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Abstract 

Organic light-emitting-diode (OLED) materials have exhibited a wide range of 

applications. However, the further development and commercialization of OLEDs 

requires higher-quality OLED materials, including materials with a high thermal 

stability. Thermal stability is associated with the glass transition temperature (Tg) and 

decomposition temperature (Td), but experimental determinations of these two 

important properties genernally involve a time-consuming and laborious process. Thus, 

the development of a quick and accurate prediction tool is highly desirable. Motivated 

by the challenge, we explored machine learning (ML) by constructing a new dataset 

with more than one thousand samples collected from a wide range of literature, through 

which ensemble learning models were explored. Models trained with the LightGBM 

algorithm exhibited the best prediction performance, where the values of MAE, RMSE, 

and R2 were 17.15 K, 24.63 K, and 0.77 for Tg prediction and 24.91 K, 33.88 K, and 

0.78 for Td prediction. The prediction performance and the generalization of the 

machine learning models were further tested by out-of-sample data, which also 

exhibited satisfactory results. Experimental validation further demonstrated the 

reliability and the practical potential of the ML-based model. In order to extend the 

practical application of the ML-based models, an online prediction platform was 

constructed. This platform includes the optimal prediction models and all the thermal 

stability data under study, and it is freely available at http://oledtppxmpugroup.com. We 

expect that this platform will become a useful tool for experimental investigation of Tg 

and Td, accelerating the design of OLED materials with desired properties. 
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1. Introduction 

Organic light-emitting diodes (OLEDs) have attracted considerable attentions in recent 

years due to their great promises in flat-panel displays, solid-state lighting, and white 

lighting technologies 1-3. The commercialization of OLEDs requires high quality OLED 

devices, in particular for a long lifetime 4. There are intrinsic and extrinsic factors that 

affect the lifetime of OLED devices 5, 6. One of the main external factors is temperature. 

As known, the temperature of OLED devices can increase due to Joule heating during 

operation and exposure to high-temperature external environments 7. However, 

increasing the thermal stability of OLED materials can strengthen the stability of device 

performance. Therefore, a large number of researchers have paid attention to the OLED 

materials with high thermal stability in recent years 8. 

The glass transition temperature (Tg) and decomposition temperature (Td, 

corresponding to 5% weight loss) are the two most important thermal properties of 

OLED materials, and exert significant influence on the performance of OLED devices 

9. The OLED devices irreversibly deteriorate when heated above their Tg 
7, 10. High Tg 

and Td values can reduce heat-induced morphology changes, thus enhancing the 

stability of device performance 11, 12. The experimental Tg and Td values of the OLED 

materials are generally measured by differential scanning calorimetry (DSC) and 

thermal gravimetric analysis (TGA). However, before DSC and TGA determination, 

OLED materials need to be purified by column chromatography or sublimation 13, 14, 

which are complicated and time-consuming. Thus, the development of a quick and 

accurate method to predict Tg and Td is highly desirable. It is generally acknowledged 



that the thermal stability of OLED materials is closely related to their molecular 

structures 15. However, the relationship between molecular structure and the thermal 

stability such as Tg and Td is complex and has not been elucidated. Machine learning 

(ML), a key technique used in artificial intelligence, can map the complex relationshiop 

underlying a large amount of data. ML has been succesfully applied in the fields of 

medicinal chemistry, environmental risk assessment, organic synthesis, and materials 

science 16-21. To the best of our knowledge, only two previous studies have used 

machine learning methods to predict the Tg of OLED materials 22, 23, and there is a 

significant lack of Td predictions. In 2003, Yin et al. performed a quantitative structure-

property relationship (QSPR) model to predict the Tg of 88 OLED molecules with MAE 

= 17.9 K by using a multilinear regression (MLR) method 22. In 2013, Silva et al. 

developed a QSPR model to predict the Tg of 66 OLED materials with R2 = 0.96, MAE 

= 0.97 K by using support vector machines (SVM) 23. These two studies appear to make 

highly accurate predictions based on a small amount of data (fewer than 100 molecules). 

