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 Introduction 

The formation of C-C bonds remains the major synthetic challenge in organic chemistry. The 

use of transition metals in forming the C-C bonds was probably the most studied area of 

research in organic synthesis in the last half of the century.1Among the transition metals 

palladium was the most relied one to be used in organic synthesis. This reliance made it to 

award the Nobel Prize in 2010 in chemistry on transition metal catalysed cross-coupling 

reactions.2 The palladium sometimes prove to be superior to the others owing to 1) 

compatible with different functional groups 2) it can functionalize all three types sp3, sp2 and 

sp carbon atoms 3) most of the palladium catalyst can tolerate air and moisture, and produces  

desired compounds in reasonably milder reaction conditions.3 Furthermore, palladium shows 

low toxicity and easy to separate from the reaction mixture after the  reaction is complete.   

Fluorenone (2.1) is a cyclopentenone derivatives containing a five-member ketone fused with 

two benzene rings. When one of the fused benzene ring is substituted by pyridine ring 

compound referred to as azafluorenone (2.2) (Fig. 2.1). 

 

Fig. 2.1 Fluorenone and azafluorenone  

The Azafluorenones constitute a growing class of alkaloids. The representative alkaloids of 

this kind having potential bioactivity include the compounds 2.3-2.5 as shown in Fig. 2.2.4 

Onychine (2.3) showed activity against C. albicans B311 and  also exhibited antimicrobial 

activity against S. aureus NCTC8530, B subtitles IFO 3007, Escherichia coli IFO 3545 and 

Saccharomyces cerevisiae  IFO 0203.5, 6 Polyfothine (2.4) shows DNA-damaging activity.7 



Isoursuline (2.5) showed anti-malarial activity against Plasmodium falciparum at micromolar 

concentrations.8 Considering the importance of azafluorenones, a general and convenient 

synthetic methodology still is ongoing research. Several such compounds and their 

derivatives are important for biomedical applications9-31. 

 

Fig. 2.2: Some bioactive azafluorenone alkaloids 

Nitrogen containing heterocyclic compounds is prevalent in a wide range of naturally 

occurring bioactive molecules and clinical medicines.32The azafluorenone represent a major 

portion of these types. Construction of azafluorenone ring system is an emerging field of 

research for the last few decades. Several attempted syntheses have been reported in 

literature. Different group of chemists have accomplished the synthesis of azafluorenones via 

both the catalytic and non-catalytic ways. But, still development of new synthetic strategies is 

needed to meet the structural diversity and synthetic challenges. Among the reported 

procedures, Sreekumar et al.33 have synthesized substituted azafluorenone 2.7 by zeolite 

catalyzed cyclization of appropriately substituted arylpyridines 2.6 (Scheme 2.1). 

 

Scheme 2.1: zeolite catalysed synthesis of azafluorenone 

 In alternative approach a LDA mediated ring closing of 2-(2 and 4-pyridyl)-benzoic acids 

2.8 has been reported by Mongin et al.34 to synthesize azafluorenone 2.9 (Scheme 2.2). At 

room temperature LDA abstracts the remote hydrogen in the pyridine ring, and this lithiated 

intermediate undergos an intra-molecular cyclization to afford the azafluorenone in 52 % 

yields.  



 

Scheme 2.2: LDA mediated synthesis. 

Kraus et al.4 devised a three step protocol for the formation of azafluorenone 2.14 via 

nucleophilic attack of 3-lithio-4-methylpyridine 2.10 on suitably substituted 2-

bromobenzaldehyde 2.11 followed by successive steps of MnO2 oxidation of  resulting 

alcohols 2.12 and the Heck cyclization of keto compounds 2.13  to afford 2.14 in 53% yield 

(Scheme 2.3). 

Scheme 2.3: Three step synthesis azafluorenone 

A one pot synthesis of azabiaryls has been achieved by Snieckus et al. via Pd-catalysed 

Suzuki-Miyaura cross-coupling of 2.15 and arylhalide to form the biaryl intermediate 2.16. 

