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Abstract 

Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological 

samples. The identification of co-localized molecules in MSI data is crucial to the understanding of 

biochemical pathways. However, complex MSI data are too large for manual annotation but too small for 

training deep networks. Herein, we introduce a self-supervised clustering approach based on contrastive 

learning, which shows an excellent performance in clustering of small MSI data. We train a deep 

convolutional neural network (CNN) using MSI data from a single experiment without manual annotations 

to effectively learn high-level spatial features from ion images and classify them based on molecular 

colocalizations. We demonstrate that contrastive learning generates ion image representations that form 

well-resolved clusters. Subsequent self-labeling is used to fine-tune both the CNN encoder and linear 

classifier based on confidently classified ion images. This new approach enables autonomous and high-

throughput identification of co-localized species in MSI data, which will dramatically expand the 

application of spatial lipidomics, metabolomics, and proteomics in biological research. 

Introduction 

Mass spectrometry imaging (MSI) is a powerful label-free molecular imaging technique for biological 

research, which enables simultaneous localization of multiple classes of biomolecules with high sensitivity 

and unprecedented molecular specificity.1–4 By acquiring a full mass spectrum in each pixel of a virtual 

grid, MSI generates hundreds of molecular images in a single experiment. Recent advances in MSI 

technology focus on the enhancement of the spatial resolution,5,6 depth of molecular coverage7–9 and 

acquisition throughput,10–12 all of which substantially increase the data size. The interpretation of complex 

MSI data is a major bottleneck on the path to scientific discovery, which motivates the development of 

computational tools for data mining and visualization13,14. 

A recurring task in MSI data analysis is to identify co-localized molecules, which is critical to the 

identification of key biochemical pathways of interest to biomarker discovery,15,16 drug development,17,18 

and clinical diagnostics.19–21 Previous computational approaches used vector-based similarity 

measurements to determine molecular colocalizations.22–25 However, these methods cannot correlate high-

level spatial features making them disproportionately sensitive to the experimental artifacts and noise, 

which reduces their generalization capacity towards spatial patterns with similar localization but different 

contrast. Recently, transfer learning and semi-supervised deep learning approaches using convolutional 

neural network (CNN) have been developed to cluster ion images and quantify the molecular colocalization, 

respectively26,27. These reports indicate that the limited size of MSI data presents a challenge to conventional 

CNN training frameworks, which typically rely on a large number of annotated images. As a result, these 

approaches provide a relatively minor improvement over the traditional machine learning methods for 

finding co-localized molecular images.  

mailto:jlaskin@purdue.edu


2 
 

Recent advances in self-supervised contrastive learning approaches for computer vision including MoCo28, 

SimCLR29 and SwAV30 have opened up new opportunities for learning visual representations without 

manual annotations. In natural image classification, these approaches provide comparable results to those 

obtained using supervised learning. Herein, we demonstrate that contrastive learning may be used to 

overcome the existing gap in the classification of MSI data due to the limited data size. We introduce a 

robust self-supervised clustering approach, which enables efficient colocalization of molecules in 

individual MSI data by retraining a CNN and learning representations of high-level molecular features in 

these data. 

Results and discussion 

Self-supervised training of a CNN model for molecular localization clustering 

The self-supervised approach for molecular colocalization developed in this study is illustrated in Fig. 1. 

The approach is based on training a CNN to learn representations of molecular localizations and classify 

molecular images into groups based on high-level spatial features. The clustering results provide a concise 

presentation of the spatial patterns present in large MSI data, which is critical to understanding the relevant 

biochemical pathways. To facilitate the autonomous and high-throughput MSI-based scientific discovery, 

we train our model in a self-supervised manner without manual annotations. This is achieved using image 

augmentation, which enables an effective self-supervised training of a deep CNN with a limited number of 

ion images. The self-supervised clustering approach developed in this study is summarized in Fig. 1. The 

approach relies on the following three steps described in detail later: 1) Contrastive learning of molecular 

localization representations using SimCLR; 2) Image clustering based on the representations and 3) Self-

labeling of the clustered images. 

