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We present a new geodesic-based method for geometry optimization in a basis of

redundant internal coordinates. Our method updates the molecular geometry by

following the geodesic generated by a displacement vector on the internal coordinate

manifold, which dramatically reduces the number of steps required to converge to

a minimum. Our method can be implemented in any existing optimization code,

requiring only implementation of derivatives of the Wilson B-matrix and the ability

to numerically solve an ordinary differential equation.
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I. INTRODUCTION

Geometry optimization is a crucial first step in the computational modeling of molecules,

solids, and other atomic systems. The most obvious way to optimize molecular geometries is

to directly manipulate the Cartesian positions of each atom in the molecule. This approach

is appropriate for condensed phase systems, in which the motion of each individual atom

is constrained by the presence of nearby atoms. However, this is not true of gas-phase

molecules, in which a group of atoms can easily move long distances through concerted

motion. These kinds of displacements are large in magnitude in a Cartesian coordinate

space, and therefore would require a large number of individual geometry optimization

steps.

It is for this reason that optimization of molecular geometries is instead usually performed

in an internal coordinate basis. In an internal coordinate basis, the geometry of a molecule

is represented by a collection of intramolecular coordinates such as bond stretch distances,

bending angles, and dihedral angles.1 These chemically relevant features are directly modified

by the optimization algorithm, which reduces the number of steps required to realize large-

magnitude displacements through curvilinear steps in the internal coordinate space.

Several factors complicate optimization in an internal coordinate basis. In general, there

are more chemically relevant bonds, bending angles, and dihedral angles than there are de-

grees of freedom in a molecule. Using a minimal basis of internal coordinates necessarily

leaves some chemically relevant features out of the coordinate system, which reduces the

efficiency by which these indirectly represented features can be optimized. If all chemically

relevant coordinates are used instead, then the coordinate system will have a higher dimen-

sionality than the number of degrees of freedom in the molecule. This latter approach is

referred to as a redundant internal coordinate system.2,3

In a redundant internal coordinate system, a seemingly valid displacement vector may lead

to a point in internal coordinate space that does not correspond to any physical arrangement

of atoms. For example, while an infinitesimal displacement of a C-C-C-C dihedral angle

in benzene may appear to preserve all C-C bond distances, any finite displacement will

necessarily perturb at least one bond distance. The traditional method for solving this

problem is to find a valid point in internal coordinate space which is closest to the invalid

coordinates generated by the optimization algorithm.2,4,5 While computationally facile, this
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approach does not account for the coupling between internal coordinates; this coupling

manifests as a curvature of the space of valid internal coordinates.

One may consider the space of valid internal coordinates as a manifold embedded in

the higher-dimensional redundant internal coordinate space.6 In order for a displacement

vector to be valid, it must be tangent to the manifold at the starting geometry, and the

final geometry after displacement must also lie in the manifold. Using this perspective, we

propose a new method for realizing displacements in a redundant internal coordinate space

in which the displacement vector is interpreted as tangent to a geodesic embedded in the

manifold of internal coordinates. The geodesic follows the curvature of the manifold as the

geometry evolves along the displacement trajectory. Applied to geometry optimization, this

approach generates intermediate structures which converge to a minimum-energy structure

in fewer steps than the standard approach.

II. THEORY

The Cartesian coordinate vector of an n-atom molecule x ∈ R3n encodes the geometry

of a molecule as the Cartesian positions of each atom in that molecule. The internal coor-

dinate vector q ∈ Rm encodes the geometry of a molecule in a set of m local coordinates,

usually consisting of bond distances, bending angles, and dihedral angles.1 These internal

coordinates cannot represent net translation or rotation of the molecule, so in general only

3n−6 internal coordinates are required to fully specify the geometry of non-linear molecules.

