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A multiple time step (MTS) algorithm for trajectory surface hopping molecular dy-

namics has been developed, implemented, and tested. The MTS scheme is an ex-

tension of the ab initio implementation for Born–Oppenheimer molecular dynamics

presented in [J. Chem. Theory Comput. 14, 2834 (2018)]. In particular, the MTS

algorithm has been modified to enable the simulation of non-adiabatic processes with

the trajectory surface hopping (TSH) method and Tully’s fewest switches algorithm.

The specificities of the implementation lie in the combination of Landau–Zener and

Tully’s transition probabilities during the inner MTS time steps. The new MTS-TSH

method is applied successfully to the photorelaxation of protonated formaldimine,

showing that the important characteristics of the process are recovered by the MTS

algorithm. A computational speed-up between 1.5 and 3 has been obtained compared

to standard TSH simulations which is close to the ideal values that could be obtained

with the computational settings considered.
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I. INTRODUCTION

Non-adiabatic phenomena such as photo-physical or photo-chemical processes are char-

acterized by a failure of the Born–Oppenheimer (BO) approximation commonly invoked to

describe molecular systems. The BO approximation, or the closely related adiabatic approx-

imation, decouples the description of the nuclei and electrons. In non-adiabatic processes

this coupling becomes important and the BO approximation breaks down.

Many different methods have been developed in order to describe non-adiabatic processes,

ranging from fully quantum and formally exact models to mixed quantum/classical or semi-

classical approaches (for a review see Refs. 1 and 2). Each method has its pros and cons, but

in most cases it boils down to a compromise between computational efficiency and accuracy.

In this work, we focus on one of the most popular methods, the trajectory surface hopping

(TSH) approach.

In the TSH method (summarized in section II A), the evolution of the system is repre-

sented by a swarm of independent classical nuclear trajectories, which can hop from one

electronic state to another in a stochastic way. The forces acting on the nuclei are calcu-

lated on-the-fly along each trajectory and transitions between electronic levels are considered

simultaneously. In this way, the TSH method is thus able to describe non-adiabatic phe-

nomena such as photo-chemical and photo-physical processes.

The TSH approach belongs to the mixed quantum/classical class of methods and is one

of the computationally most expedient way to include non-adiabatic effects. Nonetheless,

TSH simulations require the evaluation of the nuclear forces from first-principles simulations,

i.e., by solving the time-independent electronic Schrödinger equation, and those forces have

to be evaluated for each nuclear geometry along the trajectory. Furthermore, due to its

stochastic form (see section II A), the TSH approach requires to run a statistical ensemble

of trajectories, which means that, in practice, several hundred thousands of geometries have

to be considered.2–4 Solving the electronic Schrödinger equation is very computationally

demanding and often have a very steep scaling with the number of electrons considered.5,6

These considerations limit considerably the applications of the TSH method. In particular,

the three main limitations arise from: (i) the size of the systems that can be treated, (ii)

the number of trajectories required to recover the proper statistical properties, and (iii) the

duration of the physical processes that can be studied, i.e. the total length of the simulations.
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In recent years, several attempts to extend the application range of non-adiabatic MD have

been proposed.7–9 The present article is a further contribution to reduce the computational

cost of non-adiabatic dynamics.

The strategy investigated in this work, is to reduce the computational requirements of

the TSH method by relying on a multiple time step (MTS) algorithm. MTS techniques

have first been introduced by Tuckerman et al. in the context of classical MD.10 The MTS

scheme relies on a decomposition of the atomic or nuclear forces into different components

with different characteristic time scales. This decomposition enables to calculate the slow

components of the forces less frequently than the fast one, while maintaining a fully time-

reversible symplectic propagation. If the computational cost of the slow components is

significant, large computational speed-ups can thus be obtained.

This article is organized as follows. After introducing an MTS algorithm for TSH sim-

ulations in section II B, the new method is applied to the photorelaxation of protonated

formaldimine (section III). The MTS-TSH algorithm is compared to standard TSH simula-

tions both in terms of accuracy and computational cost. Finally, some concluding remarks

and perspectives are given in section IV.

II. THEORY

In this first section, we briefly review the TSH formalism for non-adiabatic MD with

particular emphasis on the version implemented in the CPMD plane-wave package.11

A. Trajectory surface hopping in CPMD

The TSH method can be seen as an attempt to introduce coupling between the electronic

and nuclear degrees of freedom in Born–Oppenheimer molecular dynamics (BOMD).12 Stan-

dard BOMD consists in a description of the nuclear coordinates based on classical mechanics,

MαR̈α = Fα(R), (1)

where the index α denotes a given nucleus of mass Mα and classical coordinates Rα and

the two dots on top of the coordinates denote a second-order derivative with respect to

time. When no index is specified, R stands for all nuclear coordinates. The forces acting
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on the nuclei, Fα(R), are usually calculated on-the-fly, from ab initio electronic structure

calculations at fixed nuclear geometries,

Fα(R) = −∇αHLL, (2)

where the diagonal matrix elements of the molecular electronic Hamiltonian, Ĥ (under the

BO approximation) are given by,

HLL = 〈ψL(r; R)| Ĥ |ψL(r; R)〉 . (3)

In Eq. (3) we have introduced the electronic wavefunction, ψL, for an arbitrary adiabatic

state, L, which depends on the electronic coordinates r. The parametric dependence of

the electronic wavefunction on the nuclear geometry, R, is also given. Generally, a single

BOMD trajectory will thus propagate the classical nuclear coordinates on a single PES

corresponding to a specific adiabatic electronic state.

