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Abstract 33 

Background 34 

Chagas disease is caused by the parasite Trypanosoma cruzi and is one of the neglected 35 

tropical diseases. Although two types of drugs are currently available, new drugs are still 36 

required because they have serious side effects. To develop a therapeutic agent for 37 

trypanosomiasis, we focused on spermidine synthase (SpdSyn) as the target protein and 38 

determined the hidden binding site which was not identified in the X-ray structure for 39 

obtaining seed compounds using a computational simulation. 40 

 41 

Methodology/Principal Findings 42 

Molecular dynamics (MD) simulation was performed for TcSpdSyn to predict new binding 43 

sites. These results indicated that the highly druggable binding site was discovered around 44 

Glu22. We also conducted docking simulation for the new binding site and in vitro assay to 45 

determine half-maximal inhibitory concentration (IC50) value. Furthermore, to confirm ligand 46 

of binding site and pose, we conducted X-ray crystallographic studies. As a result, two 47 

compounds were discovered as inhibitors of TcSpdSyn with IC50 values of 82.27 and 43.41 48 

μM, respectively. X-ray crystallographic analysis shows that two inhibitors are bound to the 49 

hidden binding site which is detected by computational simulation.  50 



 51 

Conclusions/Significance 52 

MD simulation revealed that there are new sites in the TcSpdSyn that are not an active site. 53 

This site exists near Glu22 and Asp77, and crystal structures revealed that compounds 1 and 54 

2 are bound to the hidden binding site, as predicted by MD simulations, and interacts with 55 

Glu22 and Asp77 through hydrogen bonds. 4MCHA which has been reported as known 56 

inhibitor binds to the TcSpdSyn active site while interacting with Asp171. Therefore, these 57 

inhibitors we discovered differs in binding mode from a known inhibitor and this new binding 58 

site is useful for antitrypanosomiasis target. 59 

 60 

Keywords: Chagas disease, Trypanosomes, Spermidine synthase, Molecular dynamics, In 61 
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Author Summary 63 

Predicting the binding site of a target protein is very important in drug design. Computational 64 

methods, such as machine learning and molecular dynamics (MD), are effective for these 65 

predictions. In this study, we predicted a new drug-binding site on spermidine synthase from 66 

Trypanosoma cruzi (TcSpdSyn) using MD simulations. In addition, we performed docking 67 

simulations to search for new seed compounds and conducted in vitro enzyme assays to 68 



determine the IC50 value. From these results, a new binding site, which was not identified in 69 

the X-ray structure, was predicted. We identified two hit compounds that inhibit TcSpdSyn by 70 

in silico and in vitro screening. Moreover, we confirmed the structure of the complexes of 71 

TcSpdSyn with these hit compounds by X-ray analysis. These TcSpdSyn–inhibitor complex 72 

structures demonstrated that the hit compounds bind to the site predicted by the MD 73 

simulations. 74 

 75 

Introduction 76 

Chagas disease, which is classified as a neglected tropical disease, is caused by the 77 

parasite Trypanosoma cruzi (T. cruzi) [1,2]. Nifurtimox and benznidazole, two current 78 

treatments for Chagas disease, have serious side effects and limited effectiveness during 79 

the chronic phase of Chagas disease [3-5]. Thus, the demand for new therapeutic treatments 80 

for Chagas disease is high. 81 

Drug discovery is generally expensive and time-consuming, requiring approximately $2.6 82 

billion dollars and 12–14 years for a drug to reach the market [6]. Computational methods 83 

offer a way of reducing these barriers to drug discovery, development and design. Drug 84 

design processes are divided into two types. Ligand-based drug design (LBDD) is based on 85 

activity values (such as half-maximal inhibitory concentration, IC50), and known compound 86 



properties involved in drug binding. Representative methods in LBDD are quantitative 87 

structure-activity relationship (QSAR) studies and machine learning. Alternatively, structure-88 

based drug design (SBDD) bases the design process on a target protein structure. In SBDD, 89 

discovery of the target protein binding site is a fundamental starting point [6,7]. Typically, the 90 

protein binding site is identified by X-ray analysis and the drug is designed or optimized based 91 

on information from that analysis. Human immunodeficiency virus 1 (HIV-1) protease 92 

inhibitors were developed using SBDD [8-10]. Thus, binding site information, such as shape 93 

and physical properties, are very important for drug development and optimization. 94 