When m is greater than its minimum possible value of 3n − 6, it is said that the internal

coordinate representation is redundant.2,3 Even in a redundant internal coordinate basis, the

set of all valid internal coordinate vectors q only spans a (3n− 6)-dimensional space due to

coupling between redundant internal coordinates. As described by Zhu et. al.,6 the space of

valid internal coordinates can be considered as a (3n−6)-dimensional manifold embedded in

a larger m-dimensional space. It is necessary to ensure that all geometry optimization steps

in a redundant internal coordinate basis stay on the (3n− 6)-dimensional manifold, i.e. the

steps correspond to valid internal coordinates. This means both that displacement vectors

∆q ∈ Rm must be tangent to the internal coordinate manifold and that new structures

obtained during optimization must be found in a way that accounts for curvature of the

manifold.
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One way to ensure that the displacement vector ∆q lies tangent to the manifold is to

temporarily switch to a minimal local coordinate system in which only valid displacement

vectors are possible. The delocalized internal coordinate approach constructs a new minimal

coordinate system p ∈ R3n−6 as a linear transformation of the redundant internal coordi-

nates. This is accomplished with the projection matrix U, which is the (m×(3n−6)) matrix

of left singular vectors of the Jacobian matrix B, also known as the Wilson B-matrix,1,7

B =
∂q

∂x
=
[
U U′

]S 0

0 0

VT

V′T

 , (1)

where U are the aforementioned left singular vectors, S is the diagonal matrix of non-zero

singular values, V are the right singular vectors, and U′ and V′ are respectively the left and

right singular vectors spanning the null space of B.

The coordinates q, the gradient at the current geometry g, and the approximate Hessian

matrix H are projected into the delocalized internal coordinate space with U,

p = UTq (2)

ĝ = UTg (3)

Ĥ = UTHU. (4)

The U matrix is recalculated for every geometry visited during optimization in order to

ensure that the delocalized internal coordinates remain a complete basis. Using these pro-

jected quantities, a variety of optimization algorithms such as rational function optimization

(RFO)8 or quasi-Newton BFGS9–12 can be used to determine a displacement vector ∆p in the

delocalized internal coordinate space. In RFO, ∆p is obtained from the leftmost eigenvector

of the RFO eigenvalue equation,α2Ĥ αĝ

αĝT 0

∆p/α

1

 = 2µ

∆p/α

1

 , (5)

where α is chosen such that ∆p satisfies the trust region condition (see appendix A for more

details), and the eigenvalue µ is not used. The displacement vector obtained from equation

5 is then projected back into the full redundant internal coordinate space,

∆q = U∆p. (6)
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Though the process described above ensures that ∆q is tangent to the internal coordinate

manifold at the current geometry q0, the point q0 +∆q still may not lie on the manifold due

to curvature. This can be a particularly severe problem for molecules with many highly-

coupled internal coordinates, such as systems with multiple fused ring structures. This

problem is traditionally solved by updating the geometry to be the point on the internal

coordinate manifold which is closest to q0 + ∆q. This can be accomplished with Newton’s

root-finding method, in which a series of rectilinear displacements are taken in the Cartesian

coordinate basis according to the equation

xi(k+1) = xi(k) +
(
B+

(k)

)i
λ

(
qλ0 + ∆qλ − qλ(k)

)
, i = 1, . . . , 3n, (7)

where we have used the Einstein summation convention, q(k) and x(k) are respectively the

internal and Cartesian coordinates at iteration k, and B+
(k) is the Moore-Penrose pseudo-

inverse of the Jacobian matrix evaluated at x(k).2,4,5 In equation 7 and below, Latin indices

correspond to quantities represented in Cartesian coordinates while Greek indices corre-

spond to quantities represented in redundant internal coordinates. The converged Cartesian

coordinates x(k) obtained from equation 7 are then used to calculate the new internal coor-

dinates qNewton, which correspond to the point on the internal coordinate manifold closest

to q0 + ∆q. Though each iteration of equation 7 consists of a rectilinear displacement in

Cartesian coordinates, the Newton method results in an overall curvilinear displacement.