However, when more than one electronic state is important to describe the dynamics of

a system (for example in the description of photo-physical phenomena) it is important to

go beyond the BO approximation and consider non-adiabatic algorithms.

1. Tully’s fewest switches method

One of the most popular approaches used to describe such phenomena is the TSH method,

in particular when combined with Tully’s fewest switches algorithm.2,13,14 In TSH a given

trajectory can hop from one electronic state to another in a stochastic way, depending on

the probability of the transition to occur. In order to get the transition probabilities one

generally has to solve a time-dependent equation for the electrons of the system,

i~ĊJ(t) = CJ(t)ωJ − i~
Nstates∑
K

CK(t)σJK(R) (4)

Where the time-dependent coefficients CJ(t) comes from an expansion of the time-dependent

electronic wavefunction as a linear combination of time-independent adiabatic states. Nstates

is the total number of electronic states considered, ωJ is the excitation energy for state J

and σJK is the non-adiabatic coupling (NAC) term,

σJK = 〈ψJ |∂tψK〉 . (5)
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In CPMD, the NAC terms are computed by finite differences and using a CIS representation

of the excited states.15–17 Finally, in the fewest switches (FS) scheme, the probability of

transition from adiabatic states J to K is evaluated as,

PFS
J→K = − 2 · δt

|CJ |2
·R(CKC

∗
JσJK), (6)

where δt is the classical time step used to integrate eq. (1), R(z) denotes the real part of z

and negative probabilities are set to zero. The decision to hop from state J to state K is

then taken by generating a random number r ∈ [0, 1] and evaluating the following condition,

K−1∑
L=0

PFS
J→L < r <

K∑
L=0

PFS
J→L. (7)

2. Landau–Zener transition probabilities

As a simpler alternative to the solution of eq. (4) for the calculations of the transition

probabilities in eq. (6), it is possible to obtain approximate transition probabilities from

Landau–Zener–Stückelberg (LZ) theory for non-adiabatic transitions.18,19 In the CPMD

package, such probabilities are computed directly from the knowledge of the energy of the

adiabatic electronic states as,

P LZ
J→K = exp

(
−π

2

h
· |∆Eadia

JK |2

max(d|∆Eadia
JK |/dt)

)
(8)

where ∆Eadia
JK is the gap between adiabatic states J and K directly obtained as a byproduct

of DFT and TDDFT calculations.18 In a TSH simulation relying on LZ theory, a hop from

an electronic state to another is considered based on the following condition,

P LZ
J→K > r, (9)

where r is again a random number chosen between zero and one.

For more details about the implementation of TSH in the CPMD package, see Refs.

11, 15, and 20.

B. Trajectory surface hopping with multiple time step scheme

MTS techniques have been introduced as a way to reduce the computational cost of

molecular dynamics for systems in which the forces in action can be decomposed into different
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time scales. The success of MTS techniques is largely due to the development of the reversible

reference system propagation algorithm (rRESPA) by Tuckerman et al. in Ref. 10.

Recently, some of us implemented rRESPA in the CPMD package for BOMD.21 The

important details of this implementation are summarized in section II B 1, while in sec-

tion II B 2, we suggest an extension of the MTS algorithm to enable non-adiabatic dynamics

in the context of TSH-MD.

1. Standard MTS algorithms

In Ref. 10, Tuckerman et al. introduced the Trotter factorization of the Liouville operator

as a convenient way to generate reversible MD integrators. This technique is summarized

here. Let us first consider a phase space element Γ(t = 0) which describes the initial

positions (xj) and momenta (pj) of all the nuclei of a system. The phase space element can

be propagated in time using a classical propagator, G(t),

Γ(t) = G(t)Γ(0) = eiLtΓ(0), (10)

where L is the Liouville operator given by,

iL =
∑
j

[
ẋj∂xj + Fj∂pj

]
(11)

and Fj is a single component of the nuclear forces (the index j is a collective index for

Cartesian coordinates and nuclei). By assuming a time scale separation of the forces into

fast (Ffast), and slow (Fslow) components, it is possible to rewrite the Liouville operator as,

iL = iLx + iLfast
p + iLslow

p (12)

iLx =
∑
j

ẋj∂xj (13)

iLfast
p =

∑
j

F fast
j ∂pj (14)

iLslow
p =

∑
j

F slow
j ∂pj (15)

Applying a Trotter factorization on the classical propagator and discarding terms of third

order and higher in t, we can define a discrete time propagator, which can be translated into
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an MTS algorithm,10,22

GMTS(∆t) = eiL
slow
p (∆t/2)

[
Gfast(∆t/N)

]N
eiL

slow
p (∆t/2), (16)

with

Gfast(∆t/N) = Gfast(δt) = eiL
fast
p (δt/2)eiLxδteiL

fast
p (δt/2). (17)

In eqs. (16) and (17) we have introduced two finite time steps; ∆t, which reflects the time

scale of the slow forces (Fslow), and δt = ∆t/N , which is adapted to the fast forces (Ffast).