Drugs that bind to proteins, such as enzymes, are roughly divided into two types: 95 

competitive inhibitors and noncompetitive inhibitors. Competitive inhibitors bind to active sites 96 

at which the protein catalyzes a reaction. In contrast, noncompetitive inhibitors bind to 97 

nonactive sites, such as allosteric sites. Non-competitive inhibitors that bind to allosteric sites 98 

have several advantages compared with competitive inhibitors that bind to active sites, 99 

including low side effects and high affinities [11]. Thus, the determination of new binding site 100 

such as allosteric sites is important in drug development studies. Yet, although all proteins 101 

are potentially allosteric [12], few cases of allosteric inhibitors have been reported. 102 

 To detect binding site for drug design, computational methods to identify binding sites, 103 

such as POCKET [13], LIGSITE [14], CAST [15], PASS [16] and SURFNET [17], have been 104 



reported. These methods estimate the protein binding site from the three-dimensional 105 

geometry of the protein, and no ligand is required. Moreover, several studies have adopted 106 

machine learning methods, such as the support vector machine (SVM) method, for predicting 107 

allosteric sites [18-20]. Virtual screening methods, such as protein–ligand docking 108 

simulations [21], have been applied in computational binding site identification studies. 109 

Computer-aided drug discovery has been applied to develop new drugs. Protein–ligand 110 

docking simulations, such as DOCK [22,23], AutoDock [24], GOLD [25] and Glide [26,27] are 111 

the most frequently used virtual screening methods, whereas molecular dynamics (MD) 112 

simulations are used to collect protein-ligand complex ensembles [28] in SBDD. Many 113 

successful virtual screening studies have been reported [29-40]. Moreover, pharmacophore 114 

[41] modeling studies using protein–ligand complex structures have also been reported 115 

[42,43]. Typically, traditional computational methods, such as binding site identification and 116 

protein–ligand docking simulations, do not take into account protein flexibility, because the 117 

calculations are for a single point. Therefore, the results from these methods depend on the 118 

initial protein structure. By contrast, MD simulations account for protein flexibility using 119 

Newtonian principles. Ma et al. reported a computational method for predicting allosteric sites 120 

from residue–residue interaction patterns [44]. In that study, conformational ensembles of a 121 

target protein generated by MD simulations for site prediction were applied. Thus, MD 122 



simulations can used for identifying new binding sites and ligand binding poses that 123 

traditional computational methods cannot. 124 

In this study, we discovered a new binding site for T. cruzi spermidine synthase (TcSpdSyn), 125 

as an antitrypanosomiasis target [45-50], and used MD simulations and conduct docking 126 

simulations to identify anti-Chagas drug candidates that binds to the new site. We then 127 

performed in vitro assays to determine the inhibition activities of compounds identified by the 128 

docking simulations, and performed subsequent X-ray crystallographic studies of the active 129 

compounds. Finally, we conducted fragment molecular orbital (FMO) calculations to analyze 130 

important interactions between TcSpdSyn and the active compounds.  131 

 132 

Methods 133 

Computational Methods 134 

The structure of TcSpdSyn (PDB ID: 3BWC), as the docking target, was obtained from the 135 

Protein Data Bank. The hydrogenation, water removal, and conformation optimization of the 136 

complex were accomplished in Maestro using the OPLS2005 force field [51]. And carboxyl 137 

group of S-adenosylmethionine (SAM) which is included in the structure was deleted to 138 

correct SAM to Decarboxylated S-adenosylmethionine (dcSAM) as a cofactor. The MD 139 

simulation system was prepared using Desmond ver. 3.5 with the default settings. The 140 



temperature and pressure of the system were set to 300 K and 1 atm, respectively. The time 141 

step and structure sampling interval were set to 2 fs and 1 ps, respectively. We performed 142 

the simulation five times under the NPT ensemble for 20 ns. Next, we merged all trajectories 143 

from the MD simulation and performed structure clustering based on the amino acid residues 144 

at active site, which are shown in the Table S1, using average linkage in AMBER [52]. After 145 

clustering, site volume and druggability of the active center were evaluated by SiteMap [53]. 146 

