Racemization-free synthesis of dipeptide, amide and ester by oxalyl chloride and catalytic triphenylphosphine oxide

Ji-Wei Ren, a,b Meng-Nan Tong, a Yu-Fen Zhao, a,b Feng Ni a,b

a Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
b Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.

Supporting Information Placeholder

ABSTRACT: An efficient triphenylphosphine oxide (Ph3PO) catalyzed amidation and esterification reaction for rapid synthesis of a series of dipeptides, amides and esters under mild condition is described. This reaction is applicable to challenging couplings of hindered carboxylic acid with low nucleophilic amine or alcohol, giving products in good yields (67-90%) without any racemization. This system employs highly reactive intermediate Ph3PCl as activator of carboxylate, in a catalytic manner, and drive the reaction to complete in short reaction time (less than 10 min). It has the advantages of good functional group tolerance, broad substrate scope and good atom-economy. A 100 mmol scale reaction with good yield shed light on its potential for industrial application. A plausible mechanism is proposed based on 31P NMR monitor of reaction process.

Amide bond and ester bond formations are the most common reactions for the synthesis of pharmaceutical compounds and other organic transformations.1 Due to the significant utilities of such structural motifs, the synthesis of amides and esters has become one of the hottest research areas in both academia and industry.2 Early strategy to form amide and ester bonds is conversion of carboxylic acid moiety to a more reactive acyl halide (Scheme 1, eq a), which requires the harsh reagents such as SOCl2, POCl3, (COCl)2.3 In addition, this strategy brings potential racemization of α-chiral carboxylic acids. To mitigate these issues, coupling reagent strategy was developed for amide bond or ester bond formations (Scheme 1, eq b).5,6 Numerous coupling reagents have been developed, such as carbodiimides5, phosphoniums6, uronium salts7, immoniums8, imidazolium salts9 and pyridinium reagents10. Because of easy to handle, commercial reagents such as DCC, EDC, BOP, HATU are widely used in the activation of carboxylic acids. Meanwhile, novel types of activating strategies and coupling reagent systems have also been developed over the past few years, including ynamide-mediated esterification and amidation11, 2,4-bis(trifluoromethyl)phenylboronic acid catalyzed dehydrative condensation12, TCFH-NMI as coupling reagent12, aminosilane-catalyzed amidation14, visible light and DMAP/CCl3Br assisted peptide coupling15. Unfortunately, preparation protocols of these coupling reagents involve harsh conditions and toxic reagents and it is not trivial to recycle.
these coupling reagents. The formation of amide bond and ester bond avoiding poor atom economy reagents is recognized as one of the top challenges in synthetic chemistry. In accordance with the principles of atom economy and step economy, coupling reagent with a high efficacy and low molecular weight while being environmentally friendly and practical is essential for the green future of esterification and amidation.

Scheme 1. Recent progresses in amidation and esterification reactions

a) Acyl halide strategy

\[
\begin{align*}
\text{halide reagent (SOCl, POCl3, (COCl)}_2) & \rightarrow \text{amidation or esterification} \\
\text{activator} & \rightarrow \text{amidation or esterification} \\
\end{align*}
\]

b) Coupling reagent strategy

\[
\begin{align*}
\text{PG} & \rightarrow \text{R'NH} \text{O} \text{or R'O} \\
\end{align*}
\]

c) This work: Triphenylphosphine oxide catalyzed dehydrative condensation

Promoted by catalytic amount of triphenylphosphine oxide.

In seeking for new coupling system, we noticed that triphenylphosphine (Ph3P) is a versatile reagent. It was not only used in Wittig reaction, Mitsunobu reaction, Appel reaction and Staudinger reaction, but also in amide and peptide synthesis in which the stoichiometric intermediate chlorophosphonium salt (Ph3PCl/Cl) generated from triphenylphosphine and CCI3 (or C3Cl8) can efficiently activate carboxylate group, and stoichiometric amount of triphenylphosphine oxide (Ph3PO) was produced as intractable chemical waste. In order to apply Ph3PCl/Cl species in a more cost-effective and easy-to-handle way, several studies adopt the cheaper Ph3PO/oxalyl chloride ((COCl)_2) system for in situ formation of Ph3PCl/Cl. It is worth mentioning that early in 1977 Masaki and Fukui reported that the industrial byproduct Ph3PO could be easily converted into Ph3PCl/Cl, which was later applied in amide and ester synthesis via stoichiometric activation of non-chiral carboxylic acid, amide to nitrile dehydration, Appel reaction and others. Analysis of an improved Appel reaction where catalytic Ph3PO was continuously deoxygenated to the phosphonium Ph3PCl/Cl by (COCl)_2, and combined with the fact that phosphonium (e.g. BOP, PyBOP) are excellent coupling reagents in racemization-free activation of carboxylic acids, we hypothesized that Ph3PO(cat.)/(COCl)_2 system generated Ph3PCl/Cl could also be applied to α-chiral carboxylate activation and thus drives amide or ester bond formation. Herein, we reported an effective racemization-free amidation and esterification reaction of chiral carboxylic acids promoted by Ph3PO(cat.)/(COCl)_2 system (Scheme 1, eq c).

