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Abstract18

Developing accurate classical force field representations of molecules is key to realizing the full potential19

of molecular simulations, both as a powerful route to gaining fundamental insight into a broad spectrum20

of chemical and biological phenomena, and for predicting physicochemical and mechanical properties of21

substances. The Open Force Field Consortium is an industry-funded open science effort to this end, devel-22

oping open source tools for rapidly generating new, high-quality small molecule force fields. An integral23

aspect of this is the parameterization and assessment of force fields against high-quality, condensed-phase24

physical property data, curated from open data sources such the NIST ThermoML Archive, alongside quan-25

tum chemical data. The quantity of such experimental data in open data archives alone would require an26

onerous amount of human and compute resources to both curate and estimate manually, especially when27

estimations must be made for numerous sets of force field parameters. Here we present an entirely auto-28

mated, highly scalable framework for evaluating physical properties and their gradients in terms of force29

field parameters. It is written as a modular and extensible Python framework, which employs an intelligent30

multiscale estimation approach that allows for the automated estimation of properties from simulation31

and cached simulation data, and a pluggable API for estimation of new properties. In this study we demon-32

strate the utility of the framework by benchmarking the OpenFF 1.0.0 small molecule force field, GAFF 1.833

and GAFF 2.1 force fields against a test set of binary density and enthalpy of mixing measurements curated34

using the frameworks utilities. Further, we demonstrate the framework’s utility as part of force field opti-35

mization by using it alongside ForceBalance, a framework for systematic force field optimization, to retrain36

a set of non-bonded van derWaals parameters against a training set of density and enthalpy of vaporization37

measurements.38
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1 Introduction40

The development of accurate and transferablemolecular force fields is a necessary step to achieving the full41

potential of molecular simulation [1–4]. Molecular simulation offers both a powerful route to gaining deep42

insight into a range of biological and chemical phenomena and as a tool for predicting the physicochemical43

and mechanical properties of substances.44

While the bonded terms of a force field are often fit and assessed directly against quantum chemical45

data, the non-bonded terms are generally indirectly inferred by fitting against experimentally measured46

condensed phase physical property data [5–7]. While there is a substantial amount of experimentally mea-47

sured physical property data available fromopen data sources (including theNIST ThermoML archive [8–12],48

the FreeSolv data set [13, 14], and BindingDB [15]) the data is often stored in a diverse range of file and stor-49

age formats which are not always documented, and in cases, not readily machine readable. Furthermore,50

the large amount of data, often containing many duplicate (or erroneously corrupted) data points [16],51

makes it prohibitively time consuming to manually curate training and test sets. Even once the training and52

test sets have been curated, the estimation of those sets using a given force field often requires a signifi-53

cant amount of human time to prepare the required input files and to perform analysis on the results, and54

requires significant compute time to perform the needed simulations for any estimated properties.55

Here, we report on our OpenFF Evaluator framework, which was designed to overcome these issues. In56

particular, it is an automated, scalable, Python framework for the curation of physical property data sets57

from open data sources, and the estimation of properties of such data sets using a combination ofmolecule58

simulation and cached molecular simulation data.59

Two core philosophies underlie the framework’s design. The first is that the framework should be readily60

scalable for any required calculations from running on a single machine up to running across hundreds of61

high performance compute nodes, and potentially even into the cloud. Secondly, it is constructed so that62

every aspect is user extendable via a flexible plugin system. This includes everything from the extraction63

of properties of data sources into Python objects, up to defining the workflows for how physical properties64

should be estimated.65

Here we describe the general architecture of the framework and its features, and demonstrate its ability66

to both assess the performance of three common smallmolecule force fields (OpenFF 1.0.0 [17], GAFF 1.8 [6]67

and GAFF 2.1 [18]) as well as train the non-bonded vdW parameters of the OpenFF 1.0.0 force field against68

data sets of physical property data curated using the framework’s tools.69

Amore complete overview of the technical features of the framework, as well as installation instructions70

and getting started tutorials, can be found in the framework’s documentation [19].71