 Docking simulations were performed at the active site of the prepared structure in the 147 

absence of the natural substrate putrescine. For the docking simulation, a 20 × 20 × 20 Å3 148 

grid box was generated, thereby maintaining the TcSpdSyn active site. dcSAM, as a cofactor, 149 

was not deleted. We used Glide in standard precision (SP) mode [26, 27] for our docking 150 

simulations of approximately 4,800,000 drug-like compounds in the Namiki Sho-ji Co., Ltd., 151 

library and the Astellas Pharma Inc. in-house compound library that satisfy Lipinski’s rule of 152 

five [54]. All calculations were performed on an HP Proliant SL390s G7 server with an Intel 153 

Xeon X5670 2.93 GHz core and five nodes on the TSUBAME2.5 supercomputer at the Tokyo 154 

Institute of Technology.  155 

The X-ray crystallography structures of TcSpdSyn with compounds 1 and 2 were 156 

hydrogenated in Maestro using the OPLS2005 force field. FMO calculation input files were 157 

generated using FMOutil Version 2.1, and calculations were performed for the TcSpdSyn 158 



complexes with 1 and 2 using GAMESS [55] at the MP2/6-31G level. Interaction energy 159 

analysis was performed using the analytical tool Facio [56], which is based on pair interaction 160 

energy decomposition analysis, as proposed by Fedorov and Kitaura [57]. 161 

 162 

In vitro Assay 163 

The protocol for the TcSpdSyn inhibition assay has been described previously [58]. The 164 

assay was performed using an enzyme-coupled assay incorporating spermidine/spermine 165 

N(1)-acetyltransferase 1 (SSAT1). 7-Diethylamino-3-(4’-maleimidylphenyl)-4-166 

methylcoumarin (cat. D-346, Thermo Fischer Scientific) was used to measure coenzyme A 167 

produced from the SSAT1 reaction. Briefly, a reaction mixture of 4-(2-hydroxyethyl)-1-168 

piperazineethanesulfonic acid (HEPES) buffer (50 mM, pH 7.5) containing 169 

ethylenediaminetetraacetic acid (EDTA, 10 μM), 0.01% Tween 20, TcSpdSyn (14.7 nM), 170 

dcSAM (50 μM), putrescine (50 μM), acetyl coenzyme A (15 μM), and SSAT1 (0.83 nM) in 171 

the presence or absence of 1 or 2 was incubated at room temperature for 30 min. The 172 

concentrations of putrescine and dcSAM were determined using their Km values (data not 173 

shown). The fluorescence signals were detected using a Paradigm plate reader (Molecular 174 

Devices) with excitation at 405 nm and emission at 530 nm. IC50 values were calculated from 175 

dose-response curves in which each of eight data points represents the average of four 176 



measurements (S2 Fig). Compound 2 was used as the hydrochloride salt. These compounds 177 

were dissolved in dimethyl sulfoxide (DMSO), the final concentration of which in the assays 178 

was as high as 1.3%. 179 

 180 

X-ray crystallography analysis 181 

The protocol for X-ray crystallography has been described previously [58]. Briefly, co-crystals 182 

of TcSpdSyn complexed with dcSAM and compound 1 were obtained using the sitting-drop 183 

vapor diffusion method. Prior to crystallization, TcSpdSyn (15 mg/mL) was mixed with dcSAM 184 

and compound 1 at final concentrations of 2 and 5 mM, respectively. A reservoir solution 185 

consisting of bis-Tris (100 mM, pH 5.5–6.5), ammonium sulfate (200 mM), and 10–15% (w/v) 186 

