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ABSTRACT: We report a radical method for the removal of benzyl and p-methoxybenzyl groups from amines and 
alcohols using a selective hydrogen-atom abstraction under aerobic conditions. The key usage of the strongly elec-
trophilic thiyl radical derived from commercially available pentafluorothiophenol as the H-atom abstracting agent 
allowed for a chemoselective abstraction process leading to C-N or C-O bond cleavage. This approach is applicable 
to an array of alcohols and amines, operating under aerobic conditions with no need for further addition of a stoi-
chiometric external oxidant or hazardous reagents. 

Introduction 

Radical C-H abstraction has long been considered in C-H activation. Many free radical species undergo non-selec-

tive H-atom abstractions and consequently are implicated in cellular and DNA damage pathways.1 However, in-

creased reports that demonstrate the ability of tailored heteroatom-centered radicals to perform selective atom-

abstractions highlights the potential of this activation strategy for chemical synthesis.2 Thiols and their correspond-

ing thiyl radicals are ubiquitous throughout radical chemistry,3 serving as H-atom donors due to their relatively 

weak S-H bonds (80-90 kcal/mol)4 and rapid rates of H-atom transfer (HAT ~105-108 M-1s-1).3  

The electrophilic character of thiyl radicals favors abstraction of H-atoms from silanes (Si-H),5 boranes (B-

H),6 aldehydes (OC-H),7 and C-H bonds adjacent to heteroatoms.8 Well-documented polarity effects in radical-

mediated atom abstractions are evident in the relative rates of H-atom transfer to thiyl radicals as well as chemose-

lectivity.9 Pryor and coworkers observed that cyclohexanethiyl radical abstracted the more electron-rich secondary 

benzylic H-atoms from benzyl-methyl ether 20x faster than from ethyl benzene (Scheme 1a).10 MacMillan and 
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coworkers used ethyl-2-mercatopriopionate thiyl radical to abstract an electron-rich 1° methyl H-atom from meth-

anol overcoming a ~9 kcal/mol uphill barrier to achieve arene alkylations (Scheme 1b).11 Dilman and coworkers 

recently reported a radical-mediated thiolation of electronically unactivated alkanes.12 Generated by purple-light-

mediated homolytic disulfide bond cleavage, tetrafluoropyridinyl thiyl radical performed an estimated 13 kcal/mol 

uphill H-atom abstraction from alkane substrates after which the C-centered radical was rapidly trapped by a second 

equivalent of the disulfide reagent. 

 

  The strategic use of protecting groups is a common, and sometimes unavoidable, process in the construction 

of complex molecules,13 with benzyl (Bn) and p-methoxybenzyl (PMB) being favorable for hydroxyl and amino 

groups due to the relative ease of installation and removal. However, common methods for the removal of Bn and 

PMB groups using heterogeneous palladium hydrogenolysis14 (Scheme 2a) or stoichiometric oxidative cleavage15 

(Scheme 2b), respectively offer further sustainable chemistry development opportunities that would obviate the use 

of precious transition metals, hazardous hydrogen gas, or stoichiometric waste.16 HAT-Mediated radical debenzyla-

tion strategies offer some sustainability benefits and potential functional group compatibility advantages but often 

require super-stoichiometric HAT reagent sources such as N-bromosuccinimide (NBS) (Scheme 2c)17 or an Ox-

one/KBr couple (Scheme 2d),18 are limited to electron deficient amino functionalities17,18 and in the case of O-

benzyl alcohols, may result in oxidation to the ketone following debenzylation.18 Herein we report a HAT-mediated 

debenzylation protocol using a catalytic amount of a commercially available thiol and atmospheric O2 as the termi-

nal oxidant19 that is applicable to a variety of functionalized alcohol and amine substrates (Scheme 2e). This ap-

proach operates with predictable chemoselectivity and is amenable to substrates that would be challenging for hy-

drogenolysis, oxidative cleavage, or acidic deprotection strategies.  

Scheme 1. Polarity effects of thiyl radical HAT
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Results 

Bertrand and co-workers had previously observed the formation of an E/Z mixture of 1-phenyl-N-(1-phe-

nylethyl)ethan-1-imine from treatment of 1-phenylethan-1-amine to aryl thiols.20 This was proposed to have formed 

via benzylic H-atom abstraction followed by oxidation and primary amine condensation, and we had also observed 

substantial production of p-anisaldehyde and N-methylaniline when N-(para-methoxybenzyl)-N-methylaniline was 

treated to 10 mol % each of tert-butyl hyponitrite and methyl thioglycolate in a 3:1 mixture of tert-butyl acetate 

and water at 60 °C. We followed this with an experiment using N-PMB-aniline (1a), 5 mol % methyl thioglycolate, 

and 5 mol % 2-2’-azobis(2-methylpropionitrile) (AIBN) heated to 80 °C in chlorobenzene for 1.5 h which resulted 

in only 29% consumption of 1a and a 11% combined yield of aniline 1b and imine 1c (Table 1, entry 1). While the 

PMB group remained attached in 1c, we hypothesized that its formation was the result of either a) direct formation 

under the reaction conditions, or b) the in-situ condensation of liberated aniline and p-anisaldehyde.  