2 Framework Architecture72

The framework’s architecture complements the full workflow for force field development, from the curation73

of the testing and training sets from open data sources, evaluating the optimization objective function (and74

its gradient with respect to force field parameters) through integration with optimization frameworks such75

as ForceBalance [20–22], and the assessment of force fields against large data sets of even more complex76

physical properties including solvation free energies and host-guest binding affinities (Figure 1).77

2 of 16



Figure 1. The Evaluator framework integrates into each step of optimising and assessing force fields against
physical property data. The framework provides tools for extracting and curating training and test data sets fromopen data sets, can estimate the deviations of properties from the experimentally values (Δ(�)) for a given set of forcefield parameters �, as well as the gradient of those deviations with respect to the parameters ∇(Δ(�)) (i.e evaluate anoptimization objective function and the gradient of the objective function).

In order to accommodate such a workflow, the framework was designed so as to:78

• be able to directly import data from different open data sources, where the data from each data79

source may be in a different storage or file format, and store it in a common data object.80

• provide a unified set of utilities for analysing, filtering, converting and curating training and test sets81

from imported data.82

• be able to apply force field parameters from a wide range of different file formats and engines to83

benchmark the broad spectrum of commonly used force fields.84

• readily allow new properties to be defined by users so that they may rapidly be used as both fitting85

and benchmarking targets.86

• be able to scale across available compute resources, whether that be a local machine (e.g. via MPI),87

a compute cluster, or the cloud.88

• allow for different approaches for computing properties (or sets of properties), such that users89

can take advantage of large amounts of cached simulation data to speed up their calculations.90

• be readily integrated into other software requiring the estimation of properties.91

The framework handles these demands by implementing a highly modular design, whereby each of92

these specific requirements are handled by independent modules which may readily be extended or re-93

placed entirely with custom implementations (Figure 2).94

Figure 2. The framework is composedofmodular componentswhichmaybeextendedor replacedbyuser defined
plugins. The core functionality of the framework is entirely modularised into clearly abstracted components (blue) whichcan readily be swapped out with built-in implementations (shown in orange), or user-created plugins (represented by thedashed-box "puzzle pieces").
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The framework is implemented as a client-server architecture. This design allows users to launch Evalu-95

ator server instances on whichever compute resources they may have available, from a single machine up96

to a large HPC cluster. Evaluator clients, run onmodest hardware such as a user’s laptop, may then connect97

a running sever to both request that a physical property data set be estimated, and to query and retrieve98

the results of those estimation requests.99

The ’client’ portion of the framework implements the logic for curating and sourcing the data sets, load-100

ing the force field parameters into uniform Python objects, and defining calculation schemas for how a101

class of physical property (e.g. mass densities or solvation free energies) should be estimated. Conversely,102

the ’server’ side implements the logic required for scheduling and performing the calculations required to103

estimated a data set as requested by a client.104

The server has three core componenents: calculation layers, storage backends, and compute backends.105

A "compute backend" is an abstraction around a library or framework which is able to distribute a set of106

tasks to perform, such as building the coordinates of a molecular system, across a number of available107

compute resources. These may be as simple as wrappers around Python’s multi-processing libraries, or108

more complex such as the ’dask-jobqueue’ library [23] which is able to distribute graphs of tasks across109

high performance compute (HPC) resources. A "storage backend" is another abstraction whose purpose is110

to both store cached simulation data (for example on a remote storage platform, or in a database structure)111

and also query and retrieve stored simulation data. The currently implemented local file backend stores all112

data on the local file disk. However, in the future, more sophisticated options, such as storing data within a113