 
Figure 1. self-supervised training of CNN model for molecular colocalization. (1) CNN encoder is 

trained by contrastive learning to learn ion image representations. (2) Learned image representations are 

classified by spectral clustering. This classification pretext task is utilized to initiate a linear classifier after 

CNN encoder. (3) The whole CNN model is further fine-tuned using self-labeling.  

In order to assess the improvement of the model during the self-supervised training, we systematically 

evaluated each training step using a manually annotated benchmark MSI dataset of a mouse uterine tissue 

acquired using nanospray desorption electrospray ionization (nano-DESI).31 The mouse uterine tissue with 

several distinct cell types is an excellent model system, which presents diverse molecular localizations. 

From the data acquired in both positive and negative ionization modes, we manually selected 367 ion 

images (96 x 96 pixels) and clustered them into 13 classes (Methods). We then validated our approach using 

a publicly available mouse brain tissue MSI dataset from METASPACE32. It is acquired using matrix-

assisted laser desorption/ionization (MALDI), which contains 1101 high resolution ion images (224 x 224 

pixels) without annotations. Our results demonstrate the robustness of the self-supervised image clustering 

approach for MSI datasets of different sizes, spatial resolutions, tissue types, and acquisition conditions.  
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Contrastive learning of image representations 

In the contrastive learning step, we use SimCLR to train a CNN encoder for learning image representations. 

We used EfficientNet-B0 trained on ImageNet as a baseline CNN. EfficientNet33 has been demonstrated to 

achieve high accuracy on ImageNet and provide an order of magnitude higher efficiency than previous 

models, such as ResNet and Xception. In SimCLR framework (see ESI, Fig. S1), a mini-batch of N ion 

images is sampled and each image is subjected to a pair of stochastic transformations to generate 2N 

augmented images. A positive augmented pair is derived from the same ion image. Meanwhile, the 

remaining 2(N-1) augmented images are treated as negative instances. SimCLR learns visual 

representations by maximizing the similarity between the positive pair of images while minimizing their 

similarity to the negative instances via a contrastive loss in the latent space. Details of the framework are 

described in the Methods section.  

Data augmentation plays a critical role in the training step. It ensures that the learned visual representations 

of ion images are independent of the employed transformations. This generalization power of SimCLR is 

critical to learning high-level spatial features instead of pixel-level details. In order to evaluate the 

performance of this step, we systematically investigated the impact of image augmentation operations on 

image classification in the benchmark dataset as shown in Fig. 2a. In particular, we used Gaussian blur, 

Gaussian noise, and intensity distortion to alter the appearance of ion images along with translation, random 

resized crop, and rotation to alter their geometry. For each type of augmentation, we performed SimCLR 

using the same training protocol and evaluated the learned representations using a linear evaluation, in 

which the accuracy describes the quality of the representation (Methods). We also examined the 

performance of SimCLR and transfer learning in the absence of augmentation for comparison. Fig. 2b 

shows that all the appearance-changing augmentations improve the performance of the representation 

learning. Meanwhile, all the geometry-changing augmentations except for rotation do not provide a 

measurable improvement. Stronger geometric transformations reduce the classification accuracy (Fig. S2). 

This observation indicates that in contrast to the semantic classification of natural images, strong alteration 

of the geometry of ion images is detrimental to representation learning of molecular localizations. We also 

examined the combined effect of the appearance-changing augmentations on the learned representations. 

Fig. 2b shows that a combination of three appearance-changing augmentation operators results in >80% 

accuracy in the linear evaluation. An example shown in Fig. S3 illustrates the power of the generalization 

provided by this augmentation strategy. In particular, for ion images that have different contrast and noise 

level, augmented images generated for one molecule (m/z 789.561 in positive mode) become similar to the 

original images of other molecules (m/z 746.5108 in positive and 599.3205 in negative modes, respectively). 

