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Abstract 

Motivation 

Unknown features in untargeted metabolomics and non-targeted analysis (NTA) are identified 
using fragment ions from MS/MS spectra to predict the structures of the unknown compounds. 
The precursor ion selected for fragmentation is commonly performed using data dependent 
acquisition (DDA) strategies or following statistical analysis using targeted MS/MS approaches. 
However, the selected precursor ions from DDA only cover a biased subset of the peaks or 
features found in full scan data. In addition, different statistical analysis can select different 
precursor ions for MS/MS analysis, which make the post-hoc validation of ions selected by new 
statistical methods impossible for precursor ions selected by the original statistical method. By 
removing redundant peaks and performing pseudo-targeted MS/MS analysis on independent 
peaks, we can comprehensively cover unknown compounds found in full scan analysis using a 
“one peak for one compound” workflow without a priori redundant peak information. Here we 
propose an reproducible, automated, exhaustive, statistical model-free workflow: paired mass 
distance-dependent analysis (PMDDA), for untargeted mass spectrometry identification of 
unknown compounds found in MS1 full scan.  

Results 

More annotated compounds/molecular networks/spectrum were found using PMDDA 
compared with CAMERA and RAMClustR. Meanwhile, PMDDA can generate the preferred 
ions list for iterative DDA to cover more compounds when instruments support such functions.  

Availability and implementation 

The whole workflow is fully reproducible as a docker image xcmsrocker with both the original 
data and the data processing template. https://hub.docker.com/r/yufree/xcmsrocker A related R 
package is developed and released online: https://github.com/yufree/rmwf. R script, data files 
and links of GNPS annotation results including MS1 peaks list and MS2 MGF files were 
provided in supplementary information. 
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 Supplementary information 

Supplementary data are available online. 



Introduction 

While metabolomics often aims at revealing changes in levels of all possible metabolites in 
biological samples(Fessenden, 2016), non-targeted analysis (NTA) usually aims at 
comprehensive profiling of compounds in environmental samples(Sobus et al., 2018). To achieve 
these goals, both approaches use high-resolution mass spectrometry (HRMS) to perform 
unbiased measurement of small molecules followed by identification of unknowns(Yu and 
Petrick, 2020). In most HRMS-based workflows, small molecule profiles will first be extracted 
across samples as peaks or features(Tang et al., 2020). Tens of thousands of features are 
typically extracted in each sample making it impractical to target every feature for MS/MS 
fragmentation(Barnes et al., 2016). For biological studies comparing subject groups, statistical 
analysis, machine learning algorithms and/or annotation can be performed to subset the features 
into peaks of interest(Mendez et al., 2019; Domingo-Almenara et al., 2018). Those selected 
peaks are then targeted for MS/MS fragmentation for identification. However, this approach is 
limited to a single research question and statistical analysis, as a new question or analysis would 
reveal different ions as targets for MS/MS analysis(Chong et al., 2019). In contrast, group 
comparisons may not be available in ecological study designs or environmental investigations for 
supervised statistical analysis(Ljoncheva et al., 2020). In this case, an exhaustive identification 
strategy of all possible small molecules needs to be developed to maximize the matching for 
quantification results from MS1 with annotation results from MS/MS analysis.  
 
Automated untargeted MS/MS identification techniques such as data-independent acquisition 
(DIA) and data dependent acquisition (DDA) are powerful tools in qualitative untargeted analysis 
for identification of unknowns(Zhu et al., 2014). For DDA, precursor ions for MS/MS are selected 
during data collection by user-defined strategies. For DIA, all ions are sent into the collision cell 
for fragmentation, and deconvolution algorithms are used to connect the fragment ions to the 
parent compounds. However, DDA and DIA cover only a subset of the full scan features and the 
selected precursor ions may come from background instead of biologically relevant features(Guo 
and Huan, 2020). In addition, DDA and DIA are designed for qualitative analysis instead of 
performing quantitative analysis with fragment ions(Nash and Dunn, 2019), because a 
compromise must be made between more scan time for high quality fragment ions and well-
shaped chromatography for precursor ions. Proposed solutions include time-staggered precursor 
ion lists as inclusion lists(Wang et al., 2017) or automated exclusion lists to cover more 
compounds during repeated DDA injections(Koelmel et al., 2017). DDA will prefer precursors 
with higher intensity to reach similar sensitivity of MS1 full scan. A better preferred list of 
precursor ions can extend the coverage of DDA(Ten-Doménech et al., 2020). 
 