This approach is computationally facile and generally converges in only a few iterations,

with the greatest cost being the evaluation and inversion of the Jacobian matrix. However,

when the manifold has a high degree of redundancy or coupling between coordinates, such as

in systems with rings, equation 7 may fail to converge. In this scenario, a common solution is

to iterate equation 7 only a single time, which is equivalent to taking the rectilinear Cartesian

displacement x0+B+
0 ∆q.5 This fallback approach can have substantial deleterious effects on

optimization performance, as these rectilinear displacements tend to perturb bond distances

when modifying bending angles or dihedral angles. Even when equation 7 does converge,

it cannot fully account for the changing coupling between internal coordinates during the

displacement because it does not explicitly consider the curvature of the manifold at any

point.

As an alternative to the Newton approach, we suggest a new method for realizing a dis-

placement vector ∆q based on geodesics of the internal coordinate manifold. Geodesics are
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curves which trace the shortest path between two points on a manifold. In our application,

the geodesic is determined from the starting geometry q0 and a vector which is tangent to

the geodesic, which we choose to be ∆q. The orientation of ∆q determines the trajectory

of the geodesic q(τ), where τ is the dimensionless geodesic parameter, while the magnitude

‖∆q‖ determines the distance along the trajectory to travel. The trajectory can be found

by solving the geodesic equation,

q̈λ + Γλµν q̇
µq̇ν = 0, λ = 1, . . . ,m (8)

where Newton’s dot notation is used to refer to derivatives with respect to τ and Γλµν are

the Christoffel symbols of the second kind for the internal coordinates (see appendix B for

more details).13 Equation 8 is solved for the initial conditions q(0) = q0 and q̇(0) = ∆q.

The new geometry is determined by integrating q(τ) until τ = 1 using equation 8, which

corresponds with a displacement distance of ‖∆q‖ along the geodesic.

Equation 8 cannot be solved directly, as the internal coordinates q are calculated from

the Cartesian coordinates x and are therefore not independent variables. Instead, we solve

the geodesic equation in the Cartesian coordinate basis,

ẍi +
(
B+
)i
λ

∂2qλ

∂xk∂xl
ẋkẋl = 0, i = 1, . . . , 3n (9)

where x(0) = x0 are the Cartesian coordinates corresponding to q0 and ẋ(0) = B+∆q.

The point x(1) obtained from this differential equation is used to calculate the new internal

coordinates q(1). Though equation 9 depends on the second derivative of q with respect

to x, this quantity is not prohibitively onerous to implement for commonly-used internal

coordinate types, and it has sparse structure that can be exploited to accelerate the summa-

tion over indices k and l. These second derivatives can be evaluated numerically from the

Jacobian matrix,1 analytically,14,15 or through automatic differentiation.16 Equation 9 can

be solved using an off-the-shelf ODE solver such as LSODA17 or CVODE18 using a standard

order reduction strategy.

Following a geometry step, it is typical for optimization algorithms to update an approx-

imate Hessian matrix H in order to satisfy the secant condition,

Hλµ (q1 − q0)
µ = (g1 − g0)λ , λ = 1, . . . ,m, (10)

where g is the gradient vector in the internal coordinate basis. In order for the approximate

curvature to lie in the tangent space of the manifold at the new point q1, this secant condition
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must be modified to

Hλµ (q̇(1))µ = (g1 − g̃0)λ , λ = 1, . . . ,m, (11)

where q̇(1) is obtained from the solution to equation 8 and g̃0 is the gradient vector at point

q0 which has been parallel transported along the geodesic to the point q1.19 Parallel transport

is the process of translating vectors that are tangent to a manifold along a curvilinear

trajectory on that manifold (such as a geodesic) in such a way that the vectors remain

both tangent to the manifold along the entire trajectory and self-parallel along infinitesimal

displacements. Details on how g̃0 is determined are presented in appendix C. In the Hessian

update scheme of our geodesic approach, the raw displacement q1 − q0 is replaced by q̇(1),

and the initial gradient vector g0 is replaced by its parallel transported equivalent g̃0. Our

implementation of the algorithm initializes the Hessian matrix using the scheme of Fischer