However, the prediction ability of the single ML models in the two previous studies is 

not reliable and unstable, due to the generalization ability of ML models to unknown 

compounds depending on the size of the dataset. Unfortunately, a database including 

the two important properties of Tg and Td of OLED materials has not yet been 

constructed. However, in the past decade, a significant amount of thermal stability data 

for OLED materials has been published. While these published data are dispersed 

across a wide range of literature, they still provide a possible data source for 

constructing a robust machine learning model. 



In order to explore robust and universal ML-based prediction models, we constructed a 

new dataset containing the experimental Tg data of 1944 small organic molecules and 

the experimental Td data of 1182 small organic OLED compounds collected from a 

large amount of literature. Based on the new dataset, we utilized an ensemble learning 

approach LightGBM algorithm, rather than the single machine learning methods used 

in previous works, to integrate multiple weak learners to build an entire learner with 

better prediction performance than that from any of its component. The prediction 

performance of our models was verified by two types of out-of-sample datasets, 

exhibiting satisfactory results and confirming the generality of the models. In addition, 

experimental validation further confirmed the reliability of our prediction models and 

potential in practical application. More importantly, we built a website including the 

optimal Tg and Td prediction models coupled with the new dataset, which is freely 

available at http://oledtppxmpugroup.com. We expect that this website will serve as a 

useful tool to help experimental investigators quickly and accurately estimate Tg and Td. 

2. Materials and methods 

2.1 Construction of dataset 

Unfortunately, there is no existing database that organizes OLED materials and their 

properties. Currently, the thermal stability data of OLED materials are scattered 

throughout the literature. Therefore, experimental glass transition temperatures (Tg) for 

a diverse set of 1944 molecules were collected from a large number of literature using 

the SciFinder database. These Tg values were measured by DSC. For molecules with 

multiple recorded entries, an average Tg was used as the output if the variation was less 

than 40 K. Molecules with a Tg variation larger than 40 K were not included in the 



dataset. Experimental thermal decomposition temperatures (Td, corresponding to 5% 

weight loss) for a diverse set of 1182 OLED molecules also were collected from the 

literature. The Td data for these OLED molecules were measured by TGA. For 

molecules with multiple Td values, we compared the TGA curves in the literature and 

take the Td measured by the smoother TGA curve as the final value (vide Fig. S1). Table 

S1 lists 13 OLED compounds with multiple recorded entries. As can be seen, the 

deviation in Tg for compounds reported in different papers is often within 40 K. 

However, the Td values of the same compounds reported in different papers have a large 

deviation, often greater than 40 K. This is because the purity of the compound has a 

significant influence on the experimental value of Td (corresponding to 5% weight loss). 

To accurately measure Td (corresponding to 5% weight loss), the purity of the 

compound must be high. It should be noted that there are very few compounds with 

multiple Td records in our dataset. 

The Tg distribution of 1944 molecules and Td distribution of 1182 OLED molecules are 

shown in Fig. 1. The Tg values span a range from 273 to 600 K, with the majority of 

values between 325 and 475 K. Fig. 1 shows that compounds with a Tg higher than 400 

K (127 °C) account for almost half of the reported compounds. The Td values span a 

range from 400 to 900 K, with the majority of values between 550 and 800 K. This 

indicates that the Td of most OLED materials is greater than 550 K (277 °C). The 

molecular structures include the atomic elements C, H, B, N, O, F, Si, P, S, Cl, and Br, 

containing most of the elements of pure organic functional materials. 



 

Fig. 1. (a) Tg distribution of 1944 molecules. (b) Td distribution of 1182 OLED molecules. 

2.2 Descriptors and fingerprints 

In the work, molecular descriptors and fingerprints were considered to characterize the 

molecular structure. Molecular descriptors and fingerprints were calculated by PaDEL-

Descriptor version 2.21 24. The 1D and 2D descriptors and molecular fingerprints were 

generated by taking into consideration their general applicability as well as their 

computation cost. The PaDEL-Descriptor software is open source and free, and the 

calculation of 1D and 2D descriptors and molecular fingerprints is simple and fast. This 

facilitates the further promotion and use of our thermal stability prediction models. 