The resulting biaryl 2.16 were condensed to azafluorenone 2.17 via LDA mediated 

cyclization in 81 % of yields (Scheme 2.4).35  

Scheme 2.4: One pot synthesis of azabiaryls 



A three-component reaction strategy has been adopted by Constantieux and co-workers to 

synthesize azafluoreone and substituted pyridine derivatives (Scheme 2.5). Metal free 

Michael-addition mediated three component reaction between suitable acceptor 2.18, donor 

2.19 and ammonium acetate results the formation of 3-methylazafluorenone 2.20 in good 

yields.36  

 

Scheme 2.5: Three component reaction for the synthesis of azafluorenone 

 In another report Mongin groups described a Pd-catalyzed intramolecular arylation of diaryl 

ketone to synthesize azafluorenone. Different diaryl ketone 2.21 containing chlorine at the 2-

position undergoes a Pd-catalyzed CH- activation type intramolecular arylation to afford the 

azafluorenone 2.22 in good to excellent yields (Scheme 2.6).13  

 

Scheme 2.6: Pd-catalysed synthesis of azafluorenone 

In continuation of our search for the Pd-catalyzed new reactions methodologies, we mainly 

focused on development of newer synthetic routes for the construction of carbocycles and 

heterocycles involving Heck type coupling reactions. Recently in our lab, cyclopentenone has 

been efficiently synthesized via Pd-catalysed intramolecular 5-exo-trig oxidative Heck 

cyclization.26, 37-59In the extension, we aimed to explore the intramolecular oxidative Heck 

cyclization in synthesizing azafluorenone. Consequently, we have developed a short and 

efficient method for formation of azafluorenone via intramolecular oxidative Heck 

cyclization. We envisioned that intramolecular oxidative Heck cyclisation of alcohol 2.23 can 

be used for the synthesis of azafluorenone 2.22 in two step process (Scheme 2.4). Alcohol 



2.23 can be obtained from reaction of 2-bromopyidine-3-carboxaldehyde 2.25 and 

corresponding Grignard reagent 2.24 of the iodobenzene. 

Scheme 2.4: Retrosynthetic analysis 

Results and discussion 

In this paper we present the synthesis of different substituted azafluorenone via oxidative 

intra-molecular Heck cyclization protocol. The Heck precursor alcohols 2.23a-h were 

synthesised via reaction of the Grignard reagents 2.24a-h of corresponding iodides upon 2-

bromopyridine-3-carboxaldehyde 2.25. The Grignard reagents were easily prepared from 

fresh magnesium turnings activated by pinch of iodine and their corresponding halides 

(iodide or bromide) in refluxing dry ether medium. Then these freshly prepared Grignard 

reagents were added drop wise into an ice-cold ethereal solution of 2-bromoprydine-3-

carboxaldehyde 2.25, which gave our desired Heck precursor alcohols 2.23a-h in quantitative 

yields (Scheme 2.5). The results are shown in the Table 2.1. And finally these alcohols 2.23a-

h when subjected to the Heck reaction conditions afforded different substituted 

azafluorenones (Scheme 2.6).  

                  

 Scheme 2.5: Synthesis of alcohol precursors 

Table 2.1: Synthesis of the cyclization precursor alcohola 

 



Entry Grignard Alcohols Yields (%)b 
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a)  Fresh Mg turnings (3 equiv. w. r. to iodocompounds), pinch of iodine, flame heating 

for activation Mg, 2-3 mL of dry Et2O, iodo compound (1.5 equiv. w. r. to aldehyde 

substrate), room temperature, 1 h. 

b) Isolated yields after purification. 

Initially we started our journey for the oxidative cyclization with the alcohol 2.23a.When 

representative alcohol 2.23a was reacted with the catalytic system of Pd(OAc)2, Cs2CO3 and 

PPh3 it gave 2.26a in 50 % yields at 80 ˚C temperature. Changing the base Cs2CO3 to 

Na2CO3 increase the product formation upto 83 %. A further increment of formation of 

azafluorenone to 95 % was obtained while using NaOAc and, with increasing the reaction 

temperature from 80 ˚C to 100 ˚C. During the search of finding a standard cyclization 

reaction conditions it was observed that absence of the ligand did not hampered the product 

formation. Among the sources of palladium (0) catalysts, Pd(PPh3)4 and Pd2(dba)3 gave the 

formation of only 50 % and 52 % of 2.26a respectively (entry 7,9 ; Table 2.2). The formation 

of 40 % to 86 % of 2.26a was obtained at the elevated temperature of 100 °C using other 

palladium(II) source, such as PdCl2, Pd(PPh3)2Cl2 etc. The Pd(OAc)2 (5 mol%) and NaOAc 

(2.5 equiv.) was found to be  the most high yielding catalytic system  during this study. The 

azafluorenone 2.26a was obtained in 50 to 87 % yields while using acetonitrile and DMA as 

solvent. The solvent DMF was proved to be most effective solvent system at 100 °C. During 

the screening, the optimal reaction conditions was set to be the Pd (OAc)2 (3 mol%), NaOAc 

(2.5 equiv.), DMF (3 mL) and, 100 ˚C (entry 5 , Table 2). 