It should now be apparent that such an MTS algorithm can lead to computational sav-

ings, if the slow forces that have to be calculated less frequently are computationally more

demanding.

Algorithm 1 represents a pseudo-code that can be obtained by applying each term of the

propagator in eq. (16) (one by one from the right to the left) onto an initial phase space

element Γ(0) ≡ {x,p}.

1: Initialize positions, velocities, fast and slow forces: x,v,Ffast,Fslow

2: for i = 1, maxiter do (MD loop for the slow component)

3: Slow velocity update: v← v + ∆t
2m · F

slow

4: for j = 1, N do (MD loop for the fast component)

5: Fast velocity update: v← v + δt
2m · F

fast

6: Position update: x← x + v · δt

7: Get fast components of the forces: Ffast

8: Final fast velocity update: v← v + δt
2m · F

fast

9: end for (MD loop for the fast component)

10: Get slow components of the forces: Fslow

11: Final slow velocity update: v← v + ∆t
2m · F

fast

12: end for (MD loop for the slow component)

ALG. 1: Standard rRESPA MTS algorithm obtained as a direct translation of the discrete

propagator in eq. (16). For comparison with the velocity Verlet algorithm, the steps concerned

with momenta, p, have been re-written in terms of velocities, v.

In the context of first-principles BOMD, the separation of the forces into fast and slow

components is not straightforward. In the CPMD package we have chosen to use different
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levels of electronic structure theory to decompose the forces. Typically, a “low” level density

functional (e.g. GGA) is used to calculate the fast components of the nuclear forces, while

the slow components are obtained as the difference between the forces obtained with a

“higher” level functional (e.g. hybrid) and the “low” level forces,

Ffast = Flow (18)

Fslow = Fhigh − Flow. (19)

The physical motivation for this separation comes from the fact that the chosen electronic

structure levels differ only in their treatment of correlation (or exchange and correlation in

the case of DFT). Since those contributions correspond to relatively weak interactions in

terms of energy (with no explicit dependence on nuclear positions) they can be expected to

represent relatively weak/slowly varying force contributions.

The implementation of the MTS algorithm in CPMD makes use of this separation as well

as a slightly different but completely equivalent layout of the code.21 This implementation

presented in pseudo-code in algorithm 2, makes the MTS algorithm look like a velocity

Verlet algorithm with effective forces, Feff, that are time step dependent.

Even though, the force decomposition in terms of high and low electronic structure levels

is done ad hoc, this kind of separation has already proven useful21,23 and the benefits in

terms of computational cost are evident.

2. MTS algorithm for trajectory surface hopping dynamics

When using the MTS implementation described in algorithm 2 in combination with a

TSH algorithm, one has to decide how to hop from one electronic state to another. In order

to get trajectories of high accuracy, it would be beneficial to consider electronic transitions

based on Tully’s FS criterion in eq. (7) calculated with the MTS high level functional. In

the following, this type of calculation (with a velocity Verlet algorithm) will actually be used

as a reference. However, when using an MTS algorithm, if the outer time step ∆t becomes

large, some parts of the PES where the transition probabilities are high might be treated

only by the low level functional and the transitions would be missed at the high level.

In this work, we propose another strategy that can potentially solve that problem. This

strategy consists in evaluating the transitions probabilities with the LZ formula in eq. (8)
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1: Initialize positions, velocities, high and low level forces: x,v,Fhigh,Flow

2: Get effective force: Feff ← Flow + (Fhigh − Flow) ·N

3: for i = 1, maxiter do (MD loop)

4: Velocity update: v← v + δt
2m · F

eff

5: Position update: x← x + v · δt

6: if i ≡ 0 (mod N) then (outer step)

7: Get both high and low level forces, Fhigh,Flow

8: Get effective force: Feff ← Flow + (Fhigh − Flow) ·N

9: else (inner step)

10: Effective forces are set to the low level forces: Feff ← Flow

11: end if (outer/inner steps)

12: Final velocity update: v← v + δt
2m · F

eff

13: end for (MD loop)

ALG. 2: MTS-BOMD algorithm as implemented in the CPMD package. This algorithm can be

obtained straightforwardly from algorithm 1 by using the partitioning of the forces in eqs. (18)

and (19) and reshuffling a few steps.

during the low level steps, while for high level steps, the electronic transition are evaluated

according to the FS criterion in eq. (7) based on the high level quantities.

This is not yet completely satisfactory since it does not guarantee that a transition

detected with the LZ probabilities during a low level step would have also been detected by

the FS criterion calculated with the high level functional. To further improve on that issue,

we suggest that if a transition is detected at the low level (using LZ theory), a high level

calculation is triggered to confirm the transition using Tully’s FS criterion. This strategy is

described in algorithm 3 and tested in the remaining sections.

