, the revised 
material identification results of the LDIR-based particle anal-
ysis strategy were closer to those of Raman-based particle anal-
ysis and FPA-FTIR imaging. In addition, the wavenumber 
range of the LDIR-based particle analysis is only 1800-975 cm-

1, restricting the polymer identification from referring to the 
stretching vibration of C-H bonds at 3000-2800 cm-1. The FPA-

FTIR imaging strategy has a wider wavenumber range, 3600-
1250 cm-1, and Raman-based particle analysis covers the range 
of 0-4000 cm-1, making material identification more definite. 

The difference in material identification of particles in envi-
ronmental samples between these three strategies is even 
greater (Fig. 4b). The LDIR- and FTIR-based identification of 
polypropylene (PP), PE and PU are basically consistent, but the 
LDIR classifies acrylonitrile butadiene styrene (ABS) as PS be-
cause of the stretching vibration of C≡N in ABS located at 
2236 cm-1, beyond 1800-975 cm-1 (Fig. 4e). There will be a se-
ries of changes in the infrared spectrum of weathered micro-
plastics, such as a C-O stretching vibration peak at 1010 cm-1, a 
C=C stretching vibration peak at 1640 cm-1, and a series of car-
bonyl stretching vibration peaks at 1800-1680 cm-1 28. In con-
trast, the peaks of the C-H stretching vibration of 3000-2800 
cm-1 of polymers are more robust against weathering 28. 

The Raman spectra of weathered microplastics 7,28 and mi-
croplastics with pigment additives 29 often have strong fluores-
cence and cannot be identified (Fig. 4e). Switching lasers usu-
ally reduces fluorescence interference, but a single laser cannot 
cope with the diversity of particles in environmental samples in 
particle analysis mode. For some particles, 488, 532, and 785 
nm lasers cannot obtain effective Raman spectra (Fig. S7d-g), 
which means that Raman-based particle analysis is not reliable 
in quantifying microplastics in environmental samples (Fig. 2g). 
For some other particles, the use of a 785 nm laser may help to 
weaken the fluorescence (Fig. S7a, h, j). However, the charge-
coupled-device (CCD) detector responds poorly to the Raman 
shift beyond 2000 cm-1 excited by 785 nm 40, making it chal-
lenging to identify polymers without C-H stretching vibrations 
at 3200-2800 cm-1 (Fig. S7b, c, j). In addition, unlike the Raman 
shift between 2800-3200 cm-1, which could be selected as the 
range of autofocus when using a 488 or 532 nm laser, the com-
plete Raman shift can be selected as the range of autofocus, 
which makes it easy to focus on the glass slide or substrate in-
stead of the particles (Fig. S7c, i, j). Therefore, a 785 nm laser 
is not recommended in the Raman-based automated analysis of 
microplastics. Although non-plastic materials are not the focus 
of this study, we find that silicone in the LDIR-based particle 
analysis is identified as a carbonate mineral by Raman-based 
particle analysis (Fig. S10). Still, Raman-based particle analysis 
should not be used for the automated analysis of microplastics 
in environmental samples based on the consideration of strong 
fluorescence interference even with the 785 nm excitation laser 
source; but it may be possible to use this method to quantify the 
release of microplastics and nanoplastics in daily products 41,42. 

 Reference databases are crucial in material identification. 
After decades of development of FTIR and Raman technologies, 
reference databases for a variety of polymers and polymer ad-
ditives have been accumulated mostly in ideal measurement 
conditions, e.g. flat film or dilute dispersion in KBr pellet meas-
ured in FTIR transmission mode or Raman reflection mode. 
However, when identifying microplastics in environmental 
samples, it is best to use microplastics with environmental char-
acteristics to create a database to address the influence of weath-
ering on FTIR or Raman spectra 7, such as those included in the 
Spectral Library of Plastic Particles Aged in the Environment 
(SLoPP-E) 43, the Raman Database of Weathered Microplastics 
(RDWP) 28 and the FTIR reference database designed for the 
automated analysis of microplastics 44. Recently, Open Specy 
software has been developed for allowing researchers to share, 
view, process, and identify their spectra for free 45.  In addition, 
the sharp edges of microplastic fragments will strongly alter in-
frared spectral shapes due to the scattering of infrared lights that 
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would lead to dispersive artefacts in the LDIR ad FTIR spectra 
(Fig. 4c, d, e; Fig. 5f, g)39. Changes in the spectral shapes will 
be dependent on the particle size as well, potentially leading to 
misidentification of microplastic fragments with these “direct” 
methods.  LDIR-based particle analysis and FTIR in reflection 

