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Abstract 

Despite rapid progress in the field of metal-organic frameworks (MOFs), the potential of 

using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. 

Here, we show how ML can be used for rationalization and acceleration of the MOF 

discovery process by directly predicting the synthesis conditions of a MOF based on its 

crystal structure. Our approach is based on: (i) establishing the first MOF synthesis database 

via automatic extraction of synthesis parameters from the literature, (ii) training and 

optimizing ML models by employing the MOF database, and (iii) predicting the synthesis 

conditions for new MOF structures. The ML models even at an initial stage exhibit a good 

prediction performance, outperforming human expert predictions, obtained through a 

synthesis survey. 

mailto:pascal.friederich@kit.edu
mailto:manuel.tsotsalas@kit.edu


  2 

Main  

Metal-organic framework (MOF) chemistry has flourished through the creation of a vast 

chemical space where more than 100,000 MOFs have been discovered.1 The number is 

increasing rapidly with a wide and continuously expanding variety of structural types, 

building units, linkage chemistry, and functional groups.2–5 In fact, the chemical space of 

possible MOF structures is so huge that it is impossible to fully explore it experimentally.,6-

8 Simulation and machine learning (ML) have evolved as important tools for guiding 

researchers to computationally identify regions of interest.6,9–11 However, in order to 

synthesize the novel MOF structures, the researchers still have to rely on their experience, 

employing a trial-and-error approach (Fig. 1). This is a very challenging process that is 

highly time-consuming, labor-intensive and requires a lot of resources. Therefore, the 

search for an efficient way to find the optimal MOF synthesis conditions represents the 

current bottleneck in speeding up MOF exploration.  

 

 

Figure 1. A new approach to MOF synthesis. The conventional approach (left loop) of new MOF 

synthesis is based on a time-consuming trial-and-error approach, in which a target MOF structure is 

https://www.zotero.org/google-docs/?4BLbOI
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compared with reported MOFs from literature to find similar synthesis conditions and experimentally 

refine them. A data driven approach (right loop), where a ML model is trained on a library of 

automatically extracted literature data, to then suggest synthesis conditions in a data-driven MOF 

discovery cycle. Updating the ML model based on new experiments leads to continuous improvement of 

the predictions. 

The development of ML methods to predict the synthesis parameters for a desired MOF 

crystal structure based on scientific literature is a challenging but promising approach that 

will advance and accelerate chemical synthesis. Over the last years, ML methods have 

rapidly evolved, solving complex problems that involve highly nonlinear or massively 

combinatorial processes that conventional approaches fail to answer.12 Up till now, ML 

approaches have been successfully applied to address challenges in organic and inorganic 

synthesis.9,13–18 In the case of MOF synthesis, only recently, ML was used to optimize 

synthesis parameters for HKUST-1 and to determine the importance of the different 

parameters by analysing a set of partially failed experiments, in other words, “capture the 

chemical intuition” that can help to speed up the synthesis of similar MOF systems.19 

However, the inverse synthesis design of MOFs, i.e. the automated prediction of suitable 

synthesis conditions for a targeted MOF structure (e.g. designed in silico) remains an 

unsolved challenge. 

This work represents a first step towards predicting synthesis conditions for an arbitrary 

MOF. We show a complete ML workflow for the inverse synthesis design of MOFs (going 

from crystal structure to synthesis conditions), (1) starting from automated data mining 

from scientific literature on MOF synthesis conditions and their structural information, (2) 

setting up and training of ML models, and (3) prediction of synthesis conditions for new 

MOF structures and comparison with human experts’ predictions. 

Our approach marks the starting point for the transition from a trial-and-error approach 

that is based on experience and heuristics, towards an inverse synthesis design approach in 

https://www.zotero.org/google-docs/?60st8o
https://www.zotero.org/google-docs/?i1MW7S
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the MOF synthesis, ultimately enabling fully autonomous MOF discovery in automated 

labs.20 

 

Results and discussion 

Data mining from MOF literature. To create a dataset with MOF synthesis parameters and 

structural information, we took advantage of the fact that well-curated MOF structural 

databases already exist (e.g. the Computation-Ready Experimental Metal–Organic 

Framework database CoREMOF21 and the Cambridge Structural Database CSD), in which 