Finally, it is important to note that in the case of high level calculations triggered by

the low level LZ criterion, the random number used in the high level FS criterion in eq. (7),

should be the same as in the low level LZ criterion in eq. (9). We also underline that the

discrete time step δt in eq. (6) always correspond to the inner time step in the MTS scheme.

This can be rationalized by realizing that at each inner time step, an electronic transition

can occur if it is detected at the low level and confirmed at the high level, such that when
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eq. (6) is invoked, it is only to check for a transition in the last δt time window.

III. RESULTS AND DISCUSSION

In this section, the protonated formaldimine (CH2NH+
2 , denoted as system I) is used

as a simple yet interesting example to investigate the capabilities of the new MTS-TSH

method presented in section II B. In particular, we will investigate the possibility to use the

MTS-TSH algorithm as a more efficient alternative to the standard FS-TSH algorithm. The

physical process under investigation in this section is the photorelaxation of system I. This

process is a typical example of photo-dynamics and is thus very handy to test new models

for non-adiabatic molecular dynamics.9,15,24–26

All the calculations presented in this section have been performed with a local version

of the CPMD plane-wave package.11 For the reference TSH simulations, the nuclear forces

and NACs are computed with the PBE0 hybrid functional.27 The same functional is thus

used for the high level forces in the MTS calculations, while the low level forces are obtained

from the PBE functional.28,29 For a fair comparison, all remaining parameters are kept the

same in the reference and the MTS simulations.

The five lowest singlet excited states obtained with the Tamm-Dancoff approximation

of TDDFT are considered for all calculations. Norm-conserving Trouiller-Martins pseudo-

potentials are used with a plane-wave cutoff of 70 Ry and an isolated cubic box with an

edge of 10 Å. Unless specified otherwise, the inner time step is set to δt = 10 a.u. See the

supplementary materials for the raw data, the analysis scripts, and a full description of the

computational details.

A. Investigating different approximations for the non-adiabatic couplings

First of all, it is important to rationalize the use of the LZ transition probabilities at the

low level in the MTS-TSH method presented in section II B. For that purpose, we have run

a reference trajectory for about 100 femtoseconds (fs) on the second excited state of system

I. This trajectory was performed with the PBE0 functional and a standard velocity Verlet

algorithm. The transitions probabilities where calculated at each time step using the FS

method (see section II A 1) but no electronic transitions were allowed such that the system
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1: Initialize positions, velocities, and running electronic state: x,v, J

2: Initialize high and low level forces: Fhigh,Flow

3: Get effective force: Feff ← Flow + (Fhigh − Flow) ·N

4: for i = 1, maxiter do (MD loop)

5: Velocity update: v← v + δt
2m · F

eff

6: Position update: x← x + v · δt

7: if i ≡ 0 (mod N) then (outer step)

8: Get both high and low level forces, Fhigh,Flow

9: Get effective force: Feff ← Flow + (Fhigh − Flow) ·N

10: Get high level FS transition probabilities: PFS
J→K

11: if FS criterion in eq. (7) is met for any state K 6= J then

12: Update index of adiabatic electronic state: J ← K

13: end if

14: else (inner step)

15: Effective forces are set to the low level forces: Feff ← Flow

16: Get low level LZ transition probabilities: PLZ
J→K

17: if LZ criterion in eq. (9) is met for any state K 6= J then (check at high level)

18: Effective forces are now set to the high level forces: Feff ← Fhigh

19: Get high level FS transition probabilities: PFS
J→K

20: if FS criterion in eq. (7) is met for any state K 6= J then

21: Update index of adiabatic electronic state: J ← K

22: end if

23: end if

24: end if (outer/inner steps)

25: Final velocity update: v← v + δt
2m · F

eff

26: end for (MD loop)

ALG. 3: MTS-TSH algorithm as implemented in the CPMD package. This algorithm

corresponds to a modified version of algorithm 2 that accounts for non-adiabatic transitions. See

section II B for details.
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FIG. 1: Evolution of the transition probabilities (from S2 to S1) along a single trajectory started

in the second excited state of system I. Three different levels are compared; PBE0-FS,

corresponding to eq. (6) together with the PBE0 functional, PBE-LZ, corresponding to eq. (8)

together with the PBE functional, and PBE-FS, corresponding to eq. (6) together with the PBE

functional. (Values of PFS
S2→S1

larger than 1, have been set back to unity.)

stayed on the second excited states PES the whole time.

The exact same trajectory (velocities and coordinates) have then been repeated by cal-

culating the transitions probabilities using the LZ method (see section II A 2) together with

the PBE functional (low level). For comparison, an additional run was performed at the

PBE level and calculating transition probabilities using the FS method. No MTS algorithm

was used in this section and the only difference between the three trajectories is the model

used to calculate the transition probabilities (velocities and coordinates are the same for all

three trajectories). Such conditions allows to compare the transition probabilities obtained

with three different levels: PBE0-FS, PBE-LZ, and PBE-FS.