mode are not directly compatible with FTIR transmission mode 
spectrum due to the inherent spectral artefact from its reflection 
mode operation; for LDIR, spectral processing will need to be 
revised in Clarity (version 1.3.42). 

 

Figure 4. Comparison of the material identification results of standard sample #1 (a) and environmental sample #1 (b) under different 
strategies. LDIR, FTIR and Raman spectra for the same particle (c, d, e). 
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Speed 
The LDIR-based, O-PTIR-based, and Raman-based particle 

analysis are based on point analysis, henceforth the average 
time required for measuring a single particle can be calculated 
and compared (Table S2). It is meaningless to compare the total 
times required because the number of particles detected differs 
(Fig. 2). The average measurement time per particle under the 
LDIR-based particle analysis is approximately 6-9 s, while the 
average measurement time per particle under the Raman-based 
particle analysis is 14-15 s. The time used by the Raman-based 
particle analysis is related to the integration time, cumulation 
time, autofocus range and steps. The acquisition time for each 
simultaneous O-PTIR and Raman spectral pair is in the range 
of 2 – 40 seconds depending on the particle size. 

Only the time required for measuring a certain area (1 mm2) 
can be calculated for FPA-FTIR imaging. It takes approxi-
mately 2 min to measure 1 mm2 with the 2×2 binning setting 
(resolution of 10 μm) and approximately 9 min to measure 1 
mm2 without binning (pixel resolution of 5 μm), approximately 
4 times that with 2×2 binning. It takes approximately 7 hours to 
measure an entire aluminum oxide filter (14.9×15.5 mm, 4×4 
binning, Fig. S11). If there are many particles in a small area, 
FPA-FTIR imaging will be preferred. If there are a few particles 
in a large area, then particle analysis will be preferred. 

Submicron sized microplastics (0.5-5 μm)  
The Raman mapping (Fig. 5c) and O-PTIR image (Fig. 5d) 

of PVC particles (Fig. 5a) are the same as the material map cre-
ated by Raman-based particle analysis (Fig. 5b). Specifically, 
Raman mapping provides a more detailed description of the 
edges of particles (Fig. 5c), while Raman-based particle analy-
sis provides a smoother edge measurement (Fig. 5b). Therefore, 
the particle size measured with Raman-based particle analysis 
is larger than that measured by Raman mapping. For example, 
two adjacent microplastic particles (Fig. S12c) were not suc-
cessfully separated by Raman-based particle analysis (Fig. 
S12b), but signal isolation was successful by Raman mapping 
(Fig. S12a). The smallest microplastics detected by Raman-
based particle analysis is 0.61 μm (Fig. S12b). Raman mapping 
and O-PTIR imaging can locate microplastic fragments of sizes 
above 0.5 μm (Fig. S13). A high-precision motor stage can be 
used to over-sample for the resolution of the Raman spectrum 
to detect nanoplastics with a size of 30 nm 26,46,47.   

O-PTIR microspectroscopy can be used to analyze environmen-
tal microplastics smaller than 5 µm without the effects of fluores-
cence interference (Fig. 5j, k). Similar to LDIR, O-PTIR spectros-
copy also illuminates the sample with a tunable infrared source go-
ing from 1800 – 800 cm-1; but the infrared absorption is detected 
with a second probe laser beam in a pump-probe arrangement ra-
ther than measuring the reflected infrared light from the sample 
surface in the LDIR. In spite of its reflection mode spectral collec-
tion setup, the natural band shape of the O-PTIR spectra has no 
distortion and is closely resembling conventional FTIR in transmis-
sion mode (Fig. 5e). Additionally, the lack of dispersive scatter ar-
tefact susceptibility means that O-PTIR spectra are reproducible, 

despite differences in particle shape and size. These key features 
thus allow direct spectral searches in commercially available data-
bases, which are comprised of infrared spectra collected in either 
transmission and corrected ATR modes, without custom library de-
velopment.  