Before screening the reaction conditions, we first compared the activating rates of carboxylic acid by (COCl)_2 with and without presence of Ph3PO. To facilitate assignment of activated species by 31P NMR, model reactant alanine was N-protected by a phosphoryl moiety. In 31P NMR spectra (see Fig S1–S3), we found that (COCl)_2 alone can only slowly converts N-protected alanine into corresponding acyl chloride, while (COCl)_2 and Ph3PO combined instantly and predominantly converts the reactant to phosphonium adduct (Scheme 2).

The investigation commenced with reaction conditions screening, the model reaction of N-protected amino acid 1a and amino acid ester 2a was initially evaluated (Table 1). Using stoichiometric quantity of Ph3PO 4a and 1.5 equiv of oxalyl chloride, dipeptide 3a was formed in moderate yield (51%) with excellent diastereomic purity (>99:1 dr) (Table 1, entry 1). Reduction of Ph3PO 4a to 20 mol % only resulted in a slightly lower yield (48%) (Table 1, entry 2). These results prove that catalytic amount of Ph3PO is sufficed to accomplish the reaction. A series of solvents including toluene, tetrahydrofuran, 1,4-dioxane, acetonitrile, 1,2-dichloroethane, and dichloromethane were evaluated (Table 1, entries 3–7). It turns out that 1,2-dichloroethane was the favorite solvent and gave the dipeptide 3a in 83% yield without racemization. It should be noted that this reaction completed in less than 10 min. Various phosphine oxides including triethyl phosphate 4b, tricyclohexylphosphine oxide 4c, hexamethyldiphosphoramide 4d, and tris(pyridylidinophosphine) oxide 4e were briefly assessed and proved to be inferior (Table 1, entries 8–11). Replacement of oxalyl chloride with triphosgene did not produce the dipeptide 3a (Table 1, entry 12). Further reduction of catalyst loading to 5 mol %, a significantly lower yield (43%) was observed (Table 1, entry 13). In the absence of Ph3PO, the dipeptide 3a was not obtained (Table 1, entry 14). Based on the above screening, the optimal reaction conditions were established as following: amino acids 1 (1.0 equiv.), amino acid esters 2 (1.2 equiv.) and triphenylphosphine oxide 4a (20 mol %) were well mixed in 1,2-dichloroethane, oxalyl chloride (1.5 equiv.) and triethylamine (2.0 equiv.) were added in sequence at ambient temperature under argon atmosphere, the reaction mixture was stirred at ambient temperature for 10 min.

Table 1. Optimization of the peptide bond-forming reaction

<table>
<thead>
<tr>
<th>Reaction Condition</th>
<th>Model Reaction</th>
<th>Dipeptide 3a Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph3PO (20 mol %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph3PO (10 mol %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph3PO (5 mol %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph3PO (0 mol %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalyl chloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triphosgene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triethyl phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricyclohexylphosphine oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexamethyldiphosphoramide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tris(pyridylidinophosphine) oxide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 1. Reaction scheme for the formation of amidation or esterification reactions.

Fig 2. Model reaction for amidation or esterification reactions.

Fig 3. Mechanism of amidation or esterification reactions.

Fig 4. Optimization of the peptide bond-forming reaction.

Fig 5. Spectroscopic analysis of the model reaction.
Having the optimal conditions in hand, we sought to examine the substrate tolerance for dipeptide synthesis (Scheme 3). It is found that common amine protecting groups such as Boc, Cbz, and Fmoc could be tolerated (3a-3c). Different protecting groups had no noticeable influence on reaction yields (77-83%, >99:1 dr). Coupling reactions between secondary amine L-proline ester and N-Fmoc-L-Ala also provided the corresponding dipeptide 3d in good yield (83%, >99:1 dr). Reactions between several of amino acid tert-butyl esters and a series of N-Fmoc amino acids provided the corresponding dipeptides 3e-3j in good yields (84-88%). Notably, side-chain protected amino acids (Ser, Cys, Asp) also reacted smoothly to give the corresponding dipeptides in good yields without racemization.