PEG4000 was prepared. The precipitated crystals were transferred into a mother liquor 187 

containing 20% (v/v) glycerol as a cryoprotectant, which was then flash frozen in liquid 188 

nitrogen. X-ray diffraction data were collected at the Photon Factory (Tsukuba, Japan) AR-189 

NE3A beamline using a robotic sample changer and an automated data collection system 190 

[59,60]. The structure was resolved by molecular replacement using Phaser [61]. The apo-191 

structure of TcSpdSyn (PDB ID: 3BWB) was used as a reference model. After structural 192 

refinement using REFMAC [62], dcSAM and compound 1 were clearly observed in the 193 

electron density maps and fitted to the maps using AFITT (OpenEye Scientific). The final 194 



structures were deposited in the Protein Data Bank (PDB IDs: 5Y4P and 5Y4Q). 195 

 196 

Results 197 

Discovering of hidden binding by molecular dynamics 198 

 To predict TcSpdSyn binding sites, we performed MD simulations and structure clustering 199 

for virtual screening. S1 Fig in the Supporting Information shows the root-mean-square 200 

deviations (RMSD) of TcSpdSyn α-carbon atoms, side chains and heavy atoms during a 20 201 

ns MD simulation. Next, we conducted structure clustering to extract representative 202 

structures from the trajectory. Fig 1 shows the active site of TcSpdSyn in the X-ray structure 203 

and clustering structures. 204 

 205 

Fig 1. TcSpdSyn target site in the X-ray and clustering structures. A: X-ray structure 206 

(volume: 193 Å3, D-score: 0.56), B: clustering structure 1 (volume: 496 Å3, D-score: 1.12, 207 

population: 0.178) 208 

 209 

The active site volume of the X-ray structure was 193 Å3. However, the active site volumes 210 

of the clustering structures were 496 Å3. In clustering structure 1 (Fig 1B), a new cavity, which 211 

was not identified in the X-ray structure, was discovered around Glu22. Furthermore, the D-212 



scores indicating druggability of the clustering structures were higher than that of the X-ray 213 

structure. Target sites with D-score higher than 0.98 are highly druggable [53]. These results 214 

suggest that the target site of TcSpdSyn is flexible and has a structure with higher druggable 215 

potentially. It is possible that compounds which are not found in the case of using the X-ray 216 

structure are evaluated by using the predicted structure. And we suggested that molecules 217 

that inhibit structural change can bind to the new site. We defined the new site as a hidden 218 

binding site and then performed docking simulations for the hidden binding sites in the 219 

clustering structures. And we also performed docking simulations for active site in the X-ray 220 

structure to compare docking simulation results between hidden binding sites and active site 221 

in the X-ray structure. Fig1 222 

 223 

In silico screening by docking study 224 

To obtain drug candidates from our combined library of 4,800,000 drug-like compounds, 225 

we conducted docking simulations for the TcSpdSyn hidden binding site, as predicted by MD 226 

simulations and active site in the X-ray structure, using Glide in the SP mode. Fig 2 shows 227 

the docking poses of the top five compounds with high docking score at each binding site. 228 

Fig 2. Comparison of docking poses of the top five compounds with high docking 229 

score at each binding site. A: docking pose of the X-ray structure, B: docking pose of the 230 



clustering structure. Stick model shows Glu22 and dcSAM, and line model shows docking 231 

results. 232 

 233 

The X-ray docking results show that these compounds bind to the TcSpdSyn active center, 234 

which is adjacent to dcSAM. In contrast, the docking poses in the clustering structures cover 235 

a wide range of hidden binding sites. Fig 3 shows the diversity of top 10,000 compounds with 236 

high docking scores in each docking results.  237 

 238 

Fig 3. Docking results depending on the presence of heterocycle and/or chiral centers. 239 