O-PTIR spectra SP02 and SP03 have been collected from the 
same particle (Fig. 5i), but only SP02 shows distinctive spectro-
scopic differences around 1493 and 1452 cm-1 (Fig. 5j). A back-
ground material might ubiquitously exist (Fig. S13). With Wiley 
KnowItAll’s deconvolution algorithm, two infrared absorption 
bands could be de-mixed from the matrix and are clearly consistent 
with a polystyrene derivative: the sharp 1493 cm-1 for C=C stretch 
and a slightly wider 1452 cm-1 (C=C and CH2 scissor in the back-
bone). For environmental samples, these microplastics will have 
microbes associated with them along with humic acids and other 
matters 28,48,49 – all would muddle the spectra of the microplastics 
fragments. The strong broad 1590 cm-1 and the 1734 cm-1 show up 
very often and they are considered to be the background matter (Fig. 
S14b). The former is consistent with some forms of humic acids 50 
and the latter could be naturally occurring fats and esters. Therefore, 
it is very important to have good band shapes in the infrared spectra 
so that we can deconvolve the mixture spectrum into probable mi-
croplastic components with commercially available infrared data-
bases, which are typically constructed based on transmission or 
ATR mode infrared spectra to enable the full capability of identi-
fying unknown matters. As a result, smaller particles will take 
longer to analyze, not just because the actual field of view (FOV) 
is smaller but also because of their association to naturally occur-
ring matters 50-52.  The combination of normal spectral shapes, high 
spatial resolution and high sensitivity to small sampling volume 
enable detection of small microplastic fragments that have a high 
affinity for attracting non-polar environmental contamination 53.  
These natural matters are typically difficult to remove to return 
these microplastics fragments to the condition like that of the stand-
ard PVC sample #4.  With the O-PTIR technique, such a stringent 
sample preparation process can be significantly relaxed.  As eluded 
at the beginning, Raman spectroscopy could not be sufficiently an-
alyzed due to the strong fluorescence baseline.  Furthermore, future 
algorithms to analyze these smaller fragments will need to include 
not only automated particle identifiers for locating the particles; but 
also include some form of artificial intelligence to recognize some 
of these common “synthetic material” bands as part of the pattern 
recognition process. Infrared spectroscopic profiles consistent with 
background materials would also be necessary to improve on back-
ground material subtraction and also reducing over-interpretation 
of the same. The infrared source of the O-PTIR instrument can be 
extended into the high wavenumber region, namely 3600 – 2700 
cm-1 54, to further enhance the accuracy of microplastic identifica-
tion. For the first time, small environmental microplastics less than 
5 µm could be detected, intermingling with a large amount of bio-
logical matrix matter.     

Raman mapping and O-PTIR imaging would be suitable for 
toxicological studies of microplastics and nanoplastics 55 but are 
challenging to apply to the quantification of microplastics and 
nanoplastics because the analysis speed might be too slow (Fig. 
5b, c, d) 56. The O-PTIR instrument has the potential of adopting 
the same automation strategy as LDIR and Raman-based parti-
cle analysis. 
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Figure 5. Material map of standard PVC particles (a) created by Raman-based particle analysis (b), Raman mapping image (c), and O-
PTIR image (d). IR and Raman spectra of particles (e-h, j, k). (e) and (h) were measured on the same PVC particle (~1 μm) in SS#4, but (f) 
and (g) were measured on the same PVC particle (~100 μm) in SS#1. (j) illustrates the result of a spectral deconvolution algorithm performed 
on O-PTIR spectrum “SP03” with “SP02” being a spectroscopic component in “SP03,” which was obtained at the location indicated in the 
environmental sample (i); (k) represents the standalone Raman spectrum of the same environmental particle in the optical image.  