SQL or NoSQL database or on a remote server, may be supported. Finally, calculation layers (as discussed114

in more detail in Section 2.2) are implementations of a particular approach for estimating a set of physical115

properties, such as via molecular simulation or evaluating a surrogate model which has been training on116

previously generated simulation data.117

The ’server-client’ model in particular allows the framework to be trivially integrated into other applica-118

tions, as the user will mostly never need to consider how to schedule and run their calculations, but rather,119

use the API to submit and re-query the results of their request [19].120

2.1 Curation of Experimental Data Sets121

The framework has built-in support for constructing data sets for force field optimization andassessment via122

two main routes. Data sets may be manually transcribed by a user by directly creating the data set objects,123

typically requiring the user to enter common information about a property such as the state for which it was124

measured, the composition of the measured system, provenance information, and so forth. More usefully125

for large-scale projects, datamay be automatically imported from certain sources. The framework currently126

supports importing data directly from the FreeSolv data set [14], and from the NIST ThermoML archive [12].127

The NIST ThermoML archive in particular contains a wealth of experimental measurements for a diverse128

range of physical properties (Table 1). This diversity and range of data, combined with the framework’s abil-129

ity to seamlessly extract, curate, and then estimate those properties, makes the archive a valuable source130

of data for both training and assessing force fields.131
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Table 1. An estimate of the number of measurements that may be imported from the NIST ThermoML archive
using the framework’s built-in utilities as of 03/08/2021.

Property
Number of Measurements Points (in Thousands)

Pure Binary Ternary
Mass Density 176.6 364.9 119.4
Excess Molar Volume - 11.7 3.1
Enthalpy of Mixing - 32.9 4.9
Enthalpy of Vaporization 0.5 - -
Vapor Pressure 44.6 75.4 10.2
Activity Coefficient 28.4 1.3 -
Osmotic Coefficient - 2.0 0.6
Speed of Sound 21.5 55.0 15.4
Dielectric Constant 1.7 3.0 0.4
Liquid Gas Surface Tension 3.5 6.5 0.9

More than just offering utilities for importing experimental measurements, the framework offers a full132

suite of components aimed at making the curation of training and testing data sets as quick and painless as133

possible. In particular it contains components to filter out unwanted data points, ranging from filtering out134

data points that were measured outside of a particular temperature, to filtering by the characteristics of135

the substances the measurement was made for, such as only retaining measurements made for molecules136

containing alcohol or ester functionalities. Moreover, there are components available to:137

• convert between property types where commensurate data is available, such as converting between138

excess molar volume data and density data when the densities of the pure components are available.139

• select a fixed number of data points where were measured at states close to a target set of target140

states (e.g. selecting data points measured at close to ambient conditions).141

• select data points measured for a diverse range of molecules which contain a target set of functional-142

ities (e.g. data points measured for ketones, alcohols or alkanes).143

A full list of the available curation components can be found in the framework’s documentation [19].144

2.2 Calculation Layers145

A core aspect of the framework is its ability to employ a hierarchy of different approaches to compute a data146

set of physical properties, ranging from very rapid but less robust approaches such as evaluating surrogate147

models which have been trained on simulation data, to more robust approaches such as estimation by148

direct molecular simulation. Such a hierarchy enables the framework to automatically attempt to select the149

fastest approach which is able to estimate a given data set to within a user defined accuracy (Figure 3a).150
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Figure 3. Automated selection of the fastest estimation approach optimisation can reduce computation effort. a)The framework employs a hierarchy of calculation approaches which currently includes estimation by direct simulation,and by reweighting cached simulation data. In the future, thismay be extended to include both training of and estimationusing surrogatemodels. b) Properties are cascaded through the calculation approaches, whereby those properties whichcould be estimated are returned, or those which couldn’t be estimated with sufficient accuracy by this layer are movedto the next layer. This continues until either the full set of physical properties have been estimated using the specifiedforce field parameters, or there are no more approaches left to attempt to estimate the set in which case the remainingproperties are marked as unestimated and returned to the user.

