Palladium-Catalyzed Late-Stage C–H Deuteration of Arenes

Mirxan Farizyan, †, ‡ Arup Mondal, †, ‡ Sourjya Mal, † Fritz Deufel, † and Manuel van Gemmeren*, †

† Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.

C–H activation, late-stage modification, deuteration, palladium, arenes

ABSTRACT: We describe a palladium catalyzed non-directed late-stage deuteration of arenes. Key aspects include the use of D2O as a convenient and easily available deuterium source and the discovery of highly active N,N-bidentate ligands containing an N-acyl sulfonamide group. The reported protocol enables high degrees of deuterium incorporation via a reversible C–H activation step and features an extraordinary functional group tolerance, allowing for the deuteration of complex substrates. This is exemplified by the late-stage isotopic labelling of various pharmaceutically relevant motifs and related scaffolds. We expect that this method, amongst other applications, will prove useful as a tool in drug development processes and for mechanistic studies.

Over the last decades the incorporation of hydrogen atom isotopes into organic molecules has received considerable attention and remains a key research goal in both academic and industrial research. Isotopically labelled compounds feature a broad range of applications, starting from their use in the elucidation of reaction mechanisms or as internal standards in mass-spectrometry studies. Isotopically labelled analogs of bioactive molecules play a critical role in the drug discovery processes, for example in absorption, distribution, metabolism, and excretion (ADME) studies to gain knowledge of their metabolic profile and toxicity. In an increasing number of cases deuterated molecules are marketed as new pharmaceuticals often characterized by improved pharmacokinetic and pharmacodynamic properties. These diverse applications have spurred a continued interest in the development of convenient and robust synthetic methods to incorporate deuterium into complex aromatic scaffolds, which occur in many bioactive molecules and related compounds.

Methods such as the de novo synthesis of complex deuterated analogs or the introduction of D/T in pre-functionalized positions often prove to be time consuming and cost-intensive. Efforts have thus been made to establish methods for the direct hydrogen isotope exchange (HIE) of aromatic C–H bonds, that could in principle enable an efficient post-synthetic incorporation of hydrogen isotopes into bioactive molecules.

Traditional methods for the direct H/D-exchange of arenes include pH-dependent methods (Scheme 1A), where the incorporation of deuterium is achieved by the use of Bronsted/Lewis-acids mostly via an SxAr-type mechanism. Examples of base-mediated HIE reactions of arenes are also known. Owing to the typically harsh reaction conditions these methods are usually employed for simple arenes. Heterogenous methods for the HIE of arenes are well developed and high activity could be achieved with many transition metals. This approach offers technical advantages like simple purification, but faces challenges such as undesired side reactions.

Scheme 1. Approaches towards the Deuteration of Arenes

A: Traditional approaches

- Lewis acid or heterogeneous transition metal catalyzed
 - Limited substrate scope
 - Harsh conditions needed
 - Lower degree of deuteration

B: Directing group (DG) approach

- Transition metal
 - DG
 - Broad scope
 - High catalytic efficiency
 - DG controls the regioselectivity
 - Lower applicability due to the requirement of DG

C: Non-directed deuteration of arenes

D: Design of this study: Non-directed deuteration of arenes through reversible C-H activation with palladium

The potential to achieve high selectivities for the HIE under comparably mild conditions and thus enabling a broader functional group tolerance, has spurred research towards homogeneously catalyzed methods. In this context, the use of directing groups (DGs) has proven highly useful.

Challenges:
- High activity required
- Use of convenient D-source
- Catalyst stability
- Control of substrate decomposition

Potential benefits:
- No DO needed
- Broad applicability
- Scope complementary to known methods
- Suitability for Late-stage modification
Methods based on various transition metals have been established and feature high efficiencies and broad functional group tolerances (Scheme 1B). While DGs usually lead to a selective deuteration in the ortho position, specialized DGs to achieve meta deuteration have also been described.

Recent studies have focused on the use of native functional groups rather than designed DG to enable directed late-stage C–H deuteration. These directed protocols are complemented by non-directed approaches, which offer the potential to address unbiased C–H bonds without requiring a DG on the substrate, thus potentially enabling the H/D exchange on a substantially broader range of substrates. Non-directed methods for the deuteration of simple arenes are well established, but catalysts that enable the non-directed HIE of drug molecules and other similarly complex scaffolds have only recently been described (Scheme 1C). Chirik and co-workers introduced an iron catalyst capable of inducing HIE with a variety of pharmaceuticals using D2 as deuterium source. The same group later described a Ni-based catalyst, which delivered deuterated and tritiated drug molecules efficiently using D2 and T2 as deuterium source. Recently, de Ruiter et al. described a Fe-PCP-pincer complex that proves highly active for the non-directed H/D-exchange of arenes using C6D6 as deuterium source and tolerates a considerable range of functional groups. These catalysts provided substantial progress towards the mild and efficient HIE of complex molecules and raised interest in the development of complementary methods.