2.2.1 Molecular descriptors 

1D molecular descriptors were generated based on molecular formulas and 2D 

molecular descriptors were generated based on the atom connection table. 1D and 2D 

molecular descriptors belong to the class of molecular property-based descriptors. Each 

molecular descriptor represents a certain feature of a molecule, such as topology or 

weight. As each molecular descriptor only depicts a specific property of a molecule, a 

combination of a large number of molecular descriptors can provide more information. 

Using information encoded in canonical SMILES (simplified molecular input line entry 

system), the PaDEL software offered 1444 1D and 2D descriptors. However, not all the 



descriptors were used for modeling, such as the descriptors which were not computable 

for all the compounds. The remaining 665 parameters were used for model definition 

(including aromatic atom count, aromatic bond count, atom count, bond count, estate 

atom type, extended topochemical atom indices, ring count, topology, topological 

charge, topological distance matrices, topological polar surface area, XLogP, and 

weight descriptors). 

2.2.2 Molecular fingerprints 

Five types of fingerprints (a total of 2741 parameters) were calculated for this research, 

including CDK fingerprints (1024 bits), CDK extended fingerprints (1024 bits), E-

States fingerprints (79 bits), substructure fingerprints (307 bits), and substructure 

fingerprints count (307 bits). Molecular fingerprints are a subclass of molecular 

descriptors that can be obtained without quantum-mechanical calculations. They belong 

to the class of fragment-based descriptors 25, and they were used in this study due to 

their high potential for the high-throughput screening of materials. These fragment-

based descriptors are represented as a Boolean array, indicating the existence of the 

corresponding fragments in the molecule. The descriptions of the molecular 

fingerprints used in this study are listed in Table S2. CDK fingerprints, CDK extended 

fingerprints, and E-state fingerprints are a good expression of the molecular backbones. 

Substructure fingerprints and substructure fingerprints count provide differentiation for 

an array of functional groups. 

2.3 Machine learning algorithms 

In the work, we mainly utilized the ensemble learning strategy to construct a 

comprehensive model by combining base learners. Compared to the single machine 



learning, ensemble learning not only produces a more stable global model, but also 

guarantees diminishing uncertainty. Herein, LightGBM, a recent modification of the 

gradient boosting (GB) algorithm 26, is considered. It improves the efficiency and 

scalability of the GB algorithm without sacrificing its inherited effective performance. 

This approach results in a faster and less resource-intensive implementation of gradient 

boosting, suitable for frequent retraining and rapid evaluation of high-dimensional 

datasets. To further evaluate the performance of the LightGBM algorithm, it was 

compared with six classic ML algorithms, including Support Vector Machine (SVM), 

partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), 

Kernel Ridge Regression (KRR), k-Nearest Neighbors (kNN), Random Forest (RF). 

The LightGBM code is available at https://github.com/Microsoft/LightGBM. Other 

ML algorithms can be found in Scikit-learn package. 

2.4 Experimental synthesis 

1,2-bis(4-(diphenylamino)phenyl)ethane-1,2-dione (1) 

Anhydrous aluminum trichloride (1.33 g, 9.8 mmol), oxalyl chloride (0.43 mL，4.9 

mmol) and triphenylamine (2.94 g 12 mmol) were dissolved in anhydrous CH2Cl2 (10 

mL) and refluxed at 40 oC for 2 h. After cooled down to room temperature and poured 

into ice water. Hydrochloric acid (10 mL, 37%) was added and the mixture was 

extracted with CH2Cl2 (30 mL × 2). The combined organic layers were washed with 

water (30 mL × 3) and dried over anhydrous Na2SO4. After removing the solvent, the 

residue was purified using column chromatography on silica gel employing CH2Cl2/PE 

(1/1) as an eluent to afford a yellow solid with a yield of 28%. 1H NMR (400 MHz, 



CDCl3) : δ = 7.77 (d, J = 8.8 Hz, 1H), 7.33 (t, J = 8.0 Hz, 2H), 7.16 (m, 3H), 6.95 ppm 

(d, J = 8.8 Hz, 1H). 