In practice, each different calculation approach is implemented as a specific ’calculation layer’. Each151

layer acts as a black box that must take as input a set of physical properties to estimate and a calculation152

schema that controls how they should be estimated (e.g. how long simulations should be run for), and153

must return those properties which it was able to estimate as well as the uncertainty in those values. These154

calculations layers are then ’stacked’ together, whereby the framework will first attempt to estimate the155

data set using the fastest layer at the top of the stack. Any properties which are estimated to within the156

specified uncertainty are then returned back to the user. Any properties which could not be estimated, for157

example, when an approach does not yet support estimated a particular type of property or the approach158

not being able to estimate a property to within the specified uncertainty, are then used as input for the next159

fastest layer. This process is then repeated until either all properties have been estimated, or there are no160

remaining calculations layers left to attempt (Figure 3b).161

Currently the framework implements two calculation layers: a simulation layer which employs direct162

molecular simulations to estimate the property set, and a reweighting layer, which employ the Multistate163

Bennett Acceptance Ratio (MBAR) [24] technique to re-evaluate cached simulation data generated at one164

state, or using one particular set of force field parameters, to yield a property estimate at a new state or set165

of parameters [25].166

The simulation layer is the ‘fallback layer’ which should always be able to estimate the data set of prop-167

erties if the user has chosen to enable it. It reports the statistical uncertainty in the simulated properties, by168

default calculated by bootstrapping the sampled data to yield a estimated distribution of results. The layer169

is able to automatically extend all simulations until the uncertainty in the estimated properties has been170

reduced to within the set tolerance. A maximum simulation length is enforced to stop simulations from171

running indefinitely in the case of very noisy or extremely slow to converge properties.172

The reweighting layer is in principle amuchmore rapid layer than the simulation layer, in that it does not173

need to run a new simulation to estimate the property, but rather it simply reprocesses existing decorre-174

lated simulation data. The reweighting layer has two confidence metrics: the ‘effective number of samples’175

and the uncertainty in the estimated properties. The effective number of samples describes the amount of176

information contained about the ensemble with new parameters that is contained in the original simulation.177

It must be above a user-defined threshold, with a default of 50, to be generally sufficient to generated ac-178

curate uncertainties in reweighted observables. [25]. The uncertainty in the estimated properties may also179

be requested to be below a user defined threshold. This uncertainty can either be an absolute threshold,180

or a threshold defined relative to each property in the data set’s reported uncertainty.181
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2.3 Workflow Engine182

To facilitate computing a diverse range of physical properties using a variety of different computation ap-183

proaches, each of which may require performing distinct calculation steps, the framework facilitates the184

creation of lightweight property estimation workflows. The built-in workflow engine is for the most part a185

wrapper aroundmore established workflow engines, delegating the actual execution and scheduling of the186

workflow to the external engine (currently Dask [26]). The built-in components focus instead on defining187

and exposing the possible set of workflow tasks (here referred to as protocols) and outlining how those188

tasks are coupled together through the construction of JSON serializable workflow schemas.189

The framework implements many individual modular components of simulation workflows such as for190

building coordinates, for applying force fields parameters, performing bootstrapped analysis of simulation191

results, and even setting up and running full free energy simulations via Yank and OpenMM [27, 28]; we192

refer to these modular components as "protocols". These protocols can be chained together to form a193

larger workflow. Each individual protocol must define the set of inputs that they require as well as the194

outputs which they will produce. The protocols may then be chained together at a granular level, whereby195

individual outputs of a previous protocol may be used as inputs to protocols further along in the workflow,196

allowing diverse and complex workflows to be constructed from a limited set of simple protocol building197

blocks (Figure 4). A full list of protocols and guidance on combining them to form property estimation198

workflows is provided in the frameworks documentation [19].199

Figure 4. Physical properties are estimated using modular, lightweight workflows. a) An example workflow toestimate the density of a substance, composed of built-in workflow protocols chained together. b) Each protocol has anumber of well-defined inputs that can either take their values from the output of other protocols, or by having theirvalue set directly.