As an alternative to DDA or DIA, targeted MS/MS is a straightforward method for qualitative and 
quantitative analysis of known compounds. Since targeted MS/MS analysis requires a pre-
defined peak list for both precursor and fragment ions(Wang et al., 2017), new strategies needed 
to be developed for implementation in untargeted analysis for discovery and hypothesis 
generation. Mainly, since redundant peaks dominate full scan mass spectra, targeted MS/MS 
peak lists need to be refined by pseudo-spectra annotation, i.e., clustering all mass spectral 



signals stemming from each metabolite(Domingo-Almenara et al., 2018; Mahieu and Patti, 
2017). In practice, the number of unique compounds may be as little as twenty percent of the 
total feature numbers(Yu et al., 2019). If only a single peak is selected as the precursor ion for 
each unknown compound, the numbers of precursors for targeted MS/MS are drastically 
reduced.  
 
Such "one feature for one compound" strategy has been reported for several metabolomics 
studies(Luo et al., 2015; Zeng et al., 2014), mainly using known adducts, neutral loss, and 
isotope pattern to detect the redundant peaks. Software packages such as CAMERA(Kuhl et al., 
2012) and RamClustR(Broeckling et al., 2014) have been developed to annotate the pseudo-
spectra for unknown full scan mass spectra algorithms that use correlation of peaks and pre-
defined paired-mass distances for selecting redundant peaks to generate pseudo-
spectra(Domingo-Almenara et al., 2018). However, adducts or in-source reactions might be quite 
different among different sample matrices or instrument parameters(Sindelar and Patti, 2020), 
even for peaks from the same compound(Liigand et al., 2020). Therefore, a frequency-based 
paired-mass distances algorithm, such as the GlobalStd algorithm, could be an alternative 
solution to determine pseudo-spectra for exhaustive and local MS/MS analysis as it is designed 
to extract independent peaks without predefined redundant peaks information(Yu and Petrick, 
2020; Yu et al., 2019). For example, sodium adducts should be considered only if paired mass 
distance (PMD) 21.98 Da appeared in high frequency. Some of the high frequency PMDs belong 
to known adducts while others might belong to unknown adducts, oligomers or combinations of 
known adducts. GlobalStd will try to remove the study specific redundant peaks as much as 
possible instead of using predefined adducts or reactions lists. 
 
With such high complexity and no gold standard for metabolomics data pre-processing, 
reproducibility is important. Though raw metabolomics data can be uploaded and accessed 
through online databases such as MetaboLights(Haug et al., 2020) or Metabolomics 
Workbenchs (https://www.metabolomicsworkbench.org/), details of data analysis are not as 
transparent as data sharing, and reduce the ability to fully reproduce the reported 
findings(Goodman et al., 2016). Data analysis software with a graphic user interface (GUI) can 
be easy to use and document, but is also restricted to only defined operations(Hung et al., 2016). 
An open source data process script can represent every step of the data analysis while still being 
flexible,(Gandrud, 2013) but researchers need to adopt specific software within an integrated 
development environment (IDE), which also reduces reproducibility due to the lack of experience 
with certain software(Boettiger, 2015). To address these challenges, a system image with pre-
installed open source software and data process templates for untargeted analysis should be 
developed to attain fully reproducible omics studies. 
 
In this work, we developed an exhaustive and reproducible untargeted metabolomics data 
analysis workflow called paired-mass distance dependent analysis (PMDDA) to automatically list 
independent peaks as precursor ions for MS/MS annotation and link them with MS1 full scan 
data as much as possible. We then compared PMDDA with CAMERA and RamClustR precursor 
peaks selection algorithms using data acquired on standard reference material (NIST 1950) as 
demonstration. We also integrated PMDDA selected precursor ions with iterative DDA as a 



preferred ions list to expand the compound's coverage of MS1 features. All of the data and data 
processing scripts are reproducible by a publicly available docker image. 