2,3-bis(4-(diphenylamino)phenyl)naphtho[2,3-f]quinoxaline-7,12-dione (TPA-2) 

1 (500 mg, 0.92 mmol) and 1,2-diaminoanthraquinone (220 mg, 0.912 mmol) was 

dissolved in AcOH (15 mL) and heated to 120 °C and stirred for 12 h. After cooled 

down to room temperature and then poured into 30 mL water and extracted with CH2Cl2 

(20 mL × 3). The resultant organic phase was washed with brine, and dried over 

anhydrous Na2SO4. After removing the solvent, the residue was purified using column 

chromatography on silica gel employing CH2Cl2/PE (1/1) as an eluent to give a red 

solid with a yield of 37%. 1H NMR (400 MHz, CDCl3) : δ = 8.59 (d, J = 8.8 Hz, 1H), 

8.45 (d, J = 8.8 Hz, 1H), 8.32 (d, J = 7.6 Hz, 1H), 8.30 (d, J = 8.8 Hz, 1H), 7.77 (m, 

4H), 7.64 (d, J = 8.4 Hz, 2H), 7.17 (m, 8H), 7.07 ppm (m, 16H). 13C NMR(100 MHz, 

CDCl3) δ(ppm):183.8, 183.5, 155.3, 153.8, 149.5, 147.1, 147.0, 143.3, 138.4, 135.2, 

134.9, 134.7, 134.5, 133.5, 132.3, 131.4, 131.4, 130.9, 130.8, 129.5, 129.4, 129.1, 127.4, 

126.6, 126.2, 125.4, 123.9, 123.8, 121.5, 121.4. 

3. Results and discussions 

3.1 Machine learning models for Tg and Td 

90% of the Tg and Td dataset was used for model training and the remaining 10% was 

used for an independent test set. In order to establish robust ML models to predict the 

thermal stability of OLED materials, 10-fold cross-validation was used to reduce the 

randomness of sample division and enhance the stability of the obtained ML models. 

Performance was measured with the squared correlation coefficient (R2), the mean 

absolute error (MAE), and the root mean squared error (RMSE). 



Selecting suitable descriptors is crucial for Tg and Td prediction tasks. We started with 

the choice of molecular fingerprints. A potential challenge exists due to the multifold 

molecular features involved in the thermal stability of OLED materials, because a single 

molecular fingerprint does not cover all of these features. However, combining different 

molecular fingerprints may solve this problem. Table S3 and Table S4 show the training 

and testing results of different Tg and Td prediction ML models with different 

fingerprints as inputs. Joint fingerprints including CDK fingerprints (1024 bits), CDK 

extended fingerprints (1024 bits), and substructure fingerprints count (307 bits) show 

the best performance, implying that the representation of molecular structures by the 

molecular backbone and functional groups is potentially better for Tg and Td prediction 

than the use of other fingerprints. Therefore, the three molecular fingerprints (CDK, 

CDK extended, substructure count, 2355 bits) were combined as an input, denoted 

SC_2CDK. 

In addition, we also compareed the predictive performance of property-based molecular 

descriptors and the SC_2CDK fingerprints. Table 1 summarizes the Tg and Td prediction 

results of the LightGBM models. As can be seen, the ML model with 1D and 2D 

molecular descriptors has better Tg prediction performance than the corresponding ML 

model with fingerprints. Therefore, the 1D and 2D molecular descriptors provide more 

important information relevant for Tg prediction compared with fingerprints. However, 

information contained in property-based descriptors (molecular descriptors) and 

fragment-based descriptors (fingerprints) can complement each other.25 Table 1 shows 

the performance improvement achieved by combining molecular descriptors and 



fingerprints for Tg prediction. The best Tg prediction result was obtained with RMSE = 

24.63 K, MAE = 17.15 K, and R2=0.77 for the independent test set. A plot of Tg values 

predicted by the optimal model vs. the experimental Tg values for test set is shown in 

Fig. 2a, exhibiting a reasonable agreement. Considering that the Tg values of the 1944 

organic molecules in the dataset are mainly distributed between 325 K and 475 K, 

RMSE = 24.63 K and MAE = 17.15 K are acceptable values.  