A: results of the X-ray structure, B: results of clustering structure 1. 240 

 241 

In the X-ray structure (Fig 3A), many compounds lacking a heterocycle or chiral center are 242 

favored. In contrast, more compounds containing a heterocycle and/or chiral center are 243 

favored with clustering structure 1 (Fig 3B). Overall, our docking simulations identified a 244 

variety of compounds after performing MD simulations and structure clustering. 245 

 246 

In vitro assay and X-ray crystallography analysis 247 

We ran docking simulations targeted to the “virtual” hidden binding site found in the MD 248 



simulations. Next, we selected 191 compounds among the docking results for hidden binding 249 

site and performed in vitro enzyme assay to validate their IC50 concentration value. The 250 

results showed that two compounds exhibited inhibitory activity (Table 1). 251 

 252 

Table 1. Summary of TcSpdSyn inhibition by compounds 1 and 2. PDB IDs for the co-253 

crystallized enzyme–inhibitor complexes, IC50 values, and the molecular structures of the 254 

inhibitors. 255 

 PDB ID IC50 (µM) Compound structure 

Compound 1 5Y4P 82.27 

 

Compound 2 5Y4Qa 43.41 

 

aSalt form with HCl 256 

 257 

To examine the binding sites used by these two active compounds, we conducted X-ray 258 

crystallographic studies to observe the structures of the TcSpdSyn complex with the two top-259 

ranked compounds (compounds 1 and 2) in the hidden binding pocket (Fig 4), as predicted 260 

by the MD simulations. 261 



 262 

Fig 4. Binding site of each compound confirmed by X-ray analysis. A: TcSpdSyn with 263 

compound 1 (5Y4P), B: TcSpdSyn with compound 2 (5Y4Q). 264 

 265 

These data show that compound 1 interacts with Glu22 and Asp77 through hydrogen bonding 266 

(Fig 4A). Compound 2 interacts with Glu22 and Asp77, similar to 1, and the lone pair of the 267 

quinoline nitrogen atom in 2 is proximal to the carboxylate group of Glu22. Thus, these results 268 

suggest that Glu22 is in a neutral state when interacting with the lone pair of quinoline. 269 

Next, we conducted an interaction energy analysis for each X-ray structure using FMO 270 

calculations. Fig 5A shows the results of the interaction energy analysis of the TcSpdSyn–1 271 

complex.  272 

 273 

Fig 5. Interaction energy analysis of each X-ray structure. A: interaction energy of 274 

compound 1, B: interaction energy of compound 2. C: interaction energy of cis-4-275 

methylcyclohexanamine (4MCHA, PDBID: 2PT9). The y-axis represents the interaction 276 

energy (kcal/mol) between the ligand and each amino acid residue, and the x-axis represents 277 

the amino acid residue number. 278 

 279 



Compound 1 interacts with Glu22 and Asp77 (interaction energy values: −25.93 and −17.56 280 

kcal/mol, respectively) through two hydrogen bonds. Therefore, these interactions would 281 

appear to be important for binding to the site. Some other interactions were also found: Trp61, 282 

Ile71, Thr244, and Tyr245 interacted with compound 1 with interaction energies of −4.45, 283 

−6.51, −4.83, and −7.36 kcal/mol, respectively. Fig 5B shows the results of the interaction 284 

energy analysis of the TcSpdSyn–2 complex. Compound 2 interacted with Glu22 and Asp77 285 

(interaction energy values: −20.08 and −30.05 kcal/mol, respectively) through two hydrogen 286 

bonds in the same manner as 1. In particular, Asp77 interacted with compound 2 in a neutral 287 

state. Moreover, some weak interactions, such as with Ile71 Tyr245 and Ile247, were 288 

confirmed, with interaction energy values of −7.16, −6.96, and −5.71 kcal/mol, respectively. 289 

Fig 5C shows the results of the interaction energy analysis of the TcSpdSyn–cis-4-290 

methylcyclohexanamine (4MCHA) complex (PDB ID: 2PT9) [63]. 4MCHA has been reported 291 

as known inhibitor and binds to the TcSpdSyn active site [63]. This inhibitor interacted with 292 