In Fig. 1 we have represented the evolution of the transition probabilities (PS2→S1) for

the three different levels. From Fig. 1, it is clear that neither the PBE-LZ probabilities

nor the PBE-FS probabilities represent a completely reliable approximation to the reference

PBE0-FS transition probabilities. However, a relatively good correlation is observed. In

particular, whenever the reference PBE0-FS transition probabilities are large, the PBE-LZ

probabilities are also relatively large. For some reason this is less obvious for the PBE-FS

curve.
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The algorithm developed in section II B relies on the low level calculations to detect

potential electronic transitions. Whenever a low level transition is detected, it is double

checked with a high level FS calculation such that the low level probabilities do not have

to be quantitatively accurate. The transition probabilities in Fig. 1 indicates that using

LZ theory at the low level for the calculation of the transition probabilities is enough. In

other words, the LZ probabilities can be used as a proxy during the low level steps of the

MTS-TSH method.

We note that the objective of the investigation performed in this section is to support the

design of the algorithm presented in section II B and that further tests could be performed

to draw more general conclusions. Nonetheless, since the usage of LZ probabilities at the

low level is only used to trigger high level calculations, we believe that a strong empirical

support is not required at this stage.

B. Comparing single trajectories via deterministic surface hopping

As we have seen in section II A, non-adiabatic dynamics performed with a TSH algo-

rithm are stochastic by nature due to the randomness used in the hopping procedure. This

stochastic behaviour makes it difficult to compare individual trajectories obtained with a

TSH algorithm. To properly compare different non-adiabatic models, one needs to look at

a statistical ensemble of trajectories. Before we present such results in section III C, we

first consider in this section a deterministic version of TSH in which the random number r

used in eqs. (7) and (9) has been fixed arbitrarily to r = 0.3. We note that, the only MTS

algorithm tested here and in the next section is the one presented in section II B, i.e., low

level (PBE) LZ transition probabilities are used during the inner steps to trigger a high level

(PBE0) calculation which confirms or not the electronic transition.

1. Quality assessment

Six different runs have been produced, all starting in the second excited state and with

the same nuclear configuration. For simplicity, the nuclear velocities are initialized to zero.

The first run is a reference TSH trajectory at the PBE0 level, while the 5 remaining

trajectories are obtained with the MTS-TSH algorithm, and an MTS time step factor of

14
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FIG. 2: Potential energy surfaces of the three lowest singlet states of system I obtained from an

80 femtoseconds PBE0 FS-TSH run started in the second excited state.

N = {2, 3, 4, 6, 8}.

In Fig. 2, the potential energy of the three lowest singlet states obtained from the reference

PBE0 trajectory is represented. The trajectory starts in the second excited state and hops

to the first excited state in less than 10 fs. The system stays in the first excited state for

the next 70 fs until it intersects with and hops into the ground state. All trajectories are

stopped whenever they collapse into the ground state.

In Fig. 3, the potential energies of all runs (reference and MTS) are represented. For the

MTS runs, we only plot the energy from the PBE0 steps, which explains why for the larger

MTS factors, the curves appear less smooth. One can see that all the MTS trajectories,

except with MTS factor 8, successfully describe the first transition from S2 to S1 in the first

10 fs. Between 30 and 40 fs, the reference trajectory enters a new non-adiabatic region as

the first and second excited states become close in energy for the third time. Until that

point, the MTS trajectories with MTS factor 2, 3, 4, and 6 seem to describe the reference

trajectory relatively well. Afterwards, the MTS trajectories with factor 2, 3, and 4 start to

diverge from the reference run. The MTS trajectory with factor 6 is overall the closest from
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the reference run. However, an MTS factor of 8 seems to be too large to reproduce most of

the features of the reference run. This analysis is confirmed by looking at the root-means-

square-deviation (RMSD) of the nuclear positions of the MTS trajectories with respect to

the reference run in Fig. 4.

The results presented in Figs. 3 and 4, could be interpreted as rather discouraging. Indeed,

with only an MTS factor of 2, the MTS trajectory and the reference one start to diverge only

after 35 fs. However, unlike with ground state MD, the presence of non-adiabatic events has

a drastic impact on the chaotic behaviour of excited state dynamics. Very tiny differences

in the nuclear positions and velocities or wavefunction parameters can lead to completely

different trajectories. The fact that some of the MTS trajectories presented in Fig. 3 differ

significantly from the reference trajectory does not mean that those trajectories are not

physical. Only a statistical analysis of the photorelaxation process can enlighten us on that

matter.

The deterministic investigation of the MTS-TSH implementation presented here indicates

that it is possible to recover the main characteristics of a reference calculation using the

MTS-TSH algorithm presented in section II B, for example in the case of MTS factor 6. In

section III C, we will investigate the possibility to recover statistically relevant quantities

from the MTS-TSH algorithm, while in the next section we analyze the speed-ups obtained

in the deterministic MTS-TSH simulations.

2. Efficiency assessment

Let us call tFS = thigh the average CPU time per step spent in a standard FS-TSH

simulation with a “high” level functional. This time takes into account the SCF optimization,

the solution of the TDDFT equations as well as the calculation of the FS probabilities. In

the following we use tFS as a reference CPU time. In order to provide fair comparisons,

we also need to consider the average CPU time per step from a LZ-TSH simulation with a

“low” level functional tLZ = tlow.