Data and methods 

Sample preparation 

NIST 1950 Frozen Human Plasma standard reference material (SRM), which documented 85 
compounds in the sample, was used in this study for reproducibility. Aliquots of 50 μL of NIST 
SRM plasma were thawed on ice. Proteins were precipitated by the addition of 150 μL of ice-
cold methanol containing isotope labelled internal standards, 10 sec of vortexing, and 30 min 
incubation at -80°C. The samples were then centrifuged at 13,000 g for 10 min at 4°C, and 70 
μL of the supernatant was transferred to two 1.5 mL microcentrifuge tubes. The extracts were 
evaporated using a Savant SpeedVac concentrator at 35°C for 90 min and samples were stored 
at -80°C until analysis. Following the same protocol, 50 μL aliquots of a matrix blank (replacing 
the SRM plasma with water), were extracted. 

Instrument analysis 

Immediately prior to data acquisition, dried samples were reconstituted in 60 μL of methanol. 
Samples were analyzed using an ultra-high performance liquid chromatography (UHPLC) 1290 
Infinity II system (including 0.3 µm inline filter, Agilent Technologies, Santa Clara, USA) with 
1260 Infinity II isocratic pump (including 1:100 splitter) coupled to a 6545 quadrupole-time time of 
flight (Q-TOF) mass spectrometer with a dual AJS electrospray ionization source (Agilent 
Technologies, Santa Clara, USA). Samples were maintained at 4°C in the multisampler module. 
Reference masses included positive ionization mode: purine (m/z 121.0509), HP-0921 (m/z 
922.0098); and negative ionization mode: purine (m/z 119.0363), HP-0921 (m/z 966.0007). 
Sheath and drying gas (Nitrogen purity >99.999%) flows were 12 L/min and 10 L/min, 
respectively. Drying and sheath gas was 250 °C, with the nebulizer pressure at 20 psig, and 
voltages for positive and negative ionization modes at +3000 V and -3000 V, respectively.  

The extracts were injected onto a Zorbax Eclipse Plus C18, RRHD column (50 mm × 2.1 mm, 
1.8 µm particle size, Agilent Technologies, Santa Clara, USA) coupled to a guard column (5 mm 
× 2 mm, 1.8 µm Agilent Technologies, Santa Clara, USA) maintained at 50°C. Separation 
occurred using Mobile phase A consisted of water with 0.1% formic acid and Mobile phase B 
consisted of 2-propanol:ACN (90:10, v/v) with 0.1% formic acid at a flow rate of 0.4 mL/min. A 15 
min gradient was used (5% B for 2 min, increasing to 30 % B in 2 min, and increasing from 30 % 
to 98 % B in 9.5 min with a 1.5 min hold), followed by a column re-equilibration phase. Data was 
acquired with a mass range of 100-1000 m/z (MS1) and 20-1000 m/z (MS/MS). The scan rate for 
MS1 full scan is 1.67spectra/s. The targeted analysis/ iterative DDA scan rate for MS1 is 4 
spectra/s and 2 spectra/s for MS2 and 4 max precursors per cycle was set for iterative DDA. 



Five SRM samples and five matrix blanks were analyzed. Data were collected in full scan 
positive and negative mode. Then, the precursor ions were selected for MS/MS fragmentation 
based on full scan data either via PMDDA, CAMERA, or RAMClustR. Peak lists for repeated 
injections of MS/MS analysis were automatically generated by an in-house script. The collision 
energy was set at 20 eV for all MS/MS fragmentation. In addition, eight injections of iterative 
DDA with PMDDA selected precursors as the preferred ions list were performed(Ten-Doménech 
et al., 2020). For iterative DDA, ions selected as precursors in previous injections are removed 
from the list in the following injections. Use of a preferred ions list ensures the selected ions were 
fragmented if they were in the samples. 

Data analysis 

Data analysis was performed in R (version 4.0.2)(R Core Team, 2020) according to the workflow 
described in Figure 1. Raw data were refined by retention time range between 30s and 930s for 
the positive and negative mode to remove both the void volume and the washing phase of the 
column. The peak picking parameters for xcms(Smith et al., 2006) were optimized by 
IPO(Libiseller et al., 2015) for the five SRM samples. After retention time correction and peak 
filling for the low abundance peaks, the features were further filtered by those with intensity fold 
change larger than three times that in the SRM than the matrix samples. Peaks with relative 
standard deviation (RSD) larger than 30% in SRM samples were removed. The filtered peaks 
were linked with the MS2 annotation results from PMDDA, CAMERA, and RAMClustR selected 
precursor ions for comparison. Repeated injections were designed to retain high sensitivity for 
exhaustive identification by MS/MS across the column gradient.  
 