Each protocol which may be used in the workflow engine is defined as a Python object which is com-200

pletely decoupled from the workflow engine and hence may be used outside of workflows. An example of201

initializing a protocol which will perform a simulation, and one which will then analyze the output of that202

simulation is shown in Figure 5.203
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run_simulation = OpenMMSimulation ( " run_simulation " )
run_simulation . timestep = 1.0 * unit . femtosecond
run_simulation . ensemble = Ensemble .NPT
analys is = Ex t rac tAverageSta t i s t i c ( " extract_dens i ty " )
ana lys is . s t a t i s t i c s = ProtocolPath ( " s t a t i s t i c s _pa th " , " run_simulation " )

Figure 5. Pseudocode for initializing and chaining togetherworkflowprotocols. Eachworkflowprotocol is describedby a unique Python object, which has a number of attributes flagged as inputs, and a number flagged as outputs. Inputsand outputs of protocols are connected together using ’ProtocolPath’ objects, which are essentially pointers to the outputof another protocol in the workflow as identified by its unique id and the name of its output attribute (Figure 4b). Thesepointer objects will be automatically replaced with the actual output value of the reference protocol by the workflowmanager once the previous protocol has been executed.
In addition to simply chaining together individual protocols into larger workflows, the workflow engine204

offers a number of more advanced features. In particular it is able to:205

• detect when multiple workflows contain protocols that receive an identical set of inputs and remove206

these redundant steps before executing.207

• parallelize parts of a workflow for a list of inputs. This is useful, for example, when defining part of a208

workflow which estimates the enthalpy of a particular component which should then be repeated for209

each component in a particular system.210

• be executed using any one of the built-in, or user defined, calculation backends, thus allowing work-211

flows to be scaled from running on a single laptop up to being parallelized across multiple nodes on212

a HPC cluster.213

2.4 Supported Properties and Derivatives214

A key goal of the framework is to enable the seamless estimation of data sets of physical properties using a215

variety of different calculation approacheswithout user intervention. This is accomplished in the framework216

through the definition of ’calculation schemas’ that encode the exact workflow that must be followed to217

compute a particular property using a particular calculation approach.218

For calculation approaches which make use of the built-in workflow engine, which includes the built-in219

simulation and cached data reweighting approaches, the calculation schema predominantly defines which220

protocols are required how they are chained together. Defining properties in this way enables new proper-221

ties to be readily added to the framework, either directly or through the flexible plug-in system.222

The properties which have built-in calculation schemas are summaries in Table 2 and are detailed in full223

in the frameworks documentation [19].224

Table 2. The types of physical property which are by default supported by the framework: the mass density (�),dielectric constant (�), enthalpies of vaporization and mixing (ΔHvap and ΔHmix respectively), excess molar volume (ΔVex)and solvation free energy (ΔGsolv). New physical properties are readily supported through user created plugins.
Direct Simulation MBAR Reweighting

Supported Derivatives Supported Derivatives
Mass Density � ✓ ✓ ✓ ✓

Dielectric Constant � ✓ ✓ ✓ ✓

Enthalpy of Vaporization ΔHvap ✓ ✓ ✓ ✓

Enthalpy of Mixing ΔHmix ✓ ✓ ✓ ✓

Excess Molar Volume ΔVex ✓ ✓ ✓ ✓

Solvation Free Energy ΔGsolv ✓ ✓ - -
The derivatives of almost all properties with respect to force field parameters may be optionally esti-225

mated alongside the value of the property itself. From version 0.3.0 of the framework onwards, all such226
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derivatives are computed using the fluctuation formula [29] according to227

d ⟨X⟩

d�i
=
⟨

dX
d�i

⟩

− �
[⟨

X dU
d�i

⟩

−
⟨

dU
d�i

⟩

⟨X⟩

]

(1)
whereX is the observable of interest, �i is the force field parameter the derivative is being takenwith respect228

to, U is the system energy and ⟨⋅⟩ is used to represent an ensemble average.229

While future versions of the framework will aim to support differentiable simulation engines (such as230

timemachine [30]) which can compute dU
d�i

directly, currently most common simulation engines do not di-231

rectly support computing this quantity. Until such support is added, the framework employs a central finite232

difference approach, whereby233

dU
d�i

≈
U
(

�i + ℎ
)