and Almlof,20 while the Hessian matrix is updated using the TS-BFGS algorithm, as it is

suitable for both minimization and saddle point optimization.21,22

An illustration comparing the geodesic and Newton stepping methods is presented in

figure 1. In this figure, the purple surface represents the manifold of valid internal coordinates

in a methane molecule in which only a single hydrogen atom is free to move at a fixed distance

from the carbon atom. Thus, the only unconstrained internal coordinates of this molecule

are three of the bending angles, as depicted in figure 1c. Though this system has three free

bending angle coordinates, only two degrees of freedom remain due to the coupling between

the angular coordinates. Figures 1a and 1b depict the entire manifold in a basis of the three

free bending angles from two different perspectives. In this basis, the internal coordinate

manifold takes the form of an octahedron with smoothed edges. The geodesic approach

follows the curvature of the manifold to find the new point qgeodesic. In contrast, the Newton

method converges to the point qNewton on the manifold which is closest to q0+∆q. Figure 1d

shows the same manifold, but rotated and zoomed to better illustrate the difference between

the Newton and geodesic stepping methods. From figure 1d, it is clear that qNewton does

not lie on the geodesic curve. This is to be expected, as the Newton stepping method is

not aware of the curvature of the manifold, unlike the geodesic method which follows the

curvature of the manifold by construction. For a convex manifold, the geodesic step length

will always be greater than or equal to the Newton step length as a consequence of the

triangle inequality. Despite this, the primary difference between the geodesic and Newton
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(a) (b)

(c) (d)

FIG. 1: (a), (b) The internal coordinate manifold (in purple) of a methane molecule with

all internal coordinates fixed except three bending angles, from two different perspectives.

Labeled are the initial structure q0 (black), the displacement vector ∆q (light blue), the

final structure of the Newton method qNewton (yellow), and the final structure of the

geodesic method qgeodesic (green). (c) A real-space representation of the same methane

molecule with the three free bending angles labeled α1 (orange), α2 (dark blue), and α3

(red). Additionally, the Cartesian equivalents of the initial structure, displacement vector,

final Newton structure, and final geodesic structure are also labeled. (d) A zoomed-in

perspective of the manifold in the region around the displacement, which shows more

clearly that the point qNewton does not lie on the geodesic curve.
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methods is not the magnitude of the displacement, but rather its trajectory.

III. RESULTS

Though figure 1 demonstrates that the Newton and geodesic methods result in different

structures, it is not immediately obvious which of the two stepping methods is better for ge-

ometry optimization. In order to determine the difference in performance between the New-

ton and geodesic methods, we use a geometry optimization benchmark originally developed

by Birkholz and Schlegel consisting of 20 molecules that have between 20 and 95 atoms.5 Po-

tential energies were evaluated using DFTB+ with the DFTB3 parameterization.23–27 Struc-

ture optimization was performed by Sella, an open source Python package primarily focused

on saddle point optimization which is also capable of performing geometry minimization.28,29

We note that because Sella is primarily intended to be used for saddle point optimization, the

performance of its RFO minimization algorithm is likely lower than that of other purpose-

built minimization codes. The focus is therefore only on the relative performance of the

Newton and geodesic stepping approaches, with all other aspects of the minimization al-

gorithm remaining identical. Of the original 20 molecules in the benchmark, one molecule

was excluded due to a missing initial structure from the reference and another was excluded

as DFTB3 lacks parameters for Aluminum. Scripts to reproduce these calculations can be

found in the supplementary material.