Asp171 (interaction energy: -14.29 kcal/mol). Furthermore, 4MCHA also interacted with 293 

dcSAM which is cofactor of SpdSyn. These results suggested that compound 1 and 2 shows 294 

interaction pattern different from 4MCHA. 295 

Fig 6 shows the amino acid sequence of the binding sites defined by LIGSITEcsc [64].  296 

 297 



Fig 6. Amino acid residue sequence of the binding sites. X-ray: sequence of the 298 

TcSpdSyn–1 complex (5Y4P), MD: sequence of the clustering structure identified from the 299 

MD simulations. The residue was determined using yellow at the binding site. A binding site 300 

is defined as a residue within 10 Å of an atom defined by LIGSITEcsc. 301 

 302 

Upon examination of the X-ray structure of TcSpdSyn with compound 1 at the binding site, 303 

the amino acid sequence overlap with the clustering structure was 72.2%. Glu22, which 304 

interacts with 1, is a feature of the sequence of the clustering structure binding site. Therefore, 305 

the MD simulations predicted the new binding site of TcSpdSyn and the amino acid residue 306 

that contributes a significant interaction at the binding site. 307 

 308 

Discussion 309 

Using a molecular simulation approach, we conducted MD simulations to predict new 310 

TcSpdSyn binding sites. These MD simulations suggest a new binding site that was not 311 

evident in the X-ray structure. The binding site predicted by MD simulations shows a higher 312 

D-score and larger volume than the X-ray structure. This binding site appears from structural 313 

changes in the protein. 314 

To obtain seed compounds for potential anti-Chagas drugs, we performed docking 315 



simulations using the TcSpdSyn X-ray structure and clustering structures. These simulations 316 

identified active compounds from approximately 4,800,000 drug-like compounds. In 317 

accordance with the X-ray structure, drug candidates lacking a heterocycle and chiral center 318 

were considered. In contrast, drug candidates containing a heterocycle and/or chiral center 319 

were considered for clustering structure 1, as predicted from the MD simulations. Thus, 320 

docking simulations combined with MD simulations can evaluate a variety of compounds.  321 

To evaluate their IC50 values, drug candidates from the docking results were screened in 322 

TcSpdSyn inhibition assays. As a result, TcSpdSyn IC50 values for two compounds were 323 

determined. Compounds 1 and 2 showed TcSpdSyn inhibition with IC50 values of 82.27 and 324 

43.41 μM, respectively. Furthermore, to confirm the binding mode, we determined the X-ray 325 

structure of the TcSpdSyn–ligand complexes. The crystal structures revealed that 326 

compounds 1 and 2 are bound to the hidden binding site, as predicted by the simulations, 327 

and interacts with Glu22 and Asp77 through hydrogen bonds. These hydrogen bonds are not 328 

observed in the TcSpdSyn active site structure to which putrescine is bound. Thus, the hidden 329 

binding site predicted by MD simulations is a new target site that has not been previously 330 

reported. 331 

Comparing the structures of compound 1 and 2, both compounds are para-substituted 332 

anisoles and both para-substituents are nitrogen-rich heterocycles. However, the X-ray 333 



structures show opposite orientations for compound 1 and 2 in the new site. Compound 1 334 

interacts with Glu22 through the hydroxy group at meta-position of anisoles. In contrast, 335 

compound 2 interact with Glu22 through a secondary amine at para substituent. Accordingly, 336 

two compounds show different poses despite including a common structure. 337 

This hidden binding site discovered by this research is located next to the active site and 338 

known inhibitor binding to the active site of TcSpdSyn has been reported such as 4MCHA. 339 

Furthermore, we also have reported inhibitors binding to the active site of TcSpdSyn [65]. To 340 

improve inhibitory activity of these compounds for TcSpdSyn, it is possible to design 341 

compounds binding to both sites based on results of this study. These results could possibly 342 

facilitate the development of new compound for TcSpdSyn-targeted anti-Chagas drugs. And 343 

this virtual screening method, using docking simulations and MD simulations, could be 344 

invaluable for drug discovery. 345 
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