− U
(

�i − ℎ
)

2ℎ
(2)

and U is computed by re-evaluating the energy of each configuration generated during a simulation using234

the perturbed force field parameters. Althoughmore expensive than computing either the forward or back-235

wards derivative, the central difference method should give a more accurate estimate of the gradient at the236

minima, maxima and transition points. By default a value of ℎ = �i × 10−4 is used.237

3 Applications238

3.1 Force Field Assessment239

The framework offers a scalable platform for assessing the performance of common force fields against240

physical property data sets, being able to seamlessly distribute the individual steps needed to estimate a241

particular property across many compute nodes and graphical processing units. Moreover, the framework242

has built-in support for estimating physical properties using most of the commonly available force fields,243

including SMIRNOFF based force fields through integration with the OpenFF toolkit [31], GAFF and GAFF2244

force fields through integration with LEaP [32] and the publicly available OPLS force fields through inte-245

gration with LigParGen [33, 34], enabling comparison of different force fields by changing a single line of246

Python.247

Of particular value is the framework’s ability to automatically detect redundant calculations when es-248

timating data sets of physical properties. Consider the case of estimating the excess molar volume and249

enthalpy of mixing of the same substance at the same state. The framework will automatically detect that250

the density and enthalpy of the mixture, and that of each of the components, can be computed using the251

same simulation without human intervention, thus in cases drastically reducing the cost of the assessment.252

To demonstrate this ability, the OpenFF 1.0.0 (openff-1.0.0), GAFF 1.8 (gaff-1) and GAFF 2.1 (gaff-2) force253

fields were assessed against a data set of 103 density � (x), 101 enthalpy of mixing ΔHmix (x) and 100 ex-254

cess molar volume Vexcess (x) data points measured at ambient conditions for a set of binary systems each255

at three different compositions (25%, 50% and 75%). It contains a total of 36 unique binary mixtures of 39256

unique components, and all data points were sourced directly from the ThermoML archive using the frame-257

work’s built in parsers. All calculation were performed using v0.3.1 of the framework and using the default258

calculation schemas as described in the documentation [19].259

Such a data set would naively require a total of 706 simulations to be performed and analyzed: three260

for each ΔHmix (x) and Vexcess (x) data point, and one for each � (x) data point. If all the data points in the261

set were measured at identical state points (i.e. the same temperature, pressure and composition) then262

the same data set could in principle be estimated using only 142 simulations if redundant simulations were263

removed. 38 simulations would be required to compute the density and enthalpy of each of the individual264

components, while 104 simulations would be required to compute the same for each binary mixture at the265

three different compositions. In practice, due to certain data points being measured at slightly different266

conditions (e.g. at 308.15 K rather than 298.15 K) and concentrations, the data set used for this study267

required a total of 246 simulations after redundant calculations have been removed. Still, this is roughly a268

third of the simulations which would have been required had the redundant ones not been removed.269
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The results of this assessment of the three force fields are presented in Figure 6. In general the perfor-270

mance of the three different force fields are roughly comparable. This is consistent with with expectations;271

the largest differences between these force fields are in valence parameters, which typically are thought272

not to play a dramatic role in calculations of the physical properties considered here.273
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Figure 6. An assessment of the OpenFF 1.0.0, GAFF 1.8, and GAFF 2.1 force fields against a set of 304 � (x), ΔHmix (x)
and Vex (x) data points measured for binary systems. In general the different force fields show a similar level ofperformance for the current test set. All errors in the RMSE and R2 are shown as 95% confidence intervals computed bybootstrapping the physical property measurements.