MOF structural information and the corresponding publications with successful synthesis 

protocols are stored.22 The manual extraction of synthesis procedures from scientific 

literature is a time-consuming task, requiring the work of many experts. Alternatively, 

automatic data extraction to convert experimental procedures into a set of the desired 

synthesis parameters by employing natural language processing (NLP) techniques is a 

highly efficient and promising approach that we expect to be continuously improved in the 

upcoming years.23,24 

In this study, we automatically extracted information on MOF synthesis for all publicly 

available MOF structures in the CoRE MOF database (SI Section 2.1). The six relevant 

parameters that were extracted are metal source, linker(s), solvent(s), additive, synthesis 

time, and temperature (Fig. 2). To achieve this, we initially classified literature paragraphs, 

employing a decision tree with a string search method, to identify the synthesis paragraph 

related to each MOF structure (SI Section 2.2). After the synthesis paragraphs were 

determined, we employed the ChemicalTagger software, which focuses on the experimental 

part of a scientific text, recognizing significant words within the sentences, and annotating 

phrases inside the paragraph.25 In an effort to increase the tagging accuracy, we slightly 

modified the synthesis paragraphs, accounting for MOF-domain specific descriptions (SI 

Section 2.3). To evaluate the accuracy of the automatically extracted SynMOF-A database, 

https://www.zotero.org/google-docs/?0ULSdO
https://www.zotero.org/google-docs/?haVN8A
https://www.zotero.org/google-docs/?VonQok
https://www.zotero.org/google-docs/?7Ut8aZ
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we additionally generated manually corrected versions - the SynMOF-M and SynMOF-ME 

databases that are discussed in SI Section 2.4. 

Alongside retrieving synthesis information from the MOF literature, we used the 

crystallographic information files (CIFs) from MOF databases to automatically extract the 

structural information of the linker and the oxidation state of the metal center.26 Ultimately, 

we combined the extracted synthesis details (i.e. metal source, linkers, temperature, 

synthesis time, solvents and additives) from the publications and information of the linker 

and the metal source from the CIF into the SynMOF database (Fig. 2). Our central 

assumption in this work is that the established SynMOF database can be used for the 

training of ML models to facilitate the discovery of similarity patterns in the synthesis 

conditions to reach the final goal of predicting synthesis protocols for new MOF structures. 

 

https://www.zotero.org/google-docs/?GsD1gl
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Figure 2. SynMOF database. a) Data mining pipeline and content of the SynMOF database; b) the 

statistics on the most common metal source and c) structures and occurrences of the most common 

linkers in the SynMOF database; d) 3D graph exhibiting correlation between solvent type, additive and 

temperature. 

 

Apart from the detailed information on MOF synthesis conditions, our SynMOF database, 

currently consisting of 983 MOF structures, provides the statistical data on the metal source 

and organic components (Figs. 2b and 2c). It contains 46 different metals with most 

common oxidation states ranging from +1 to +3. As expected, most MOF structures are 

composed of transition metals with copper and zinc comprising almost 50% of all metal 
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types. Among the diverse organic molecules, the most commonly employed linkers for MOF 

synthesis are multidentate carboxylic acids (i.e. benzene-1,3,5-tricarboxylic acid, benzene-

1,4-dicarboxylic acid, and benzene-1,2,4,5-tetracarboxylic acid) followed by N-containing 

bases (i.e. pyridine, triazole, and tetrazole). 

In search of obvious patterns, we analysed the most common solvents used during MOF 

synthesis with respect to different temperature regimes and additives (Fig. 2d). At 

temperatures ranging from 80 °C to 160 °C, DMF and water, as well as their mixtures with 

other solvents are the most commonly used solvents. Synthesis at temperatures above 

160 °C is predominantly carried out in water as a single solvent. Besides, the majority of 

MOF synthesis reactions at high temperatures (above 120 °C) are performed without 

additives, while at temperatures below 80 °C, the addition of acidic additives dominates. 

Beyond such relatively simple patterns, we expected more correlations to be hidden in the 

data (SI Section 2.5), which we exploit using ML approaches. 