As a result, these molecules are classified into one group in the self-supervised clustering process. Our 

results indicate that, for MSI data, the generalization power of contrastive learning stems from the 

appearance-changing image augmentations.  
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Figure 2. Self-supervised clustering enables effective molecular localization representation learning 

and classification in benchmark data. (a) Illustration of studied image augmentation operators. (b) Linear 

evaluation of re-trained CNN encoder with individual or composite image augmentation operators. t-SNE 

visualizations of ion image representations obtained from (c) pre-trained CNN encoder and (d) re-trained 

CNN encoder. Each data point corresponds to an ion image. (e) Contrastive learning substantially improves 

the purity of local neighborhoods of ion images in the representation space. (f) The relationship between 

classification accuracy and fraction of confidently classified ion images, which are selected based on a 

series of softmax probability thresholds. (g) Changes in the training loss, accuracy, and number of 

confidently classified ion images during the self-labeling process. 



5 
 

The learned representations for the benchmark dataset are visualized using t-SNE in Figs. 2c and 2d with 

the color coding obtained from the manual image classification. The results demonstrate that the pre-trained 

EfficientNet-B0 model does not separate different classes of ion images (Fig. 2c). In contrast, the separation 

and compactness of clusters are dramatically improved using the re-trained encoder (Fig. 2d). These 

findings indicate that contrastive learning provides meaningful localization representations, which may be 

used for image clustering without annotations. We also studied the impact of training time on the learned 

representations as shown in Fig. S4. Because the algorithm maximizes the similarity of positive pairs and 

minimizes the similarity of negative instances, we observe a trade-off between the alignment and uniformity 

in the learned image representations34. Alignment indicates that feature vectors of two images from a 

positive pair should be mapped together while uniformity indicates that all feature vectors should be 

uniformly distributed. For the benchmark dataset, alignment dominates the training process in the first 50 

epochs, in which ion images from the same class tightly aggregate together in the 2D feature space (Fig. 

S4a). Further training beyond this point disproportionately increases the uniformity of data distribution, 

which is detrimental to the downstream classification. In addition, a fast decrease in the contrastive loss 

observed in the first 50 epochs is followed by a much slower trend at longer training times (Fig. S4b) 

indicating the diminished benefit of a longer training. The linear evaluation results shown in Fig. S4c 

indicate that 50 epochs of training provide the best classification of the benchmark data. 

Image clustering 

In the second step illustrated in Fig. 1, we performed image clustering based on the representations and 

generated the initial classification labels for the self-labeling task. Spectral clustering (SC) approach is 

selected, which constructs a k-nearest neighbor graph from ion image representations and then identifies 

clusters through the Laplacian embedding. Because contrastive learning provides image representations 

with meaningful local neighborhoods, SC is an appropriate method for this task35. For representations of 

benchmark dataset given by contrastive learning, we quantified the purity of local neighborhoods by 

counting the annotation-matching pairs for each image and its k-nearest neighbors, where k ranges from 1 

to 30. (Methods) Our results confirm that contrastive learning substantially improves the purity of local 

neighborhoods of ion images in the representation space as shown in Fig. 2e. In particular, we observe that 

for a relatively large neighborhood size (k > 3), the re-trained encoder improves the pair-matching 

percentage by more than 15%. For example, for ten nearest neighbors, the pair-matching percentage is 88% 

and 66% for the re-trained and pre-trained encoders, respectively. A combination of contrastive learning 

and SC provides 81.5% classification accuracy for benchmark dataset with 13 clusters as shown in Table 

1. However, this machine learning classifier is non-learnable, which hinders further model improvement. 

In order to further enhance the clustering performance, we used the initial labels obtained from SC to 

initialize a learnable linear classifier at the end of the CNN encoder and then fine-tuned the whole model 

using a self-labeling approach36. This classifier is composed of a linear layer followed by a softmax function. 