Different from Tg prediction, ML model with SC-2CDK fingerprints has better Td 

prediction performance than the corresponding ML model with 1D and 2D molecular 

descriptors, indicating that fingerprints (fragment-based descriptors) can provide more 

important information relevant to Td compared with 1D and 2D molecular descriptors 

(property-based descriptors). This is because the thermal decomposition of OLED 

materials often starts at a specific molecular fragment, usually the weak bond in a 

functional group. Therefore, fragment-based descriptors can provide more important 

information relevant to Td prediction. The combination of molecular descriptors and 

SC_2CDK only slightly improves the performance of Td prediction with RMSE = 33.88 

K, MAE = 24.91 K, and R2 = 0.78 for the independent test set. A plot of Td values 

predicted by the optimal model vs. the experimental Td values for the independent test 

set is shown in Fig. 2b. Considering that the Td values of the 1182 OLED molecules in 

the dataset are mainly distributed between 550 K and 800 K, RMSE = 33.88 K and 

MAE = 24.91 K are acceptable values. 

The LightGBM prediction results reveal the most relative features with pronounced 

effects on the predicted Tg and Td in the dataset. Fig. 4 shows the feature importance for 



predictions of Tg and Td obtained with the LightGBM-based optimal models. 

Descriptions of the 10 most important features for Tg and Td prediction are shown in 

Table S5 and Table S6. The 10 most important features for Tg prediction are maxwHBa, 

JGI5, JGI9, JGI4, hmax, JGI10, VE1_D, ETA_dBetaP, JGI6, and ETA_EtaP_F. The 

feature with the highest contribution is maxwHBa (maximum E-States for weak 

hydrogen bond acceptors), indicating that hydrogen bonds have an effect on Tg. Tg is a 

reversible transition in amorphous materials which allows rapid molecular motion 

under heating. The presence of hydrogen bonds can affect Tg because they change the 

rigidity of molecules and play an important role in preventing molecular rotation. In 

addition, the topological charge (JGI4, JGI5, JGI6, JGI9, JGI0) and topological distance 

(VE1_D) of molecules have a significant influence on Tg. ETA_EtaP_F (the 

functionality index EtaF relative to molecular size), ETA_dBetaP (a measure of the 

degree of unsaturation relative to molecular size), and hmax (maximum H E-State) also 

play a role in influencing Tg, indicating that molecular size and the presence of H atoms 

affect the Tg of molecules.  

The top 10 most important features for Td are minaaCH, SpMAD_D, JGI10, JGI8, 

maxaaCH, JGI7, ETA_Psi_1, JGI9, JGI4, and XLogP. The features of the highest 

contributing factor (minaaCH: minimum atom-type E-State: :CH:) and fifth-highest 

contributing factor (maxaaCH: maximum atom-type E-State: :CH:) indicate that the 

atom-type :CH: has a significant influence on the value of Td. The topological charge 

(JGI4, JGI7, JGI8, JGI9, JGI10) and topological distance (SpMAD_D) of molecules 

also have a significant influence on Td. ETA_Psi_1 (a measure of molecular hydrogen 



bonding propensity and/or polar surface area) indicates that hydrogen bonds also 

influence Td. Summing up the feature importance analysis, we can find that topological 

charges, topological distances and hydrogen bonding interactions all have a great effect 

on Tg and Td, because these factors have an impact on the rigidity of the molecule. 

To further evaluate the performance of the LightGBM models, the predictive powers of 

LightGBM models were compared with six classic ML models (SVM, PLS, LASSO, 

KRR, kNN, and RF). The MAE and RMSE of the test set for the different ML methods 

are shown in Fig. 5. As can be seen, the LightGBM models have the lowest MAE and 

RMSE for Tg and Td prediction, exhibiting the best performance. 