The MS/MS data were then converted to open source format(Chambers et al., 2012) and 
annotated using GNPS(Wang et al., 2016) molecular networking for MS/MS annotation with 
default settings (2Da shift for precursor ions to include isotope and 0.5Da shift for fragmental 
ions). Then annotation results were linked back to MS1 full scan filtered data for further 
investigation with <5ppm shift of mass-to-charge ratio and <5 second shift of retention time. Then 
the molecular networks and annotation results were compared among different methods. 
 
SRM NIST 1950 contains 85 compounds with known exact masses including amino acids, fatty 
acids, clinical markers, etc. To compare the ability of each method to identify these known 
compounds, theoretical m/z for protonated and deprotonated ions were generated as [M+H]+ and 
[M-H]- for positive and negative modes, respectively. Then, the precursor ions selected from 
PMDDA, CAMERA, and RAMClustR were aligned among the m/z ions list for these known 
compounds within two decimal places.  
 
MS/MS spectra of the peaks matched to the filtered MS1 features list as MGF files were 
extracted for further investigation or improved matching to the algorithm/database. The MS2 
spectra were extracted by combining spectrum from similar precursor ions within 0.02Da, with 
fragmental ions shifted < 5 ppm, and only including peaks that were larger than 60% of the 
remaining spectra. 



 
The whole PMDDA workflow (Figure 1), including MS1 feature extraction and filtering, precursor 
ion selection, and injection peak table generation for MS/MS analysis has been included in the 
rmwf package’s data processing template with links to download the original data via figshare 
(https://figshare.com/projects/Reproducible_Metabolomics_WorkFlow/59777). Here, the MS/MS 
analysis can be targeted analysis with the selected precursor ions and/or various data-
dependent acquisition modes with selected precursor ions as preferred ions when the instrument 
supports this feature. In addition, the workflow and corresponding software were packaged into a 
docker image called xcmsrocker (https://hub.docker.com/repository/docker/yufree/xcmsrocker). 
We also supplied the script, data files and links of GNPS annotation results for this study 
including MS1 peaks list and MS2 MGF files as supplementary information for reproducible 
purpose. 
 

 
Figure 1. PMDDA workflow. Raw peaks are filtered by GlobalStd Algorithm to remove 
redundant peaks, then the remaining peaks are merged by cluster analysis to generate the 
precursor ion list. The selected peaks are assigned into multiple injections to collect the 
fragmental ions for structure identification. The whole analysis can be found as a data process 
template in the ‘rmwf’ package. The complete data analysis is reproducible as a xcmsrocker 
image. 



Results 

Precursor ion selection for MS/MS analysis 
Using full scan mode, 6715 and 4666 features were measured in the NIST samples in positive 
and negative mode, respectively. After removal of peaks with fold change smaller than three 
times that of corresponding matrix samples and those peaks with a RSD larger than 30%, 4711 
and 3608 features remained in positive and negative mode, respectively, as potential precursor 
ions for MS/MS analysis.  
 
For PMDDA, the GlobalStd algorithm was used to reduce the redundant peaks(Yu et al., 2019). 
To select precursors for targeted analysis, each reduced independent peak was linked to their 
paired high frequency PMD ions as an ion cluster, or pseudo-spectra. Clusters were merged if 
independent peaks could be linked to the same paired ions. In addition, since ions within clusters 
should be highly correlated, Pearson correlation coefficients smaller than 0.9 between paired 
mass distances were used as a threshold to exclude unrelated peaks from the same 
compounds. For each merged ion cluster, the peak with the highest intensity was selected as the 
precursor ion for MS/MS analysis. For the SRM samples, in positive mode, 849 independent 
peaks were selected by the GlobalStd algorithm in which 780 precursor peaks were selected for 
targeted analysis after cluster analysis. In negative mode, 761 independent peaks generated 723 
precursor peaks. 
 