3.2 Force Field Training274

The framework offers a powerful, flexible route to estimating large data sets of physical properties as well as275

their first derivatives with respect to the force field parameters used in the estimations. This readily allows276

for the training of such parameters against the physical property data without requiring human interven-277

tion at each training epoch through integration with the ForceBalance optimization package. Moreover,278

the framework’s ability to automatically employ reweighting of cached simulations is designed to enable279

a speed up of successive optimization epochs provided the changes in parameters are sufficiently small.280

We demonstrate these abilities here by retraining the non-bonded van der Waals (vdW) parameters of the281

OpenFF 1.0.0 (openff-1.0.0) force field against a total of 114 liquid density and enthalpy of vaporization282

measurements made at ambient conditions for a set of alcohols, acids, esters, ethers, ketones and alkanes.283

The selected training set exercises a total of 18 vdW force field parameters (8 hydrogen parameters, 4284

carbon parameters and 6 oxygen parameters) all of which were optimized. The training was initially per-285

formed using a combination of both molecular simulations and cached simulation data to estimate the286

data set at each epoch, and then was repeated using only molecular simulation so as to determine what287

speed up (if any) is provided by the cached data reweighting. A regularized least squares objective function288

as implemented by the ForceBalance software package was used, where the contribution of the physical289

properties was computed by:290

N
∑

n

1
Mn

Mn
∑

m

1
d2n

(

yrefm − ym
(

�⃗
))2 (3)

where �⃗ is a vector of the parameters being trained, N is the number of types of physical property,Mn291

is the number of data points of type n, dn is a weight associated with a particular property type with the292

same units as the property, yref is the value of the experimental data point and ym is the estimated value.293

The training hyperparameters as required by ForceBalance are provided in Table 3, and are describedmore294

fully in [20]. All properties were computed using the default density and enthalpy of vaporization schemas295

but the number of molecules included in the simulation box when performing the simulations was reduced296

from 1000 to 500. This was done to increase the likelihood that the cached data reweighting would be297

employed when estimating the physical properties, given that the degree of overlap between two states298

decreases as the system size increases. By default only the four most recent pieces of cached simulation299
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data are chosen for reweighting. This limits the overhead associated with attempting to reweight data300

which does not sufficiently overlap with the current state, which if uncapped would increase linearly with301

the number of training iterations performed.302

Table 3. The key hyperparameters used as input to ForceBalance for each of the training runs.

Hyperparameter Value
d� 0.05 g / ml
dΔHvap

25.5 kJ / mol
" prior 0.1 kcal / mol
rmin
2

prior 1.0 Å

The objective function at each training iteration is shown in Figure 7. For the two training runs performed,303

both with and without reweighting, the least squares objective function was found to decrease rapidly af-304

ter the first iteration to a similar minimum value before fluctuating around a close to constant minimum.305

This fluctuation is observed due to noise in the estimated physical properties and hence also in their first306

derivatives with respect to the force field parameters being trained. The reweighting of cached simulation307

data therefore enables a sufficiently comparable estimation of both the objective function and its derivative308

with respect to the force field parameters being trained to be used as part of the parameter training as an309

appropriate replacement to the full simulation approach.310

Figure 7. Employing a combination of cached data reweighting and molecular simulation did not significantly
speed up the training compared to only employing molecular simulation. a) The objective function decreases to asimilar value whether cached simulation data reweighting was employed or not. b) The use of cached simulation datareweighting did not significantly speed up the training of the force field parameters.

The cumulative time taken to reach the end of each training iteration is also shown in Figure 7. While hy-311

pothesized, based on previous use of reweighting in Bayesian inference of parameters [35], that employing312

reweighting of cached simulation data should enable a large speed up once enough data has been stored313

to facilitate the technique with sufficient accuracy, in this application it does not appear to be faster than314

simply estimating the objective function using only molecular simulation.315

There are several possible reasons for why the cached data reweighting did not speed up the training316

of the force field parameters. A breakdown for which percentage of the different types of properties were317

able to be computed from cached simulation data, as well as a breakdown of how much time was needed318

to estimate those properties by either simulation or reweighting cached simulation data, is shown in Figure319

8.320
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Figure 8. A breakdown of how often cached data reweighting is employed over direct molecular simulation. a)The percentage of training data points of each property type which were estimated using the two available approachesfor each training iteration. b) The time spent by each calculation approach when estimating the data set at each iteration.The overhead associated with attempting to reweight data points which then ultimately had to be simulated is includedin green. c) The total time to complete each iteration when only employing direct simulations.