The use of thiophenol in place of methyl thioglycolate failed to improve 1a conversion (entry 2). These 

low conversions were attributed to aerobic decomposition of thiols and sulfur-containing compounds at elevated 

temperatures.21,22 However, the use of pentafluorothiophenol (PFTP) achieved 68% conversion and a 41% total 

yield (entry 3). Extending reaction time to 3 h and using 10 mol % PFTP resulted in 94% conversion and a total 

yield of 91% divided 17:74 1b:1c. Including an acidic workup effectively funneled all material to aniline 1b as the 

sole product isolated in 95% yield as the HCl salt (entry 4).23 The individual exclusion of AIBN (entry 5), thiol 

(entry 6), or O2 (entry 7), resulted in only trace amount of debenzylation. Combined, these results support deben-

zylation via a radical rather than acid-mediated pathway24 and that thiol and oxygen are required reagents.  

Scheme 2. Benzyl group removal methods
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entry reaction conditionsa 1a conversionb yield (1b : 1c)b  

1 methyl thioglycolate 29% 2% : 9% 

2 thiophenol 33% 6% : 17% 

3 HSC6F5  68% 9% : 32% 

4 HSC6F5
 94% 17% : 74%c (95% : 0%)d 

5 HSC6F5, no initiator 7% 0% : 2% 

6 no thiol 6% 0% : 3% 

7 HSC6F5, degassed 20% 0% : 4% 

aAll reactions performed on a 0.2 mmol scale of 1a. bConversion and yields were determined by 1H-NMR using dibro-

momethane as an internal standard from crude reaction mixtures. c10 mol % PFTP and 5 mol % AIBN used, with a 

subsequent addition of both every hour for a total reaction time of 3 h. d Yield following acid workup (See SI for details); 

1b isolated as HCl salt. 

  We turned to DFT to investigate the observed impact of thiol identity on debenzylation efficiency. We 

considered the S-H bond dissociation energies (BDE)25 and the electron affinities (EA)26 of the corresponding thiyl 

radicals of the three thiols investigated in Table 1 (Scheme 3a). These calculations indicated that PTFP had both 

the lowest S-H BDE (79.4 kcal/mol) and the greatest, most exothermic electron affinity (EA = 68.5 kcal/mol). 

While the inclusion of electron withdrawing groups often increases BDE, the presence of fluorine at the ortho- and 

para-positions of aryl thiols was demonstrated to decrease the S-H BDE, accounting for the ~4 kcal/mol S-H BDE 

difference between thiophenol and PFTP.27 The electronegative nature of fluorine is likely responsible for the in-

creased electron affinity of the pentafluorophenylthiyl radical relative to either methyl thioglycolate or thiophenol.28 

To further illustrate the importance of substrate electronics on the observed reactivity, we carried out side-by-side 

separate flask experiments using the benzyl and para-trifluoromethylbenzyl congeners of 1a and observed signifi-

cantly slower reactivity for these two substrates compared to the more electron-rich 1a (see SI for details). 
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aThiol bond dissociation enthalpies were calculated at the wb97xd/6-311++g(d,p) level of theory and using the polariz-

able continuum model (integral equation formalism variant) with benzene as the solvent. bValue from ref. 27. cRadical 

electron affinity calculated at the B3LYP/6-311G(d,p) level of theory in the gas phase. 

This collective data led to the proposed mechanism for thiol catalyzed, aerobic debenzylation shown in 

Scheme 3b. Radical initiation generates an electrophilic, thiyl radical from PFTP which then preferentially abstracts 

a relatively weak (~85 kcal/mol)29, and electron-rich, benzylic H-atom from the substrate.30 Notably, the most effi-

cient thiyl radical precursor used contains the weakest S-H bond, making the proposed benzylic H-atom abstraction 

endothermic (DH ~ +4 kcal/mol). Molecular oxygen may then either perform a single electron oxidation31 or trap 

the benzylic a-amino C-centered radical32 to generate a benzylic carbocation or peroxyl radical intermediate, re-

spectively. Both pathways are kinetically and thermodynamically feasible and lead to a common benzylic peroxy 

radical intermediate.33 Thiyl radical regenerating HAT from PFTP would generate a benzylic hydroperoxide from 

which elimination of hydrogen peroxide anion followed by hydrolysis furnishes the product. 
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aAll reactions carried out using 1 equiv of benzylated amine or alcohol, 10 mol % pentafluorothiophenol, 5 mol % AIBN 

(refreshed every 1 h) at 80 °C in PhCl (1.0 M); 3 h total reaction time; yields are of isolated compounds following column 

chromatography. bIsolated as the hydrochloride salt. cMeCN used as solvent. dObtained from the reaction with the benzyl 

starting material. eReaction was performed with 2x thiol and initiator refreshes. f1H-NMR yield determined using dibro-

momethane as internal standard from crude reaction mixture. gt-Butyl hyponitrite used as initiator at 50 °C.  