Its initialization is performed by training it on top of the frozen encoder with the original ion images and 

initial labels as inputs as illustrated in step 2 of Fig. 1. 

Self-labeling 

The self-labeling step shown in Fig. 1 fine-tunes both the CNN encoder and linear classifier by ensuring 

that augmentations of the same ion image are be classified into the same group. This approach further 

enhances the generalization power of the model, which becomes tolerant towards visual variations 

originating from strong data augmentations (Methods). To optimize the training process, only confidently 

classified images are included in self-labeling.  
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Because the initial labels are generated using an unsupervised machine learning approach, we anticipate 

that some false classification may be present. We identified falsely classified images based on their softmax 

probabilities37. By excluding these images from training, we improved the robustness of the CNN model, 

which benefits the classification accuracy. In order to select images with correct classification during the 

training, we first examined the relationship between the softmax probability and classification accuracy for 

the CNN model using the benchmark dataset. This model was trained by initial labels obtained from SC 

and classified ion images into 13 classes. We used a range of softmax probability thresholds to examine the 

classification accuracy (red trace) and fraction of confidently identified images (blue trace) as shown in Fig. 

2f. We observe that the classification accuracy increases with increase in the softmax probability threshold. 

Meanwhile, the number of confidently classified images decreases. Additional examples of this analysis 

are shown in Fig. S5 indicating that the observed trend is general.  

The results shown in Fig. 2f indicate that there is a trade-off between the number of confidently classified 

images and classification accuracy.  In self-labeling, we chose a probability threshold of 0.9 to start training, 

for which 58% of confidently classified images were selected with 96% classification accuracy. Self-

labeling is performed by re-training both the CNN encoder and classifier using selected images. For each 

ion image, we use one weak and one strong data augmentation (Tab. S1 and Methods), which provides two 

pseudo labels as the classifier outputs. A cross-entropy loss is calculated for the pseudo labels and the model 

parameters are updated to minimize the loss as illustrated in Fig 1. In each epoch, we update the confidently 

classified images for training using the same softmax probability threshold of 0.9. As illustrated in Fig. 2g, 

the loss (purple line) decreases with training time. Meanwhile we observe a significant increase in the 

number of confidently classified images and a slight increase in the accuracy with training time. These 

results demonstrate that the CNN model corrects itself during the self-labeling process, which gradually 

includes additional confidently classified ion images into the training and increases the overall classification 

accuracy. 

We used the self-supervised clustering approach to cluster benchmark ion images of the mouse uterine 

tissue (Fig. S6) into 13 and 20 groups. The results obtained at different stages of the workflow for five 

replicates are summarized in Table 1. When clustering is performed using the CNN encoder and SC, 

contrastive learning (SimCLR) improves the classification accuracy from 64.8% to 81.5% with 13 clusters 

and from 71.9% to 90.0% with 20 clusters. An improvement of about 20% in accuracy clearly indicates the 

significance of the CNN retraining for learning image representations in MSI data. In addition, self-labeling 

provides a 3% improvement in the classification accuracy for both 13 and 20 clusters. Collectively, our 

self-supervised clustering approach enabled clustering of the benchmark data into 20 groups with 92.7% 

accuracy as shown in Fig. S7. Representative ion images for each group shown in Fig. 3 provide a concise 

summary of the spatial patterns present in the vast MSI data. Meanwhile, the generalization power of the 

self-supervised clustering approach and its tolerance to noise levels can be assessed by examining images 

in each class (Fig. S6). 

Table 1. Summary of the performance of different clustering methods on benchmark data.  
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Figure 3. 20 average ion images obtained from self-supervised clustering results provide a concise 

summary for comprehensive molecular distribution patterns present in the benchmark MSI data.  