As the training progresses and more simulation data is cached, a point is reached where there is a suffi-321

cient amount of cached data to accurately begin estimated a number of physical properties using reweight-322

ing. Although it was observed that reweighting was able to estimate the physical properties faster (on aver-323

age roughly 5minutes per property) than by direct simulation (on average roughly 25minutes per property)324

the overhead (green bars in Figure 8) associated with attempting to reweight when there is not enough325

cached simulation data to yield an accurate estimate of a data point (less the 50 effective samples) is some-326

what large. In these cases a new simulation must be performed instead in addition to the failed attempt at327

reweighting. There is currently no way to detect whether there will be a sufficient amount of cached data328

to reweight until reweighting has actually been attempted, and hence this overhead will always be present.329

A further, and likely the biggest issue, is that the number of properties which may accurately estimated330

using cached simulation data reweighting is on average less than 50% of the total number of properties331

to estimate. This is a consequence of the optimizer performing, in a sense, too well, and the force field332

parameters varying by too large an amount at each new iteration compared to the previous iteration, such333

that there are an insufficient number of effective samples at the new state. While the step size of the334

algorithm could be reduced in order to ensure that reweighting is employed more frequently, it is not clear335

that this would always be optimal. It can be seen in Figure 7 that the objective function has already greatly336

decreased by the first few iterations before there is even enough data to be able to employ reweighting. It337

should be noted however that this optimization was performed on a relatively small training set. For large338

training sets it is likely that the optimization would take longer to converge to a minimum, and hence in339

these cases it is likely that reducing the step size so that reweighting is employed would be beneficial.340

Finally, it should be noted that the physical properties included in the training set (densities and en-341

thalpies) are themselves relatively ’cheap’ to simulate, requiring only short simulations (on the order of a342

nanosecond) to converge their ensemble averages. The real advantage of reweighting will likely comewhen343

applied to more expensive physical properties, including solvation free energies and binding free energies344

which take on the order of hours to simulate, but would take only minutes to reweight. The framework is345

set up to, in the future, be able to support reweighting such properties through the robust workflow engine346

and flexible plugin architecture.347

4 Obtaining the Framework348

The framework is fully open source and available under theMIT license onGitHub [36]. It is readily installable349

with the conda command conda install -c conda-forge openff-evaluator. See the documentation [19]350

for full installation instructions.351

To provide feedback on performance of the OpenFF force fields, we highly recommend using the issue352

tracker at http://github.com/openforcefield/openff-evaluator. Alternatively, inquiries may be e-mailed to sup-353

port@openforcefield.org, though responses to e-mails sent to this address may be delayed and GitHub is-354
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sues receive higher priority. For information on getting started with OpenFF, please see the documentation355

linked at https://openff-evaluator.readthedocs.io/en/stable/, and note the availability of several introductory356

examples.357

5 Conclusion358

The OpenFF Evaluator framework is a flexible, scalable and highly extensible framework for curating data359

sets from large, open data sources and estimating those data sets of physical property measurements and360

their derivatives with respect to force field parameters for optimization. The framework can use a range of361

common force fields, as well as an expandable range of estimation techniques. Through integration with362

optimization engines such as ForceBalance, the framework readily facilitates the training of new force fields363

directly against physical property data, as well as assessing such force fields against even larger data sets.364

In this work, we lay out how this framework can be used to optimize force fields, and discovered that for365

parameter optimization of simple physical properties of liquids such as densities and heats of vaporization,366

reweighting using cached data from previous iterations of optimization may not be efficient compared to367

direct physical simulation.368
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