Machine learning training, prediction and evaluation. Employing the data stored in the 

SynMOF database, we trained multiple ML models to predict synthesis conditions of a 

diverse set of MOFs unseen during training. The input representation of the MOF structures 

is of crucial importance for the ML models performance.27 In this study, we used two types 

of representations as an input for the ML models training: One based on molecular 

fingerprints of the linkers, extended with encodings of the metal type and its oxidation state 

(Fig. 3a, SI Section 3.1), and the recently developed MOF representation by Kulik and co-

workers (SI Section 3.2).28 It is to be noted that the MOF field is still expanding, and an 

increasing amount of new structures and corresponding synthesis parameters will be 

available over time that can be used for training and refinement of ML models to achieve 

the highest possible performance. In this case, representation learning methods such as 

graph neural networks will then likely become more accurate than models relying on hand-

crafted feature representations.29–31 

https://www.zotero.org/google-docs/?6qs50p
https://www.zotero.org/google-docs/?NKkkFG
https://www.zotero.org/google-docs/?VMiAQK
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The prediction of synthesis time and temperature was achieved via regression models, such 

as random forests or neural networks (SI Sections 3.3, 3.4, 3.5). To predict discrete 

synthesis parameters, such as solvent and additives, classification models could be, in 

principle, used. However, for multiple reasons this turns out to be impractical: There is a 

wide variety of possible solvents and additives reported in literature, leading to a large 

number of categories, and, in turn, strongly imbalanced datasets. Furthermore, the 

properties of solvents can be very similar, making them interchangeable in synthesis, which 

leads to ambiguous solutions. In practice, also combinations of various solvents are 

required for successful MOF synthesis. Therefore, we developed a ML model which predicts 

solvent properties, such as partition coefficients, boiling point (SI Section 3.6), rather than 

the specific solvent. A nearest neighbor search in solvent property space yields lists of 

possible solvents that have properties similar to those predicted by the ML model. In this 

way, new solvents can be incorporated easily, and even solvents occurring only once in 

literature can be used to train the model. In the case of additives, we found that the main 

parameter that distinguishes different additives is their acidity/basicity strength. Thus, we 

split the dataset into three groups (acidic, basic or no additive) and used a classification 

model for additive prediction. 

The results of our trained ML models are shown in Fig. 3b-f. Reproducibly positive 

correlation coefficients r2 on unseen test datasets show that the ML models are capable of 

identifying meaningful and predictive relations between the target MOF structure and the 

required synthesis conditions, in particular temperature and time (Figs. 3b, 3c). Given the 

amount of data that we have currently extracted from literature, we find that the random 

forest models have the highest performance across all predicted parameters. However, 

neural networks learn to make better predictions with growing dataset sizes faster (see 

learning curves in Fig. 3d) and even exploit correlations between different synthesis 

parameters (e.g., solvent and temperature) rather than predicting them separately. Hence, 

we expect that more complex models will outperform random forests in the near future.  
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To evaluate ML-based solvent prediction, we focused on a subset of MOFs which are 

synthesized using only one solvent. We compared the accuracy of the top 6 ML predictions 

with multiple random baseline methods (Fig. 3e), including selection of a random solvent 

out of all solvents as well as out of the six most frequent solvents that are used in 96% of 

the single-solvent SynMOF database. We found that the ML model outperforms the random 

selection, in particular for the top 1 - 3 solvent predictions, where the ML model reaches an 

accuracy of > 90%. In the case of additive predictions (Fig. 3f), the task of the ML model is 

to classify required additives as acidic, basic, and no additive. While performing well on the 

training set, the generalization to unseen test data suffers from an imbalanced dataset (most 

database entries do not use an additive). We use balance correcting weights of the training 

data points, leading to predictions which distinguish very well between synthesis 

procedures involving basic and acidic additives. However, the differentiation between 

acidic and no additive or basic and no additive is less pronounced. One of the reasons might 

be related to the hidden variables such as type and function of additives: Some of them 

(inorganic acids and bases) have only the role of pH regulation, while others (organic acids 

and bases) are also involved in modulation of the MOF growth. Besides, concentration and 

strength of additives are additional important parameters, influencing the role of additive. 

A larger amount of training data in the future will enable refinement of the additive 

representation and improvement of our ML model, thus opening new prospects in synthesis 

condition prediction. 