Mass spectrometry image clustering of an unannotated mouse brain dataset 

To further demonstrate the robustness of the self-supervised clustering approach, we applied it to a publicly 

available mouse brain MALDI MSI dataset. The image size of 240 x 220 pixels is larger than the benchmark 

data. For the mouse brain MSI data, we generated 1101 ion images Shown in Fig.S8. We observe diverse 

spatial patterns of metabolites and lipids localized to different regions of the brain tissue. Ion images 

showing signal enhancement outside of the tissue region most likely correspond to matrix peaks. Using 

self-supervised clustering approach, we re-trained the CNN model and clustered 1101 ion images into 35 

colocalization groups as shown in Fig. S9. This process took less than one hour with a single GPU card 

(Methods).  

Fig. 4a illustrates ion image representations after self-supervised learning using t-SNE visualization. 

Additional results are provided in Fig. S10. In the absence of a manual annotation, we use the same color 

for all the data points in Fig. S10. With the pre-trained EfficientNet-B0, we could only observe several 

aggregates at the edge of the 2D ion image representations. However, the uniformly distributed 

representations in the center of the plot cannot be used for identifying the co-localized ion images (Fig. 

S10a). After the contrastive learning step, the re-trained CNN encoder provides a substantially improved 

separation of the representations as shown in Fig. S10b. Fig. 4a shows ion image representations after self-

labeling, which are color-coded with predicted colocalization labels. Tight clusters indicate co-localized 

molecular distribution patterns in the MSI data. Pairs of ion images were selected from clusters and placed 

around the t-SNE plot. Images from one pair have similar spatial features, while different pairs show distinct 

molecular localizations. These results confirm that the self-supervised clustering approach developed in 

this study provides accurate molecular localization representations of distinct spatial patterns observed in 

MSI data. Notably, some of the paired ion images have different noise levels (e.g., m/z 906.4314 vs m/z 

915.4561) or different intensity levels (e.g., m/z 613.3477 vs m/z 817.1050). These results indicate that data 

augmentations used in the training step provide a sufficient generalization capability for the re-trained CNN 

model to identify high-level molecular localization. The ability to perform self-supervised clustering of the 

unannotated MSI data distinguishes our approach from previously reported methodologies25–27.  
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Figure 4. Self-supervised clustering results on a publicly available MALDI mouse brain dataset. (a) 

t-SNE visualization of ion image representations obtained after two steps of self-supervised training. Data 

points are color-coded using the final clustering assignments of ion images. Pairs of representative ion 

images are selected from well-resolved clusters to visualize the quality of classification. (b) An average 

spectrum color-coded using the same color scheme as that in panel a. (c) A zoom in region of the average 

spectrum showing several isotopic patterns. The results of isotopic identification (ground truth), 

EfficientNet-B0 and SC classification, and self-supervised clustering classification are annotated using 

independently assigned class numbers with different colors. Ions with the same color and number are 

grouped together in the corresponding classification. For clustering results, an asterisk indicates falsely 

classified isotopic ions. (d) A summary of the isotopic recall for different clustering methods.  
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We also visualized the ion clustering results in the m/z space. Fig. 4b shows an average mass spectrum over 

the m/z 600-1000 range, in which peaks are highlighted using the same color coding as that in Fig. 4a. To 

further evaluate the accuracy of the clustering, we examined the isotopic recall26, which quantifies the 

percentage of ion images of isotopic peaks correctly grouped together. We identified isotopic ions based 

on both the accurate m/z shift and Pearson correlations of ion images (Methods). For example, in Fig. 4c, 

co-localized isotopic peaks observed in the m/z range of 736-765 are annotated using compound indices in 

gray color, which are ranked by their primary isotopic m/z values. Ion image colocalization results of self-

supervised clustering and EfficientNet-B0 followed by SC are also annotated by colocalization class 

number with blue and red colors, respectively. We note that independent class numbers were assigned to 

these two classification results. With the expectation that isotopic images should be clustered into the same 

group, we identified the correctly and falsely classified isotopic ions in clustering results (Methods) and 

marked false isotopic classification with an asterisk. In the mass range shown in Fig. 4c, EfficientNet-B0 

and SC falsely classified 3 isotopic peaks, while the self-supervised clustering approach correctly grouped 

all the isotopic peaks. This result further confirms the accuracy and robustness of the self-supervised 

clustering. Values of the isotopic recall obtained using different clustering methods are summarized in Fig. 