Table 1. Prediction summary for the Tg and Td of OLED materials based on LightGBM models 

  Training Testing 

 Input R2 MAE (K) RMSE (K) R2 MAE (K) RMSE (K) 

 

Tg 

Descriptors 0.99 1.54 2.59 0.74 17.73 26.15 

SC_2CDK 0.97 5.13 8.10 0.72 17.62 26.72 

Descriptors + SC_2CDK 0.99 1.34 2.34 0.77 17.15 24.63 

 

Td  

Descriptors 0.99 0.31 1.05 0.75 27.92 36.66 

SC_2CDK 0.99 5.06 8.26 0.78 26.46 34.19 

Descriptors + SC_2CDK 0.99 1.26 3.26 0.78 24.91 33.88 

 

Fig. 2. Correlation plots of (a) Tg and (b) Td for the independent test set based on LightGBM-based 

optimal models. 



 

Fig. 3. Feature importance for the prediction of (a) Tg and (b) Td obtained from the LightGBM-

based optimal models. 

 

Fig. 4. MAE and RMSE for the prediction of (a) Tg and (b) Td of the independent test set with 

different machine learning methods. 

3.2 Verification of Tg and Td prediction models 

The obtained Tg and Td prediction models based on the LightGBM algorithm were 

further tested in out-of-sample predictions. Two representative applications are shown 

herein. 

3.2.1 Independent testing for Tg and Td predictions of host and guest materials 

68 recently reported (2020 & 2021) OLED compounds were collected as independent 

test set 14, 27-54, involving 40 Tg values and 40 Td values. These compounds are mainly 

used in host-guest emissive layer of OLED devices (see Table S7 and Table S8 in 

supporting information for details). Furthermore, these compounds were not included 

in the original dataset. A plot of the predicted Tg and Td values vs. the experimental Tg 



and Td values is shown in Fig. 5. The R2, MAE, and RMSE of the Tg predictions are 

0.89, 8.81 K, and 11.15 K, respectively. The R2, MAE, and RMSE of the Td predictions 

are 0.82, 14.95 K, and 20.00 K, respectively. These results show that our models can 

accurately predict the Tg and Td of out-of-sample OLED compounds. However, one 

compound demonstrated a very large Td prediction error (3CzCNPyz, with an error of 

75.00 K). 

In order to clarify the reasons for this large prediction error, 3CzCNPyz was compared 

with two other compounds that appear in the same literature.49 The TGA curve of 

3CzCNPyz is shown in Fig. S2 and the TGA curves of 2Cz2CNPyz and 4CzPyz are 

shown in Fig. S3. The compounds 2Cz2CNPyz and 4CzPyz have prediction errors of 

2.81 K and -1.79 K, much smaller than the prediction error of compound 3CzCNPyz. 

Fig. S2 shows that the weight of compound 3CzCNPyz slightly decreases below 500 K 

(227 °C). This can be attributed to the presence of impurities (such as solvent) in 

3CzCNPyz which cause the experimental Td value of 3CzCNPyz to decrease. In order 

to further confirm the prediction reliability, the compound 4CzCNPy was selected for 

Td prediction. 4CzCNPy is a compound similar in structure to 3CzCNPyz. In Ref.56 55 

and Ref.57 56, the experimental Td of 4CzCNPy was tested to be 712 K and 681 K. The 

Td prediction of 4CzCNPy by our machine learning model is 708 K, showing an error 

of -4 K and 27 K. This is in good agreement with the experimental values. Therefore, 

it is likely that our model is accurate for the Td prediction of 3CzCNPyz. These results 

further support the reliability and advantage of the ML prediction models. 



 

Fig. 5. Correlation plots of (a) predicted and experimental Tg values of 40 OLED compounds and 

(b) predicted and experimental Td values of 40 OLED compounds in recent literature. 