Our group has recently developed Pd-catalysts for the non-directed late-stage functionalization of complex (hetero)arenes. An extensive mechanistic investigation of our dual ligand-based catalyst system showed that the C–H activation step is reversible (Scheme 1D). We envisioned that a highly active catalyst for the reversible C–H activation of arenes using our dual ligand design could enable a homogenous non-directed method for the Pd-catalyzed late-stage HIE with the potential to complement existing methods based on 3d-metals with regard to the substrate scope and/or deuterium source used.

Based on these considerations, we engaged in detailed optimization studies. Table 1 shows the deuteration of model substrate 1 using different bidentate ligands in d1-HFIP. Acetyl glycine as ligand resulted in a moderate H/D-exchange. Building upon our recent finding that bulky aryl amides as CMD promoting group in ethylenediamine ligands show superior activity in HIE, we synthesized the analogous glycine derivatives L2 and L3. These α-amino acid derived ligands lead to a significant improvement in deuterium incorporation. An extensive search for novel ligand classes with improved properties regarding activity and regioselectivity led us to discover N,N-bidentate ligands which feature N-acyl sulfonamide groups. Interestingly, introducing this motif instead of the carboxylic acid moiety offers additional potential for ligand diversification by introducing further variable positions. Using mesityl-substituted ligand L4 gave similar results as acetyl glycine, albeit with less deuteration in the ortho-position, whereas L5 lead to decreased values. A significant improvement resulted when the two structural variations were combined in L6 and L7.

Table 1. Optimization of the Ligand Structure

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Yield (%)</th>
<th>D-content (%: NMR)</th>
<th>Total D-content (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ortho</td>
<td>Meta</td>
<td>Para</td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td>99</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>L2</td>
<td>95</td>
<td>22</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>L3</td>
<td>97</td>
<td>24.5</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>L4</td>
<td>98</td>
<td>4</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>L5</td>
<td>98</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>L6</td>
<td>97</td>
<td>5</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>L7</td>
<td>97</td>
<td>17</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>L7</td>
<td>95</td>
<td>32</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>L7</td>
<td>94</td>
<td>62</td>
<td>95</td>
</tr>
</tbody>
</table>

*Reactions were performed on a 0.1 mmol scale. Yields and degrees of deuteration were determined by 2H-NMR spectroscopy using mesitylene as internal standard. The total deuterium content was determined by mass spectrometry. Reaction performed with 48 h reaction time. Reaction performed with D2O:HFIP (7:3) as solvent.

Nearly complete deuteration of the meta and para positions was observed when using L7 with an increased reaction time. An investigation of alternative, more convenient deuterium sources showed that improved results are obtained with a mixture of D2O:HFIP (7:3) as solvent. This is particularly attractive since d1-HFIP, which is comparatively costly or needs to be synthesized, can be replaced by a cheap and convenient deuterium source. Since the conditions developed in Table 1 (Conditions B in Scheme 2) were found using a particularly challenging electron-poor substrate, we hypothesized that more electron-rich substrates might be deuterated under milder conditions. A re-optimization (see the SI for details) delivered a second set of reaction conditions using L3 and AgF as an additive at lower temperatures (Conditions A in Scheme 2).

Having established two sets of conditions we evaluated the scope (Scheme 2). We initiated our investigation by using...
simple arenes to assess the general functional group tolerance when applying our catalyst systems. The yields of the re-isolated substrates were in general good to excellent. The use of alkylated arene 2 under very mild conditions resulted in high H/D-exchange in the arene moiety ($D_{\text{Total}}=4.22$). Excellent degrees of deuteration were also observed for the anisole derivative 3. Notably, our protocol tolerates ketones (4), a functional group that is challenging for many literature methods. This observation is of particular importance due to the presence of this functionality in a wide range of bioactive molecules. Using Conditions B, in addition to the deuteration on the arene core, butyrophenone 4 underwent little but measurable isotope exchange in the relatively acidic α-position, presumably via an acid-base mechanism. The electron-poor arenes 1 and 5 were likewise subjected to Conditions B, leading to very high degrees of deuteration, especially in the meta and para positions. Di-alkyl substituted substrate 6
smoothly underwent H/D exchange in the arene moiety. Interestingly, halogenated arene 7 was well tolerated under Conditions A giving the re-isolated substrate in good yield and with a high overall degree of deuteration. Further di-
substituted arenes containing ester-, amide- and ether-
groups (8-10) gave high levels of deuteron incorporation (up to $D_{\text{Total}}=3.97$). Finally, we probed whether our protocol can be used for electron-poor heterocycles. The deuteration of pyridine-derivative 11 confirmed that this substrate class is in principle amenable if the N-atom is sufficiently shielded to avoid catalyst poisoning.