The expected or ideal averaged CPU time per step in the MTS-TSH algorithm can then

be calculated as,

tMTS(N) = tlow +
1

N
· thigh +X · thigh, (20)
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FIG. 3: Potential energy surfaces of the three lowest singlet states of system I obtained from 6

different calculations. The upper-left panel constitutes the reference PBE0 FS-TSH run, while

the other panels represent the MTS-TSH runs with different MTS factors (N = {2, 3, 4, 6, 8}). All

simulations have been started from the same geometries and zero velocities. The driving state is

represented with the dashed thick black line.

where N is the MTS factor and, thigh and tlow are CPU timings coming from standard (non

MTS) simulations. X denotes the average frequency of triggered high level steps which is

a quantity difficult to predict. To obtain the ideal MTS-TSH speed-up we set X = 0, and
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FIG. 4: Root-means-square-deviations (RMSD) of nuclear positions of the MTS trajectories with

different MTS factors (N = {2, 3, 4, 6, 8}) with respect to a reference PBE0 FS-TSH trajectory.

get,

Sideal =
tFS

tMTS(N)
=

thigh

tlow + 1
N
· thigh

=
N

N · tlow
thigh

+ 1
(21)

In the limit of a negligible cost of the low level steps (compared to the high level ones) we

get,

Slimit = lim
thigh�tlow

Sideal = N. (22)

In practice, several things can impact the ideal and limit speed-ups. The most obvious one

being the number of triggered high level steps. It is easy to realize that for large values of N ,

the number of triggered high level steps will tend towards a system dependent number, in

most cases larger than zero. Such that one cannot achieve arbitrarily large speed-ups simply

by increasing N . From a more practical point of view, the physics of the system (vibrational

frequencies) will be the first parameter to consider as a limitation for the value of N and

thus for the speed-up (too large values of N would lead to artifacts such as resonances30). A

less straightforward impact on the effective (or real) speed-up is given by the overhead due
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FIG. 5: Real MTS speed-up obtained from deterministic MTS-TSH calculations with different

inner and outer time steps (δt and ∆t, respectively) compared to reference PBE0 FS-TSH

timings. For comparison the ideal and limit speed-ups as defined in eqs. (21) and (22),

respectively, are also reported.

to the convergence of the high level (TD)DFT parameters. Indeed, since with increasing

values of N , larger nuclear displacements occur between high level steps, the initial guess for

the electronic structure calculation becomes less appropriate, often resulting in more (e.g.

SCF) iterations and thus higher computational requirements.

In Fig. 5, we have represented the ideal and limit MTS speed-ups as calculated from

eqs. (21) and (22), respectively, as well as the real MTS speed-up obtained for the calculations

presented in section III B (system I with the PBE0 and PBE functionals). The left panel

of Fig. 5 corresponds to the MTS calculations with δt = 10 a.u. and MTS factors N =

{2, 3, 4, 6, 8}, while, in the right panel a new set of calculations with δt = 15 a.u. and MTS

factors N = {2, 3, 4, 5} (all other parameters unchanged) are represented. The first points

of both plots (with speed-up one) correspond to the reference FS-TSH calculations. The

real MTS speed-ups are simply obtained from the ratio between tFS-PBE0 and the averaged

time per step in the actual MTS simulations,

Sreal =
tMTS-total

N steps
. (23)

From Fig. 5, we can see that both the real and ideal speed-ups are quite far from the
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limit speed-ups (up to a factor 3 of difference). This is simply a consequence of the fact

that the condition, thigh � tlow is not satisfied here. For δt = 10 a.u. thigh ' 5.1 · tlow, while

for δt = 15 a.u. thigh ' 4.8 · tlow. It means that one way of improving the efficiency of MTS

techniques is to consider cheaper “low” level models.

The real and ideal speed-ups are much closer from each-other and with an MTS factor

between 3 and 6 it seems that reliable results could be obtained with a speed-up factor

ranging from 1.5 to 2.5. The number of triggered high level calculations does not seem to

affect the speed-up significantly since, in the considered calculations, the maximum aver-

aged frequency of triggered high level calculations [X in eq. (20)] is equal to 0.026, which

corresponds to a triggered call every 38 inner step. Most of the differences between the real

and ideal speed-up in Fig. 5 can thus be attributed to the convergence overhead discussed

above.

However, strong variations are observed for the individual time per step (not averaged)

along the trajectories. Surprisingly, the average time per step in the low level steps of the

MTS runs are often lower than in the standard low level runs (tLZ-PBE). This explains why

in Fig. 5 the ideal speed-up is sometimes lower than the real speed-up.

The different timings reported in this section are clearly subject to strong variations

depending on the system considered as well as the computational parameters and the nu-

clear geometries. Therefore, a reliable comparison of the efficiency of the methods under

investigation is a difficult task that will be further pursued in section III C.