Requirement for sample preparation 
The most commonly used method for separating microplas-

tics is filtration 57. In this case, the choice of the filter membrane 
is very important 58. According to the structure, filter mem-
branes can be divided into multilayer/fiber-type (e.g., glass fi-
ber, cellulose nitrate, and cellulose fiber) and monolayer-type 
(e.g., polycarbonate (PC), and aluminum oxide) membranes 
16,57-59. Depending on the material type, filter membranes can be 
classified by their polymer-type (e.g., nylon, and polyethersul-
fone) or by inorganic (e.g., glass fiber) membranes. For the 
LDIR-based particle analysis, the filter membrane first needs to 
be sonicated in ethanol solution to extract the particles. Ethanol 
was further concentrated by nitrogen blowing and transferred to 
Kevley low-E slides. There are two sample transfer steps. It is 
necessary to use an inorganic single-layer filter membrane (e.g., 
inorganic aluminum oxide membrane) to avoid organic contam-
ination or the potential loss of particles trapped inside the filter 
membrane.  

FPA-FTIR imaging can make measurement of samples di-
rectly from filter membranes but requires filter membranes with 
as little infrared absorption as possible so the analysis algorithm 
can distinguish microplastic particles by IR imaging. Glass fi-
ber membranes and polymer-type membranes are not applica-
ble due to their highly scattering surface or their strong infrared 
absorption characteristics. The aluminum oxide filter has been 

widely used 2,17,59-61 because it has no infrared absorption above 
1250 cm-1 59. The authors recommended FPA-FTIR imaging 
with FPA to measure the transmission spectra of particles 
loaded on the aluminum oxide (Fig. S11). The machine learning 
model in Purency Microplastics Finder is trained with the trans-
mission spectrum imaging data obtained with an aluminum ox-
ide membrane 33. The potential problem is that the largest pore 
size of the commercial aluminum oxide filter is only 0.2 μm, 
which could be easily blocked during the filtration process 2. In 
addition, the particles easily gather at the edge of the filter (Fig. 
S11), making them indistinguishable. A silicon filter is better 
suited for FPA-FTIR imaging 59. 

Raman-based particle analysis allows the same sample prep-
aration approach as LDIR-based particle analysis and allows 
the filter membrane to load particles directly. The filter mem-
brane must be uniform and flat to meet the requirements of 
dark-field microscopy, confocal microscopy, and polymer anal-
ysis, which means that the filter membrane cannot be a poly-
mer-type or fiber-type membrane. Therefore, Raman-based 
particle analysis is not compatible with most commercial mem-
branes, including alumina membranes, which is not suitable for 
dark-field microscopy (Fig. S15). Instead, PC-coated with alu-
minum 16 or a silicon filter 59 is suitable for use in polymer anal-
ysis and dark-field microscopy. 



9 

 

Particles could be loaded on the silicon wafer and gold-
coated polycarbonates for the O-PTIR analysis. The technique 
alleviates the challenge of separating and purifying submicron-
sized microplastics from environmental matrices  1. Microplas-
tics might only account for a small part of the submicron-sized 
particles. The O-PTIR technique is very sensitive in terms of 
minimum detection mass, and could accurately identify envi-
ronmental plastics despite the occurrence of microplastics was 
possibly less than 5 % from all the measurement points (Fig. 
S14). While the analysis software (PTIR Studio) has shown ex-
cellent ease-of-use, the selection of points during the measure-
ment process should be further automated to maximize the ben-
efit of the instrument. 

CONCLUSIONS 
The answer to the question ‘Are we measuring the same met-

rics when using these different strategies to analyze microplas-
tics automatically?’ is obviously ‘No.’ The number, size, and 
material identification results will be different among different 
strategies due in part to artefacts that would be present inherent 
to the instrumentation methods. The automated analysis of mi-
croplastics is the goal, and we believe that it will eventually re-
place manual analytical methods. However, a considerable 
amount of research must be conducted before an appropriate 
approach to the automated analysis of microplastics is estab-
lished. In the future, comparisons among strategies, verification 
of strategies, and the building and sharing of the spectral data-
base need to be better adapted. As a technological advancement, 
automated analysis of microplastics should be encouraged, but 
we need to foster the strengths and circumvent the weaknesses 
of different strategies.  
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