The results in table I indicate that the geodesic approach requires fewer steps to reach

convergence in all tested systems. For the molecule sphingomyelin, the geodesic approach

converges to a lower energy structure than the Newton approach while also requiring fewer

steps to converge. The optimization trajectories of two of the molecules, azadirachtin and

sphingomyelin, are illustrated in figure 2. Trajectories of all tested molecules can be found

in the supplementary material. Initially, the largest components of the gradients of the

structures in this test set tend to lie in bond-stretching coordinates, and so early stages of

geometry optimization are dominated by bond stretch displacements. These bond stretch

displacements tend to be rectilinear or nearly rectilinear, meaning the manifold has very low

curvature in these directions, and therefore the two methods tend to take very similar steps

near the beginning of optimization. After the bond stretching modes are largely relaxed,

the larger amplitude angle bending and dihedral angle coordinates begin to dominate the
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Species (# of atoms) Newton Geodesic

Artemisinin (42) 122 33

Avobenzone (45) 307 90

Azadirachtin (95) 108 45

Bisphenol A (33) 268 89

Cetirizine (52) 178 34

Codeine (43) 270 107

Diisobutyl phthalate (42) 119 40

Estradiol (44) 174 47

Inosinea (31) 351 92

Maltose (45) 197 104

Mg Porphyrin (37) 86 15

Ochratoxin A (45) 212 47

Penicillin V (42) 167 55

Raffinose (66) 300 168

Sphingomyelin (84) 217b 164

Tamoxifen (57) 211 58

Vitamin C (20) 160 60

Zn EDTA (33) 126 41

Mean 198.5 71.6

Standard deviation 73.7 42.0

a The structure provided by reference 5 erroneously replaced a nitrogen atom with a carbon atom. We

have corrected this error in our calculations.
b Converges to a higher-energy structure

TABLE I: Number of gradient evaluations required to converge for the standard and

geodesic stepping methods.

optimization; it is at this point that the Newton and geodesic methods begin to exhibit

different performance characteristics. In this regime, the Newton method more frequently

takes steps that result in an increase in the potential energy as evidenced by the many spikes
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FIG. 2: Optimization trajectories for the azadirachtin (a) and sphingomyelin (b) test

molecules using the Newton (blue) and geodesic (orange) methods. A log scale is used for

the step number axis to better highlight early optimization steps.

in the optimization trajectories in figure 2. In contrast, the geodesic method is less likely

to take steps that increase the potential energy and generally reaches convergence in fewer

steps overall compared to the Newton method. Azadirachtin, as illustrated in figure 2a,

is an example of a molecule with several fused ring and bicyclic structures which benefits

substantially from the geodesic stepping method, as previously suggested.

We believe that this difference in performance is not primarily a consequence of the mag-

nitude of the individual displacement steps, but rather the differing displacement trajectories

generated by the two methods. In Sella’s primary application of saddle point optimization,

preliminary results suggest a substantial increase in performance compared to other leading

algorithms, which we intend to show in a future publication.

IV. CONCLUSION

We have presented a new approach for realizing displacements in a redundant internal

coordinate space by translating the molecular geometry along geodesics of the internal co-

ordinate manifold. In contrast to the traditional Newton stepping approach, our method

substantially reduces the number of steps required to reach convergence, particularly for sys-

tems with highly coupled internal coordinates, such as molecules with multiple fused rings.
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The improved performance of the geodesic stepping approach is due to its consideration

of the coupling between internal coordinates along the entire displacement trajectory. Our

method is straightforward to implement, only requiring second derivatives of the internal co-

ordinates (i.e. first derivatives of the Wilson B-matrix) and numerical solution of a non-stiff

first-order differential equation.

SUPPLEMENTARY MATERIAL

Additional optimization trajectories such as those presented in figure 2 for all tested

systems can be found in the supplementary material. Additionally, the Python scripts used

to generate these trajectories and the data presented in table I are also available in the

supplementary material.
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Appendix A: Trust region algorithm

In our implementation of trust-region RFO, the parameter α of equation 5 is chosen

to satisfy the trust region condition ‖∆p‖∞ ≤ δk, where δk is the size of the trust region

at iteration k. First, equation 5 is solved for α = 1, and if the resulting ∆p satisfies

the trust region condition, the displacement is accepted. Otherwise, bisection is used to

determine a value of α for which ‖∆p‖∞ = δk. After every iteration, δk is updated based

on the agreement between the expected change in electronic potential energy and the actual

change in energy. The ratio between the predicted and true change in energy is

ρ =
gT∆q + 1

2
∆qTH∆q

∆ε
, (A1)

where ∆ε is the true change in energy following a geometry optimization step. Two threshold

values, ρinc and ρdec are used to determine whether to increase or decrease the trust radius,

respectively. If ρ > ρdec or ρ < ρ−1dec, this indicates that the quadratic approximation is poor

quality and that the trust region should be decreased. For minimization, this condition will

be met whenever the energy increases during optimization, as ρ will become negative while