Precursor lists were also generated for CAMERA and RAMClustR. For CAMERA(Kuhl et al., 
2012), peak cluster groups following annotation of the feature table were treated as pseudo-
spectra, and the proposed molecular weights for each pseudo-spectra were extracted. Then, the 
[M+H]+ for positive mode and [M-H]- for negative mode were generated as precursor ions for 
targeted analysis. For the SRM samples, 862 and 710 precursor ions were generated for MS/MS 
annotation for positive and negative mode, respectively. Since RAMClustR(Broeckling et al., 
2014) generated the molecular weight of each pseudo-spectra, the corresponding molecular ions 
([M+H]+ for positive mode and [M-H]- for negative mode) were generated for MS/MS analysis. 
For the SRM samples, 542 and 770 precursor ions were generated for positive and negative 
modes, respectively. 
 
While several thousand features were measured in full-scan, the precursor ion selection process 
generated precursors for less than 1000 features, covering approximately 15% and 20% of the 
total feature numbers in positive and negative mode, respectively. Nevertheless, obtaining high 
quality MS/MS spectra for all of those features in a single injection with high sensitivity is 
challenging. In this case, the precursor ions were randomly assigned into multiple injections to 
make sure that no more than 6 ions were scanned within a retention time shift of 0.2 minutes of 
the original retention time from full scan. Such repeated injections for PMDDA, CAMERA, and 
RAMClustR were aimed to retain high sensitivity and compound coverage, and could be 
implemented into untargeted studies using pooled QC samples for untargeted MS/MS analysis.  



Comparison with CAMERA and RamClustR 

We compared the molecular networking results from GNPS for MS/MS collected using the 
PMDDA, CAMERA, and RAMClustR workflows (see Supplementary Materials for GNPS links). 
Here, only the results with precursor ions found in MS1 full scan were kept for comparison.  
 
Figure S1 and S2 shows the MS1 full scan peaks covered by MS2 precursor ions using different 
methods. We find that only a subset of the MS2 precursor ions can be linked back to MS1 full 
scan data for iDDA. In this case, some peaks that can be annotated from MS2 data do not have 
available MS1 data for quantitative analysis. However, targeted analysis such as PMDDA can 
link MS1 and MS2 data as comprehensive studies. 

 

Figure 2. UpSet plot of metabolites networks found from CAMERA selected ions, RAMClustR 
selected ions, PMDDA selected ions, and iterative DDA (left panel is positive mode data and 
right panel is negative mode data). The set of ‘iDDA’ means iterative DDA with PMDDA selected 
precursor ions as the preferred list.  
 
The chemical coverage of different methods were compared based on molecular networks found 
by GNPS, as well as annotation results. As shown in figure 2,  PMDDA found 160 unique 
molecular networks and iDDA found 98 unique molecular networks and shared 116 unique 
molecular networks with PMDDA. Both CAMERA and RAMclustR identified fewer unique 
molecular networks compared with PMDDA, 19 and 29, respectively. However, only 31 
molecular networks were identified in all four methods. For annotation results, as shown in figure 
S3, PMDDA found 73 compounds and iDDA found 77 compounds. Both CAMERA and 
RAMclustR identified fewer compounds, 29 and 41, respectively. However, only 16 compounds 
were identified in all four methods. PMDDA identified 6 unique compounds and another 23 



compounds shared with iDDA while RAMClustR only identified 3 unique compounds and 
CAMERA didn’t have any unique annotated compounds. 
 
Results for negative mode were similar. As shown in figure 2, PMDDA found 46 unique 
molecular networks and iDDA found 70 unique molecular networks. PMDDA and iDDA shared 
168 molecular networks. Both CAMERA and RAMclustR identified fewer unique molecular 
networks compared with PMDDA, 16 and 12, respectively. However, only 22 unique molecular 
networks were identified in all four methods. As shown in figure S3, PMDDA identified 113 
compounds and iDDA identified 122 compounds. PMDDA and iDDA shared 18 compounds and 
iDDA found 6 unique compounds. CAMERA identified 31 compounds and RAMClustR identified 
76 compounds. Only 4 compounds were overlapping between PMDDA, iDDA, CAMERA, and 
RAMClustR. Both CAMERA and RAMclustR had no unique compounds found. In this case, 
PMDDA outperformed CAMERA and RAMclustR and it would be helpful to perform iDDA to 
extend the coverage of molecular networks. 
 