We proceeded to evaluate the suitability of our method for the late-stage deuteration of bioactive molecules and related scaffolds. Subjecting estrone derivative 12 to Conditions A delivered the deuterated compound [D]12 in very good yield and a high degree of deuteration on the arene moiety. Interestingly, the sterically most congested position underwent H/D-exchange to a reduced extent. Similarly, with tyrosine derivative 13 the deuteron incorporation into the sterically more hindered position was lower than ortho to the methoxy-group. Furthermore, nateglinide methyl ester 14, the Evans-type reagent 15, guaiifenesin derivative 16, watermelon ketone (17), and carbofuran (18) were subjected to Conditions A, leading to almost complete deuteron incorporation into the respective arene moieties, thereby demonstrating a functional group tolerance towards amides, esters, ethers, and carbamates.

Representatives of the fibrate class such as cipofibrate methyl ester (19), clofibrate (20), and fenofibrate (22) were efficiently deuterated. Due to the presence of an electron-poor and a rather electron-rich arene moiety the bezafibrate methyl ester (21) was subjected to both Conditions A and B. With the milder reaction Conditions A, a good degree of deuteration on the electron-rich arene was observed, while with Conditions B both arene moieties were efficiently deuterated.

The fluorescein-derivative 23 was also subjected to both catalyst systems. With Conditions A, the electron-rich positions underwent efficient H/D-exchange ($D_{\text{Total}}=2.49$) exclusively, whereas Conditions B lead to a substantially increased overall deuteron incorporation ($D_{\text{Total}}=4.57$). Nearly complete deuteration of the arene moieties occurred using the sonidegib precursor 24. The etodolac methyl ester (25), which contains an indole substructure, likewise underwent an efficient H/D-exchange using Conditions A.

Methyl ester derivatives of naproxen (26), ketoprofen (27), and flurbiprofen (28), as representatives of the profen class of medications were almost completely deuterated at the arene position (up to $D_{\text{Total}}=7.57$). The fenbufen derivative 29 could likewise be deuterated. It should be noted that besides the aromatic core, the α-keto position underwent almost complete deuteration presumably due to an acid/base-type mechanism.

Derivatives of diflunisal (30) and isoepecap (31) gave high degrees of deuteration using Conditions B. Finally, subjecting (−)-menthol benzoate (32), benacial (33), the palonosetron precursor 34, praziquantel (35), and camphor-derivative 36 to our catalyst led to nearly complete deuteron incorporation in the arene moieties, as well as the olefinic position of 36.

As evidenced by the above scope studies, we have developed a broadly applicable protocol for the non-
directed late-stage deuteration of arenes using dual ligand-
based palladium catalysts. Enabled by the development of a novel ligand class, a wide variety of bioactive molecules and related structures could be isotopically labelled using D_2 as a cheap and convenient deuteron source. This method is applicable to both electron-rich and electron-poor arenes and tolerates a wide range of functional groups, rendering it complementary to established protocols. We expect that our catalysts will prove useful for isotopic labelling in a variety of fields, with potential applications ranging from mechanistic studies to drug development.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge via the Internet at http://pubs.acs.org.

Optimization of reaction conditions, preparative procedures, analytical data for the compounds are described.

Corresponding Author

* nvangemmeren@uni-muenster.de

Author Contributions

‡ M.F., and A.M. contributed equally to this work.

Funding Sources

We gratefully acknowledge financial support from the DFG (Emmy Noether Programme) and the WWU Münster.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank all members of our MS and NMR department for their Excellent service. We thank A. Uttry for helpful scientific discussions. Furthermore, we thank Prof. Dr. Frank Glorious for his generous support.

ABBREVIATIONS

HFIP, 1,1,1,3,3,3-hexafluoropropan-2-ol.

REFERENCES

406. (b) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. The renaissance of H/D exchange Angew. Chem., Int. Ed. 2007, 46,
3047. (e) Kang, Q.-K.; Shi, H. Catalytic Hydrogen Isotope Exchange Reactions in Late-Stage Functionalization Synlett 2021. DOI:
10.1055/a-1354-0367

(24) The initial optimization studies were conducted using the reverse de-deuteration with deuterated HFIP-benzoate [D]1 as model substrate, see the SI for details. Utry, A.; Mal, S.; van Gemmeren, M. Late-Stage β-C(sp2)–H Deuteration of Carboxylic Acids J. Am. Chem. Soc. 2021, 143, 10895–10901.
Pd-Catalyzed C(sp²)−H Deuteration

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram with text]</td>
</tr>
</tbody>
</table>

- No need of DG
- Excellent functional group tolerance
- Late-stage modification
- Broad applicability

- Novel ligand class
- 36 examples