C. Stochastic surface hopping

Starting from a PBE BOMD trajectory of 24 ps at 300 K in the ground state of system I,

we have selected 100 equally spaced configurations. For each configuration, we have calcu-

lated the 5 lowest singlet excitation energies and oscillator strengths at the PBE0/TDDFT

level. The starting state for the non-adiabatic dynamics is decided by randomly picking

among the five lowest excited states with a distribution given by the normalized oscilla-

tor strengths at the corresponding configuration. From this random distribution, 94 runs

started in the second excited state, one in the third, and five in the fourth excited state.

The starting atomic positions and velocities were taken from the ground state MD. All the

details concerning the preparation of the non-adiabatic simulations can be found in the SI.
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FIG. 6: Collective evolution of the state populations along the FS-TSH/PBE0 and MTS-TSH

molecular dynamics. For the MTS-TSH runs, the PBE0 functional was used as high level, while

the PBE functional was used for the low level forces.

With those initial conditions, 4 different types of simulations have been produced. A

reference FS-TSH/PBE0 set of runs, and 3 different MTS-TSH batches with N = {4, 6, 8}

and using the PBE0 functional as high level and the PBE functional as low level. In total

400 trajectories were thus obtained. Each simulation is stopped when a transition to the

ground state occurs or when it reaches a region of the PES where the calculation fails to

converge. Most simulations reach the ground state in less than 100 fs. The calculations that

failed to converge have not been considered in the statistical analysis below. In the reference

calculations, 7 failed to converge, while for the MTS runs 15, 5, and 9 failed to converge for

the MTS factor 4, 6, and 8, respectively. This seems to indicate that the MTS algorithm

does not affect the convergence of the calculations significantly.

In Fig. 6, the collective evolution of the state populations along the dynamics are rep-

resented. The main characteristics of the photorelaxation process are well reproduced by

all three MTS-TSH runs. In particular, the population is transferred from S2 to S1 in the
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first 10 to 20 fs and then slowly decays into the ground state. We note that the tail of the

population of S2 seem to become larger with the MTS factor, which shows the limit of the

MTS scheme. This is reflected in the average lifetime of S2, for which we get 8.7 fs in the

reference runs, while the MTS simulations lead to lifetimes of 10.1, 11.3, and 13.8 fs, for

the MTS factors, 4, 6, and 8, respectively. The average lifetime of the first excited state is

however well described with all simulations. The reference lifetime for S1 is of 43.5 fs, while

the MTS simulations lead to lifetimes of 42.5, 44.3, and 42.6 fs, for the MTS factors, 4, 6,

and 8, respectively.

The populations of S3 and S4 are negligible. However, the trajectories starting in S4

shows that different decay mechanisms are possible, hopping directly from S4 to S2 and

then to S1 or hopping first to S3 and then directly to S1. Those mechanisms are rare due to

the fact that the initial population of S4 is much lower than the population of S2, but they

are also part of the MTS-TSH swarm of trajectories, which indicates that the new MTS

approach is reliable.

Following the work of Westermayr et al. in Ref. 9, we have analyzed the geometries at

which the S2 to S1 and S1 to S0 transitions occur. Fig. 7 represents the values of relevant

geometrical parameters at the hopping geometries for the first and second transitions, re-

spectively. From Fig. 7, we can see that the hopping geometries from the MTS-TSH runs

spread basically over the same region as the hopping geometries from the reference TSH

simulations.

As the MTS factor is increased, the average number of standard high level steps per

trajectory will decrease, which should decrease the computational cost of the MTS-TSH

method. By standard high level steps, it is meant, high level steps which are not triggered

by a low-level (LZ) transition. The number of triggered high level steps should increase with

the MTS factor, since the average number of isolated low level steps (not linked to a high

level calculation) will increase. Indeed, we obtain an average number of standard high level

steps per trajectory of 55.6, 39.2, and 29.7 for the MTS factors 4, 6, and 8, respectively,

while the average number of triggered high level steps per trajectory is 2.0, 2.5, and 2.6 for

the MTS factors 4, 6, and 8 respectively.

Regarding the computational efficiency, the real speed-ups obtained over all the trajec-

tories are 2.08, 2.56 and 2.86 for the MTS factors 4, 6, and 8, respectively. These speed-ups

are in good agreement with the ideal speed-ups reporter in Fig. 5, which are 2.24, 2.76, and
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(a) Geometry analysis of electronic transitions from S2 to S1.
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FIG. 7: Representations of the hopping geometries for the S2 to S1 transition in Fig. 7a and for

the S1 to S0 transition in Fig. 7b. In Fig. 7c, the C-N bond length is represented with the red

solid line, the dihedral Angle between atoms (H4,N,C, and H2) is represented with the green

dotted line, while the pyramidalization angle corresponds to the angle between the red solid line

and the yellow triangle.
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FIG. 8: Real MTS speed-ups obtained from MTS-TSH calculations with different MTS factors

compared to reference PBE0 FS-TSH timings. For comparison the ideal and limit speed-ups as

defined in eqs. (21) and (22), respectively, are also reported. The ideal speed-ups are identical to

the ones in Fig. 5.

3.12 for the MTS factors 4, 6, and 8, respectively, as can be seen from Fig. 8.

Overall, this statistical investigation indicates that the MTS-TSH algorithm introduced

in section II B allows to reproduce results from standard TSH simulations with a significant

speed-up.