4d. For the clustering involving the CNN encoder and SC, contrastive learning (SimCLR) improves the 

isotopic recall from 75.4% to 90.2%. With the self-labeling, the final model reaches an isotopic recall of 

92.1%, which indicates the superior clustering performance of this approach.   

Conclusion 

We developed a robust self-supervised clustering approach for classifying co-localized molecular images 

obtained using MSI. In this approach, data augmentation is combined with contrastive learning and self-

labeling methods to train a deep CNN model without manual annotations. Systematic studies using a fully 

annotated mouse uterine tissue data and unannotated mouse brain tissue data demonstrate that the re-trained 

CNN model efficiently learns high-level molecular localization representations, which facilitate clustering 

of molecular images. Using a manually annotated benchmark dataset, we demonstrate that this approach 

achieves >90% classification accuracy. Meanwhile, clustering of a publicly available unannotated MSI data 

demonstrates the robustness of this approach and its applicability to different tissue types, image sizes, 

modes of ionization, instrument parameters, and data complexity.  

Our findings indicate that the limited size of MSI data is not a bottleneck for self-supervised learning. 

However, data augmentation is critical to the model training. We use a combination of appearance-changing 

transformations, such as Gaussian blur, Gaussian noise and intensity distortion to maximize the 

generalization power of the CNN model towards the efficient recognition of distinct localization patterns 

in ion images with varying levels of signal and noise. A similar self-supervised learning paradigm may be 

applied to other hyperspectral chemical imaging modalities including Raman and infrared microscopy.  

The self-supervised learning approach presented herein enables molecular colocalization analysis based on 

the MSI data in an autonomous and high-throughput manner. It provides a concise representation of the 

vast data containing several hundreds of molecular images, which is critical to understanding biochemical 

pathways in biological systems. Furthermore, we propose that this approach may be readily expanded into 

a larger semi-supervised learning framework. The self-supervised paradigm enables representation learning 

before supervised classification, which is particularly advantageous for automatic ion image labeling 

necessary for the high-throughput annotation of both MSI data and data obtained using other imaging 

modalities.  

Methods and Materials 

Mass spectrometry imaging data 
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Mouse uterine and brain tissue MSI datasets used as examples in this study have been previously reported5,31. 

Briefly, mouse uterine tissue was analyzed using nano-DESI MSI on a Q-Exactive HF-X Orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with a custom-designed nano-DESI 

source38. Mass spectra were acquired in the m/z range of 133-2000 in both positive and negative ion modes 

with a spatial resolution of 10 μm. Positive mode MSI data for mouse brain tissue was obtained from 

METASPACE32, a community resource that provides open access to MSI data. The specific data were 

acquired using MALDI MSI in the m/z range of 600-1000 with a spatial resolution of 20 μm. The 

dimensions of the two MSI datasets are listed in Table S1.  

Data pre-processing 

To generate ion images from MSI data, we used peak detection and m/z binning as described in our previous 

study39. The signal intensity for each m/z in each pixel was extracted from the corresponding mass spectrum 

with a bin width of ± 10 ppm and normalized to the total ion current. To remove visual spikes, pixels with 

intensities > 0.999 quantile were reassigned with the 0.999 intensity quantile value. Ion images of mouse 

uterine tissue were resized to 96 x 96 pixels. Meanwhile, larger-size ion images of mouse brain tissue were 

resized to 224 x 224 pixels. Most pre-trained CNN models and Pytorch transform functions accept RGB 

images. Thus, raw pixel intensities of ion images were normalized between 0 and 255 and copied to 3 

channels. More specifically, we converted ion images into the PIL format before the data augmentation 

step. To benchmark our approach, we manually selected 367 mouse uterine ion images with distinct ion 

distributions and clustered them into 13 groups according to molecular colocalizations as shown in Fig. S6. 