Scheme 3. Dipeptide synthesis

Unless otherwise noted, all reactions were carried out using amino acids 1 (1.0 mmol, 1.0 equiv.), amino acid esters 2 (1.2 mmol, 1.2 equiv.) and triphenylphosphine oxide 4a in 1,2-dichloroethane (1.0 mL) and oxalyl chloride (1.5 mmol, 1.5 equiv.) and triethylamine (2.0 mmol, 2.0 equiv.) were added in sequence at ambient temperature in argon. aIsolated yield. bDetermined by HPLC on a chiral stationary phase.

To test the reactivity of hindered carboxylic acid and low nucleophile amine, 2-phenylisobutyric acid 5a and 4aminophthalonitrile 6a were investigated. This challenging coupling gives moderate yield (7a, 67%). In addition, coupling reactions between (S)-phenylpropionic acid and a series of amines bearing both electron-donating and -withdrawing substituents, including pyridine and pyrimidine, gave the corresponding amides 7b-7h in good yields (80-89%) without racemization (Scheme 4).

Scheme 4. Amide bond formation

Scheme 3. Dipeptide synthesis
Unless otherwise noted, all reactions were carried out using carboxylic acids 5 (1.0 mmol, 1.0 equiv.), amines 6 (1.2 mmol, 1.2 equiv.) and triphenylphosphine oxide 4a in 1,2-dichloroethane (1.0 mL) and oxalyl chloride (1.5 mmol, 1.5 equiv.) and triethylamine (2.0 mmol, 2.0 equiv.) were added in sequence at ambient temperature in argon. Isolated yield. Determined by HPLC on a chiral stationary phase.

To test the scalability of this protocol, synthesis of 3a at 100 mmol scale was carried out under the optimal reaction conditions. It gives isolated yield of 73% from simple recrystallization of product in dichloromethane, avoiding column chromatography (Scheme 6). Therefore, our protocol has potential value in industrial production of dipetide.

Scheme 6. 100 mmol scale model reaction

In order to elucidate the role of Ph₃PO and (COCl)₂ and understand the nature of the catalytic cycle involved, ³¹P NMR spectroscopy was used to monitor the reaction process. Based on the experimental results, a possible mechanism was proposed in Scheme 7. Initially, the solution of Ph₃PO in DCE showed a strong singlet at 26.2 ppm (Figure 1, a). A new signal appearance at 62.3 ppm after addition of oxalyl chloride (Figure 1, b), indicating triphenylphosphine oxide reacted with oxalyl chloride to generate chlorophosphonium A. Then the in situ generated intermediate A serves as activator of the carboxylic acid. 1a converted it to a new resonance at 65.3 ppm (Figure 1, c), which is consistent with an acyl phosphonium salt B. Finally, the addition of amino acid ester 2a recovered a singlet at 26.2 ppm, the catalyst Ph₃PO (Figure 1, d). It is worthy to mention that, the singlet at about 26.2 ppm was mis-assigned to C or D in previous report. Actually, C or D are transient intermediates that is impossible to accumulate at present of nucleophiles such as amines and alcohols.
In summary, we successfully developed an effective amidation and esterification reaction for α-chiral carboxylic acids. This reaction system employs catalytic amount of triphenylphosphine oxide and stoichiometric amount of oxalyl chloride under mild condition to in situ forming highly active and efficient phosphonium intermediate Ph₃PCl₂, which can drive even challenging couplings of hindered carboxylic acids and low nucleophilic amines or alcohols. The reaction is easy to operate and is able to synthesize dipeptides, amides and esters in good yields (67-90%) without racemization. Our system has the advantages of short reaction time (less than 10 min), using cheap and readily available reagents, good functional groups tolerance, broad substrate scope and atom-economy (only CO, CO₂ and HCl as wastes in the end of reaction). A 100 mmol-scale reaction was successfully realized, showing its potential for industrial application.

ASSOCIATED CONTENT

Supporting Information
Complete experimental procedures and characterization of new products; NMR spectra and HPLC chromatograms (PDF)

AUTHOR INFORMATION

Corresponding Author
Feng Ni - Institute of Drug Discovery Technology; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China; orcid.org/0000-0001-8482-6755; E-mail: nifeng@nbu.edu.cn

Authors
Ji-Wei Ren - Institute of Drug Discovery Technology; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
Meng-Nan Tong - Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
Yu-Fen Zhao - Institute of Drug Discovery Technology; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China

ACKNOWLEDGMENT
We gratefully acknowledge the financial support from the Scientific Research Grant of Ningbo University (215-432000282), Ningbo Top Talent Project (215-432094250), Natural Science Foundation of Ningbo (202003N4093) and Ningbo University.

REFERENCES
(3) El-Faham, A.; Albericio, F. Peptide coupling reagents, more than a letter soup. Chem. Rev. 2011, 111, 6557-6602.