To put the ML performance into perspective, we performed tests with 11 human MOF 

synthesis experts. We developed an online quiz based on 50 MOFs randomly selected from 

the SynMOF database which will be publicly available. The participants were given the 3D 

structures of MOFs, chemical structures of the linkers and information on the metal ion, and 

asked to estimate synthesis conditions such as temperature, time, solvents and additives 

without any help from literature or other external sources (SI Section 3.7). After each MOF 

synthesis prediction, we also asked the participants to estimate how certain they are in the 
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answer. The correlation coefficients r2 between the experts’ temperature and time 

predictions and the reported synthesis conditions are close to zero, even after averaging 

over 11 estimates by different researchers (Fig. 3g) and after sorting only by  predictions 

with high certainty. This rather surprising result shows that even small correlations learned 

and exploited by the ML model will help to estimate better synthesis conditions. In summary, 

we showed that the ML models are able to learn generalized patterns and correlations in 

the SynMOF database, which exceed the experts’ general intuition, and thus, could be used 

to identify good first guesses for experimental synthesis attempts of new MOFs. 
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Figure 3. Machine learning models trained on the SynMOF-A database. a) ML workflow, including 

fingerprint representation of the linkers and the feature representation of the metal type and oxidation 

state; b) and c) comparison of ML predictions of temperature and time for training and test sets with 

the initial data extracted from literature; d) learning curve of temperature predictions, i.e. mean 

absolute error as a function of the training set size, for neural network and random forest regression 

models; e) ML solvent prediction accuracy for a subset of single-solvent MOFs, compared to different 

methods of random predictions; f) training and test set performance of additive classification where A, 

B and N correspond to acid, base, and no additive respectively and g) average of eleven human expert 

predictions of temperature and time for 50 MOFs to evaluate the complexity of the problem. 
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Conclusions  

The lack of machine readable and curated MOF-synthesis data up till now hindered the 

development of digital ML tools for predicting MOF synthesis conditions. Here, we 

established a SynMOF database by automatic data extraction via NLP methods that provides 

synthesis conditions and structural information for more than 900 MOFs, and trained ML 

models based on these data to identify patterns in MOF synthesis. We expect that the 

created SynMOF database will boost the NLP research within the MOF community, while 

our ML synthesis prediction platform will be the new gold standard for data-driven MOF 

discovery. Even at an initial stage, our ML models outperformed MOF experts' synthesis 

prediction, underlying both the complexity behind the synthesis process and a pressing 

need in developing digital predictive tools. Our automated on-demand synthesis prediction 

will considerably accelerate the discovery of new MOFs and serve a valuable tool for the 

MOF community and beyond. 

 

Methods 

Data Mining. We extracted the synthesis conditions from MOF publications using different 

NLP techniques. To select synthesis paragraphs, we developed a decision tree algorithm 

based on a keyword list selected from 100 MOF synthesis papers. To analyse the synthesis 

paragraph and identify information about chemical entities, experimental steps, and 

corresponding conditions associated with those steps, we applied the ChemicalTagger 

software. When precursors, solvents and additives, as well as solvothermal synthesis 

conditions were extracted, we compared the metal element from the automatically formed 

synthesis protocol to the CoRE MOF database to eliminate mismatched conditions. The 

results of this fully automated data extraction are collected in the SynMOF-A database. 

Machine Learning. We developed a code to extract the MOF linker from the CIF. The RDKit 

library was further used to evaluate the molecular fingerprint of the extracted linker. The 
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MOF metal nodes were represented by their full electronic configuration. The molecular 

fingerprint of the linker and the full electronic configuration of the metal node, accounting 

for its oxidation state, were combined to form the input of the ML model. This input 

representation was compared to the MOF representation developed by Kulik and co-

workers, relying on autocorrelation features of the metal cores and the linkers. The output 

of the ML model was the MOF synthesis conditions, namely temperature, synthesis time, 

solvent properties and additive type. Depending on the specific synthesis conditions, we 

evaluated several regression models, in particular random forest regression and neural 

networks. The scikit-learn library in Python was used for the implementation of the ML 

models. 70% of the full dataset was used to train the ML model, while the remaining data 

was used to test the model. In the case of solvent property prediction, we limited the data 

to MOFs with single-solvent synthesis. To quantify the accuracy of the trained ML model, 

we calculated the mean absolute error and the correlation coefficient r2 of the training and 

test dataset for the regression tasks. The accuracy of the ML model for the classification 

tasks were quantified by calculating the normalized confusion matrix. 
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