For the unannotated mouse brain dataset, we detected 1101 peaks from the average spectrum and generated 

the corresponding ion images as shown in Fig. S8.   

Architecture of the self-supervised clustering  

We approached the challenge of molecular localization clustering as an image classification task. We aimed 

to re-train a CNN model for an individual MSI dataset to classify ion images based on the high-level spatial 

features without manual annotations. The model architecture is shown in Fig. 1. The pre-trained CNN 

(EfficientNet-B0) is re-trained by contrastive learning and self-labeling sequentially in a self-supervised 

manner. We use EfficientNet-B0, which has been trained on the ImageNet database. We used the 

EfficientNet-B0 model before the classification layer as an encoder. In our architecture, we firstly learned 

ion image representations through the contrastive learning. More specifically, SimCLR29 approach is 

adopted in this study. After this first phase of training, we fed ion images through the re-trained encoder to 

produce a set of feature vectors, which were then passed to a spectral clustering (SC) classifier to generate 

the initial labels for the classification task. To initialize self-labeling, a linear classifier (a linear layer 

followed by a softmax function) was attached to the encoder and trained with the original ion images and 

initial labels as inputs. Finally, we utilized a self-labeling36 approach to fine-tune both the encoder and 

classifier, which allows the network to correct itself.  

Contrastive learning 

Details of SimCLR implementation are shown in Fig. S1. The representation of an ion image is the output 

before the classification layer of EfficientNet-B0. A small multilayer perceptron with one hidden layer 

maps the representations to the projection space ( Z ) where the contrastive loss is applied. In the training 

step each ion image is used to generate a pair of augmentations. We treat two augmentations of one ion 

image as a positive pair ( , )i j . Then the loss function is defined as 
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where 2N is the number of augmented images, ,i j Zz z , sim denotes the cosine similarity, 
[ ]k i1

denotes an indicator function evaluating to 1 iff  k i  and  is a temperature parameter with a default 

value of 0.5. The final loss is computed across all positive pairs in the minibatch. To evaluate the quality 

of learned representations for mouse uterine benchmark, we used a linear evaluation and the nearest 

neighbor mining. In the linear evaluation, one average ion image was generated from each manually 

classified group of images as the centroid of the cluster. A linear classifier was subsequently trained on top 

of the frozen encoder with 13 average ion images and their corresponding annotated labels. Next, all original 

ion images were classified by the CNN encoder and the updated linear classifier. The resulting classification 

accuracy is used as a proxy for the quality of image representation29. In the nearest neighbor mining protocol, 

for each ion image, we searched its K nearest neighbors (K  [1, 30]) based on cosine distance in the 

representation space. We quantified the purity of the neighborhood by counting the annotation-matching 

pairs for each image and their nearest neighbors.  

Image clustering 

It has been demonstrated in a previous report36 and this study (Fig. 2e) that images with similar high-level 

spatial features are mapped together in the representation space using contrastive learning. To leverage the 

meaningful local neighborhoods, SC was adopted to cluster ion images as the classification pretext task. 

Based on the cosine distance, 10 nearest neighbors of each ion image were identified to construct a graph. 

Next, we used the discretization approach to cluster nodes in the graph after the Laplacian embeddings35. 

After the SC, we used the resulting classification labels to initialize a learnable linear classifier on top of 

the CNN encoder, which enables the following self-labeling process to fine-tune the model (step 2 in Fig. 

1). More specifically, the linear classifier is composed of a linear layer and a softmax function. We set the 

encoder in frozen mode and trained the classifier with original ion images and initial labels obtained from 

SC.  