Known compounds in NIST 1950 were also compared among different methods. For positive 
mode, 6, 3 and 5 ions matched in PMDDA, CAMERA and RAMClustR’s precursor ions list while 
12, 9 and 4 ions matched in negative mode, respectively. This suggests that PMDDA performs 
as well or better than the other precursor selection algorithms for selecting biologically relevant 
compounds for MS/MS annotation.  
 
Since the database-based annotation is biased towards compounds with available spectral data, 
and GNPS molecular networks may have multiple spectra from the same compounds, we also 
compared, by open source software, the number of unique MS1 compounds for which there was 
MS2 spectral data collected for CAMERA, RAMClustR, PMDDA. For positive mode, PMDDA 
could extract 293 spectra for unique MS1 compounds, more than CAMERA (34), RAMClustR 
(163). For negative mode, PMDDA found 254 spectra matching to unique MS1 data while 
CAMERA (46) and RAMClustR (150) have less spectra extracted. 
 
Overall, PMDDA showed better coverage than both CAMERA or RAMClustR for untargeted 
annotation. This may be due to the fact that CAMERA and RAMClustR use pre-defined paired 
mass distances for adducts or redundant peaks, which may not accurately represent the specific 
sample type. PMDDA, on the other hand, employs a data-driven process to find high frequency 
paired mass distances within the pseudo spectra, which may cover more unknown adducts or 
redundant peaks(Yu et al., 2019). As shown in Figure S4 and S5, some of the high frequency 
PMDs belong to known adducts while others might belong to unknown adducts, oligomers or 
combinations of known adducts. Another difference between PMDDA, CAMERA, and 
RAMClustR is the software design. The pmd package is designed to remove redundant peaks 
while CAMERA and RAMClustR are designed for annotation directly from the feature peak table. 
As such, the latter algorithms have not been optimized for generating a precursor list for MS/MS 
which may have decreased performance compared to PMDDA.  
 
When we include the results from iterative DDA with the PMDDA selected precursor as the 
preferred list, the annotation performance can be further improved. However, PMDDA contains 



some unique annotations missing by iterative DDA (see figure S3). On the other hand, as shown 
in figure S6 iterative DDA can cover compounds with lower intensity missing by other methods 
on MS1 full scan data. A combination of PMDDA as preferred ions list and iterative DDA data 
collection should be considered to reach a larger coverage of peaks found in MS1 full scan when 
the hardware supports such data acquisition mode. 

Reproducible research 
 
We aimed to maximize reproducibility of this research. Therefore, we used SRM samples that 
are commercially available and commonly used in metabolomics workflows, and made the raw 
data accessible online for future potential research purposes. In order to provide full 
transparency on the data analysis, we choose a command line based script within a graphic user 
interface to make sure every step is recorded and reproducible by other researchers(Hung et al., 
2016). A docker image, xcmsrocker was created based on Rocker image(Boettiger and 
Eddelbuettel, 2017), which pre-installs most of the R-based metabolomics and NTA data 
analysis software. This docker image is available online and can be installed on any personal 
computer, workstation, or cloud computation platform with RStudio as IDE(RStudio Team, 2020). 
Software used for this workflow such as IPO, xcms, pmd, CAMERA, and RAMClustR had been 
pre-installed. The R package rmwf is also included with the data processing script of this PMDDA 
workflow as a template, as well as other workflow templates such as peak picking, annotation, or 
statistical analysis for different software. ‘xcmsrocker’ is freely available for download at 
https://hub.docker.com/r/yufree/xcmsrocker.  

Conclusion 

In this work, we propose an automated, reproducible, and exhaustive workflow to perform 
exhaustive MS/MS annotation based on precursor ions selection from full scan mode untargeted 
metabolomics data. We demonstrated that PMDDA outperforms both CAMERA and RAMClustR 
for breadth of pseudo-spectra precursor ions selection. In addition, this workflow can be coupled 
with iterative DDA to cover more compounds found in MS1 full-scan. The PMDDA workflow 
demonstrates the utility of the workflow to reduce duplicates for downstream statistical analysis. 
The PMDDA workflow is fully open source, reproducible, and includes all raw data and data 
processing scripts available online. 
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