ρdec is always positive. In this case, the new trust region is chosen to be

δk+1 = σdec‖∆p‖∞, (A2)

where σdec < 1 is a parameter of the method. If ρ−1inc < ρ < ρinc, this indicates that the

quadratic approximation is highly accurate and that the trust region can be expanded. In

this case, the new trust region is chosen to be

δk+1 = max (δk, σinc‖∆p‖∞) , (A3)

where σinc > 1 is a parameter of the method.

For this work, we use the following manually-tuned parameters: δ0 = 0.2 (units am-

biguous, vide infra), ρdec = 100 (effectively, the trust region only shrinks when the energy

increases), ρinc = 1.035, σdec = 0.90, and σinc = 1.15. Note that because p is a linear com-

bination of bond stretches, angle bends, and dihedral angles, the units of δ are somewhat

ambiguous. In our implementation, angstroms are used for bond stretches while radians

are used for both angle bends and dihedral angles. Choice of the units impacts the per-

formance of the algorithm. For example, using degrees for the angle coordinates instead of
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radians would result in a decrease in the relative magnitude of displacements in the angle

coordinates as compared to the bond stretch coordinates. Similarly, using atomic units of

distance for bond stretch coordinates would result in a decrease in the relative magnitude

of displacements in the bond stretch coordinates as compared to the angle coordinates.

Appendix B: Christoffel symbols and the metric tensor

The Christoffel symbols Γikl of a manifold contain information about the curvature of the

manifold. The symbols are related to the metric tensor G through the relation

Γikl =
1

2

(
G−1

)im(∂Gmk

∂ql
+
∂Gml

∂qk
− ∂Gkl

∂qm

)
, i, k, l = 1, . . . , 3n. (B1)

The metric tensor G is a representation of the metric function g(u,v) which generalizes the

notion of the dot product to curved manifolds,

g(u,v) = uTGv. (B2)

For the current application, the metric tensor is that of the internal coordinate space as

represented in a Cartesian coordinate basis, which is given by

Gik = Bλ
i IλµB

µ
k =

∂qλ

∂xi
Iλµ

∂qµ

∂xk
, i, k = 1, . . . , 3n, (B3)

where I is the identity matrix. Evaluating equation B1 with the definition of G given by

equation B3 results in the definition of Γikl used in equation 9.

Appendix C: Solving the geodesic equation and parallel transport

The geodesic is found by solving the differential equation outlined in equation 9. This

equation is reduced to a first-order differential equation by substituting y1 = x and y2 = ẋ,

ẏi1 = yi2, i = 1, . . . , 3n (C1)

ẏi2 = −
(
B+
)i
λ

∂2qλ

∂xk∂xl
yk2y

l
2, i = 1, . . . , 3n. (C2)

Parallel transport of the gradient vector g0 from the point at which it is evaluated q0

along the geodesic to the new point q1 is accomplished by augmenting equations C1 and C2

with a third variable y3,

ẏi3 = −
(
B+
)i
λ

∂2qλ

∂xk∂xl
yk2y

l
3, i = 1, . . . , 3n, (C3)
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with the initial condition y3(0) = B+
0 g0, where B+

0 is the Moore-Penrose pseudo-inverse of

the Jacobian matrix evaluated for geometry x0 = y1(0).13 The parallel transported gradient

vector g̃0 is given by

g̃0 = B1y3(1), (C4)

where B1 is the Jacobian matrix evaluated at x1 = y1(1). The final differential equation is

solved in terms of y =
[
yT1 yT2 yT3

]T
with the SciPy implementation of the LSODA ODE

solver.
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