Self-labeling 

As reported in a previous study, self-labeling improves the CNN model using a plain criterion: two 

independently augmented images from one ion should be classified into the same cluster. With this principle, 

the self-supervised training is able to enhance the generalization power of the model. In addition, only the 

confidently-classified ion images are included in this training36. As shown in Fig. 2f and Fig. S5, we 

observed that the classification accuracy obtained for selected mouse uterine ion images increases with an 

increase in the softmax probability threshold. This indicates that the softmax probability threshold may be 

used to exclude falsely classified ion images from the training, which enhances the accuracy of the CNN 

model in the self-labeling step. In the implementation, we empirically selected the probability threshold 

with respect to the sample population. More specifically, after the initialization of the linear classifier, we 

selected the 40% quantile of softmax probabilities as the threshold. The selected training data containing 

60% of the original ion images has a larger fraction of correctly classified images than the original data. 

Training samples were updated with the same probability threshold at every epoch, thus we gradually 

included more samples into the training (Fig. 2g). For each selected ion image, we applied a weak and a 

strong augmentations, respectively. Two pseudo labels were obtained after the encoder and classifier. A 

weighted cross-entropy loss was then applied to the minibatch of weakly augmented ion images to update 

the parameters of the CNN model.  
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Clustering accuracy evaluation 

In this study, we used over-clustering to effectively capture the intra-class variance. The clustering accuracy 

was calculated using the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(ℂ, 𝕋) =
1

𝑁
∑ max𝑗|𝑐𝑖⋂𝑡𝑗|

𝑖

 

Where 1 2, , , Ic c c  is the set of predicted clusters, 1 2, , , Jt t t  is the set of ground truth 

classes, N  is the total number of ion images. In each cluster, the most frequent ground truth class was 

identified and assigned as a predicted class for the whole cluster. The accuracy was calculated by counting 

the correctly predicted ion images and dividing by N . 

Isotopic recall evaluation 

Isotopic recall is a metric reported in a previous study26 to evaluate the performance of ion image clustering. 

Isotopic ion images were identified based on the m/z shift and Pearson correlation of the ion image with 

that of the candidate monoisotopic peak. Specifically, mass spectral features separated from each other by 

m/z 1.003 with a tolerance of 𝑚/𝑧 0.01  were assigned as candidate isotopic peaks. Second, ion images of 

isotopic peaks should have a Pearson correlation greater than 0.5. For the self-supervised clustering results, 

we counted the number of isotopic images that were correctly clustered together and divided it by the total 

number of identified isotopes. This fraction gives the isotopic recall, which is in the range of 0 to 1.  

Data augmentation 

Data augmentation is crucial for contrastive learning and self-labeling. We systematically studied the 

impact of data augmentation operators as listed in Tab. S2. For each single augmentation operation, we 

randomly sampled a parameter interval for an image transformation function. Moreover, we classified the 

compositions of data augmentation operators into three classes. Medium augmentation was used in 

SimCLR, while weak and strong augmentations were used in self-labeling.  

Model training protocal 

For SimCLR training step, we used Adam optimizer with the initial learning rate of 0.001. A cosine 

annealing with a period of training epochs was used to decay the learning rate. According to the previous 

report, SimCLR benefits from larger batch sizes29. In our implementation, we used the largest batch size 

allowed by the GPU memory and trained for 100 iterations. For the self-labeling step, an Adam optimizer 

with the initial learning rate of 0.0001 and the same cosine annealing schedular were used. We trained the 

CNN for 300 iterations. We implemented the model training on Google Colaboratory, a cloud computing 

platform. Using the NVIDIA Tesla P100-16GB GPU, the total training time for mouse uterine MSI 

benchmark and mouse brain MSI dataset was about 15 and 45 minutes, respectively.  

Data availability 

Benchmark data reported in this work will be provided soon at https://github.com/hanghu1024/MSI-self-

supervised-clustering. The mouse brain MSI dataset can be obtained from METASPACE 

(https://metaspace2020.eu). The dataset title is: Mousebrain_MG08_2017_GruppeF. 

Code availability 
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The source code for the model training and inference with trained weights will be available soon at 

https://github.com/hanghu1024/MSI-self-supervised-clustering.  
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