 

Scheme 2.6: Intramolecular oxidative Heck cyclisation 

Table 2.2: Optimisation of intramolecular Heck cyclizationb 



 

Entry Catalyst Ligand Base Solvent Temp 

(˚C) 

Yields(%)c 

1 Pd(OAc)2 PPh3 Cs2CO3 DMF 80 50 

2 Pd(OAc)2 PPh3 K2CO3 DMF 80 70 

3 Pd(OAc)2 PPh3 Na2CO3 DMF 80 83 

4 Pd(OAc)2 PPh3 NaOAc DMF 100 90 

5 Pd(OAc)2 - NaOAc DMF 100 95 

6 Pd(CH3CN)2Cl2 - NaOAc DMF 100 40 

7 Pd2(dba)3 - NaOAc DMF 100 50 

8 PdCl2 - NaOAc DMF 100 86 

9 Pd(PPh3)4 - NaOAc DMF 100 52 

10 Pd(PPh3)2Cl2 - NaOAc DMF 100 62 

11 Pd(OAc)2 - NaOAc CH3CN 100 80 

12 Pd(OAc)2 - NaOAc DMA 100 87 

13 Pd(OAc)2 - NaOH DMF 100 53 

b) 1 mmol of substrate 2.23a-h, Pd(OAc)2 (3 mol%), NaOAc (2.5 equiv.), DMF (3 mL), 100 

0C, 3 h. 

c) Isolated yields after purification. 

Then with the set optimal reaction conditions in hand, we have further studied the general 

scope and applicability of our reaction protocol. Different substituted azafluorenones (2.26a-

h) with varying substituents ranging from electron withdrawing to electron donating groups 

were efficiently synthesized. The results are described in the Table 2.3. It was clear from the 

Table 2.3 that substituents chloro and fluoro retarded the oxidative cyclisation to afford the 

azafluorenone in 61 to 75 %. In contrast, the electron donating groups, like methyl and 

methoxy, enhances the oxidative addition with comparatively higher yields of products. 

Interestingly the naphthalene moiety has been well tolerated by this synthetic method.    Our 



findings demonstrate that this synthetic strategy is very general and efficient one with both 

the electron donating and electron withdrawing substituents. 

Table 2.3:  Synthesis of azafluorenone derivativesd 

 

Entry Alcohols Products Yields (%) 
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c) 1 mmol of substrate 2.23a-h, Pd(OAc)2 (3 mol%), NaOAc (2.5 equiv.), DMF (3 mL), 100 

˚C, 3 h. 

 d) Isolated yields after purification. 

While searching the most probable rationale of the reaction, one very interesting observation 

was that the reaction did not required any added ligand in the catalytic system. Only the 

catalyst Pd(OAc)2 could complete the whole catalytic cycle to formed the product VI from 

the starting material I. That is something in the reaction mixture reduced Pd (II) to Pd (0) 

which was the actual catalyst. We assumed that substrate itself with the nitrogen lone pair in 

the pyridine moiety can play the ligand’s role and reduces Pd (II) to Pd (0) (Fig 2.3) to 

complete the reaction cycle.  

Plausible Reaction Mechanism 

 



Fig 2.3:  Catalytic Cycle of intramolecular Heck cyclisation15 

Conclusion 

In conclusion, we have developed a two-step strategy for the construction of azafluorenone 

alkaloids. Our developed method is simple and general one with good range of substrate 

scope and functional group tolerance. In addition this method needs inexpensive reagents and 

catalysts and afforded excellent yields of azafluorenone under mild reaction conditions. We 

believe that our method have the potential to be utilized in total synthesis of azafluorenone 

based bioactive natural products. 
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