Scheme 4. Debenzylation substrate scopea
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We sought to explore the breadth and limitations of this selective thiyl radical H-atom abstraction for the 

removal of benzyl and PMB groups from amines and alcohols (Scheme 4). Primary, para-methoxybenzyl anilines 

were easily deprotected and were generally found to be the most efficient substrates. Aniline (1b) and phenylene-

diamine (2b) were isolated in near quantitative yields from their PMB analogs as was 4-amino acetamide 3b without 

disruption of the acetamide group. Compounds containing potentially sensitive functionality such as ketones (4b), 

bis-aryl ethers (5b), nitriles (6b), primary silyl ethers (7b), and acetals (8b) were similarly debenzylated in good 

yields. Carbazole 9a underwent PMB removal to provide 9b as did a substrate bearing a free hydroxyl group (10b). 

Carbamate functionality was well tolerated indicating that this approach chemoselectively removes PMB groups in 

the presence of Cbz which also contains a-amino benzylic C-H bonds (11b), and tolerates the acid labile Boc group 

(12b).34 Debenzylation was successful to reveal sulfadiazine (13b) and sulfamethoxazole (14b), two potent anti-

bacterial agents, as well as cholic acid derivative (19b), an essential component of bile acid synthesis. However, 

increasing the substitution at nitrogen generally decreased reaction efficiency (15b, 16b, and 17b), and n-butyla-

mine (18b) was obtained in fair yield as it’s HCl salt from N-(4-methoxybenzyl)butan-1-amine.  

Alcohols including (-)-menthol (20b), acid sensitive 2-trimethylsilyl-1-ethanol (21b), and 3-hydroxypro-

panenitrile (22b) were similarly obtained from their PMB-derivatives in good yields. 1-Octanol (23b) and 2-indanol 

(24b) were analogously revealed from their corresponding benzyl-ethers. Unsaturated O-PMB ethers from (1R)-(-

)-nopol (25b) and citronellol (26b) were successfully debenzylated in spite of the known propensity for thiyl radi-

cals to participate in alkene additions.35 Functionalized compounds including 2-(5-methyl-2-phenyloxazol-4-yl)eth-

anol (27b), an N-benzoyl methyl ester serine derivate (28b), stigmasterol (29b), and diosgenin (30b) were all iso-

lated from their O-PMB derivatives in good yields. Compound 31b was isolated from its O-PMB congener leaving 

the N-PMB-amide intact, highlighting the chemoselectivity of this aerobic, thiol catalyzed approach.36  

In contrast to previously reported HAT-mediated debenzylation protocols, electron deficient amino groups 

of amides, carbamates and sulfonamides were unreactive using this aerobic, thiyl radical approach, resulting in the 

recovery of starting material in each case.17,18 The a-amino C-H bonds present in benzyl amides have significantly 

higher BDE37 and decreased nucleophilicity compared to their amine analogs allowing for thiyl radical abstraction 

to discriminate between multiple, otherwise similar benzylic C-H bonds and provides complementary reactivity to 

existing stoichiometric HAT debenzylation approaches. Benzylated phenols and esters were not effectively cleaved. 

The electron-withdrawing properties of the ester acyl group is likely responsible for the disfavored H-atom abstrac-

tion. During our attempts to remove the PMB group from 6-hydroxycoumarin resulted in trace production of p-

anisaldehyde along with the expected phenolic product suggesting that this small amount of phenol formed was 

sufficient to shunt reactivity and prevent additional conversion of the starting material.38  

Further investigations revealed that these aerobic conditions allowed for the quantitative oxidation of p-

methoxy benzyl alcohol to p-anisaldehyde and compound 32a was easily oxidized to aromatic amine 32b. Prior 

reports of this latter transformation required elevated temperatures (140 °C),39 or strong oxidants (KMnO4) to pro-

ceed.40  
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Reported herein is a mild, radical mediated method for the removal of benzyl and p-methoxybenzyl groups 

from amines and alcohols using commercially available pentafluorothiolphenol as a catalytic HAT-reagent. Com-

bined experimental and computational mechanistic studies support a selective benzylic H-atom abstraction path-

way. This process uses ambient air as the terminal oxidant with hazardous and/or stoichiometric reagents not re-

quired. Whereas thiols are most typically viewed as H-atom donors in radical processes, this approach hinges on 

the ability of a highly electrophilic thiyl radical to chemoselectively abstract electron-rich, benzylic H-atoms based 

on a combination of electronic and thermodynamic factors to achieve mild amine and alcohols debenzylations.  
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