IV. CONCLUSIONS AND OUTLOOK

We have presented a new algorithm for non-adiabatic molecular dynamics simulations

that is based on Tully’s FS-TSH method combined with an MTS scheme for the integration

of the nuclear classical equations of motion. The MTS scheme is an extension of the CPMD

implementation introduced by Liberatore et al. in Ref. 21, in which the decomposition

of the forces in terms of slow and fast components relies on the use of different electronic

structure methods (e.g. different DFT functionals). In order to adapt the MTS scheme to

the TSH method, it is important to enable electronic transitions in between outer steps.

This is achieved by pre-evaluating the transition probabilities during inner steps with a low-
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level LZ criterion. If a transition is detected, a high level calculation is triggered, to confirm

(or not) the electronic transition.

This new MTS-TSH algorithm has been tested successfully on the photorelaxation of

protonated formaldimine. We have shown that the MTS-TSH method is able to recover

the correct state population along the reaction path as well as the correct geometries at

the transitions. For this MTS scheme (combining PBE/PBE0 forces and time step factors

between 2 and 8) a speed-up between 1.5 and 3 could be achieved compared to standard

FS-TSH simulations. The obtained speed-ups are actually very close to the ideal speed-up

that could be obtained with the computational settings considered, indicating that a better

performance could be reached by considering cheaper models as low level in the MTS scheme.

This work constitutes a preliminary investigation and more tests should be performed

on more complex systems to confirm the reliability of the presented results. Nonetheless,

the presented MTS-TSH algorithm has shown promising results and this formulation opens

the door to new developments such as combinations with other electronic structure models

including machine learning techniques and QM/MM frameworks to target larger molecular

systems and obtain computationally even less demanding algorithms for the description of

non-adiabatic phenomena.

SUPPLEMENTARY MATERIAL

All the computational details and raw data from section III are provided at https:

//doi.org/10.5281/zenodo.3459170, including CPMD input and output files as well as

analysis scripts.
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N. Ferré, M. Filatov, and M. Huix-Rotllant (Springer, Cham, 2015) pp. 415–44.

15E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98, 1 (2007).

16M. E. Casida, in Recent Adv. Density Funct. Methods, Part I , edited by D. P. Chong

(World Scientific, Singapore, 1995) p. 155.

17S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys. 101, 4657 (1994).

18G. A. Jones, B. K. Carpenter, and M. N. Paddon-Row, J. Am. Chem. Soc. 120, 5499

(1998).

19H. Nakamura, Nonadiabatic Transition (World Scientific, Singapore, 2002).

20I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009).

21E. Liberatore, R. Meli, and U. Rothlisberger, J. Chem. Theory Comput. 14, 2834 (2018).

22H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).

23R. P. Steele, J. Chem. Phys. 139, 011102 (2013).

24M. Barbatti, A. J. A. Aquino, and H. Lischka, Mol. Phys. 104, 1053 (2006).

25I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Mol. Struct. THEOCHEM 914, 22

(2009).

26S. A. Fischer, B. F. Habenicht, A. B. Madrid, W. R. Duncan, and O. V. Prezhdo, J.

Chem. Phys. 134, 024102 (2011).

27J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).

28J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

29J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

30P. Minary, M. E. Tuckerman, and G. J. Martyna, Phys. Rev. Lett. 93, 150201 (2004).

27

http://www.cpmd.org/
http://www.cpmd.org/
http://dx.doi.org/10.1063/1.1675788
http://dx.doi.org/10.1063/1.459170
http://dx.doi.org/10.1007/128_2015_610
http://dx.doi.org/10.1103/PhysRevLett.98.023001
http://dx.doi.org/doi:10.1142/9789812830586_0005
http://dx.doi.org/10.1063/1.467455
http://dx.doi.org/10.1021/ja9737533
http://dx.doi.org/10.1021/ja9737533
http://dx.doi.org/10.1142/4783
http://dx.doi.org/10.1063/1.3097192
http://dx.doi.org/10.1021/acs.jctc.7b01189
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1063/1.4812568
http://dx.doi.org/10.1080/00268970500417945
http://dx.doi.org/10.1016/j.theochem.2009.04.020
http://dx.doi.org/10.1016/j.theochem.2009.04.020
http://dx.doi.org/10.1063/1.3526297
http://dx.doi.org/10.1063/1.3526297
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1103/PhysRevLett.93.150201

	A multiple time step algorithm for trajectory surface hopping simulations
	Abstract
	Contents
	Introduction
	Theory
	Trajectory surface hopping in CPMD
	Tully's fewest switches method
	Landau–Zener transition probabilities

	Trajectory surface hopping with multiple time step scheme
	Standard MTS algorithms
	MTS algorithm for trajectory surface hopping dynamics


	Results and Discussion
	Investigating different approximations for the non-adiabatic couplings
	Comparing single trajectories via deterministic surface hopping
	Quality assessment
	Efficiency assessment

	Stochastic surface hopping

	Conclusions and outlook
	Supplementary Material
	Author information
	Contributions
	Funding
	Notes

	Acknowledgments
	References