 

3.2.2 Independent testing of Tg and Td predictions for hole-transport materials and 

electron-transport materials 

Organic electron-transport materials (ETMs) and hole-transport materials (HTMs) are 

widely used in OLEDs and perovskite solar cells (PSCs) as their electron transport layer 

or hole transport layer. Because electron transport and hole transport layer should be 

thermally stable to improve the overall lifetime of devices, both materials require high 

thermal stability. Realizing accurate Tg and Td prediction of organic ETMs and HTMs 

prior to experimental synthesis will be useful for the development of ETMs and HTMs 

with expected properties. Therefore, to verify the practicality of this study’s models, we 

collected 65 organic ETMs and HTMs used in OLEDs and solar cells for Tg and Td 

prediction 57-85, involving 40 Tg values and 40 Td values. More detailed information on 

these organic ETMs and HTMs can be found in Table S9 and Table S10 in the 

supporting information. These compounds were not included in the original dataset. 

A plot of predicted vs. experimental Tg values for 40 organic ETMs and HTMs is shown 

in Fig. 6a. A reasonable agreement exists between the predicted and experimental Tg 

values. The R2, MAE, and RMSE of the Tg predictions are 0.76, 14.39 K, and 16.18 K. 



Fig. 6b shows a plot of predicted vs. experimental Td values for 40 organic ETMs and 

HTMs. The predicted and experimental Td values also show reasonable agreement. The 

R2, MAE, and RMSE of the Td predictions are 0.71, 17.27 K, and 21.26 K. These results 

show that the optimal models can give satisifactory accuracy for the prediction of Tg 

and Td of small-molecule organic ETMs and HTMs, confirming the reliability of our 

models. 

 
Fig. 6. Predicted vs. experimental (a) Tg and (b) Td values for 40 organic electron-transport 

materials and hole-transport materials used in OLEDs and perovskite solar cells. 

3.3 Experimental validation 

In order to verify the application potential of these ML-based models in practice, the 

models were used to predict the Tg and Td of 50 new molecules. These 50 molecules 

were designed to have donor-acceptor (D-A) and donor-acceptor-donor (D-A-D) type 

structures. D-A and D-A-D structures are particularly important types in OLED 

materials and are also convenient for subsequent synthesis studies. Table S11 shows 

their chemical structures and predicted Tg and Td values of these designed compounds. 

Herein, we focus on the new compound TPA-2 with the third highest predicted Tg and 

the highest predicted Td (TPA-2). 

Density functional theory (DFT) simulations and time-dependent DFT were performed 



for TPA-2 before the compound was synthesized. HOMO/LUMO distributions of TPA-

2 in the ground state are shown in Fig. S4. The LUMO of TPA-2 is predominantly 

located on the acceptor, whereas the HOMO is located on the donor. The separated 

frontier molecular orbitals lead to extremely small theoretical ΔEST values for TPA-2. 

The theoretical calculation parameters of TPA-2 were compared with TPA-PZCN, 

which is a high efficiency red thermally activated delayed fluorescence (TADF) 

material with an external quantum efficiency close to 30% 86. As shown in Table S11, 

TPA-2 has a narrower bandgap (Egap) than TPA-PZCN (2.08 eV vs. 2.32 eV). The 

calculated S1 of TPA-2 is also smaller than that of TPA-PZCN, implying that TPA-2 

may show a longer emission wavelength than TPA-PZCN in the same solvent. The 

ΔEST of TPA-2 (0.22 eV) is smaller than that of TPA-PZCN (0.25 eV). The spin-orbit 

coupling (SOC) was also calculated between S1 and T1 in the geometry of T1. The 

<S1|Hso|T1> of TPA-2 (0.27 cm-1) is larger than that of TPA-PZCN (0.13 cm-1), 

indicating that TPA-2 has a good T1→S1 reverse intersystem crossing (RISC) efficiency. 

A large oscillator strength (0.1886) of TPA-2 is maintained which benefit radiative 

transition from S1 to S0. On the basis of these calculation results, TPA-2 is a good 

candidate for a red-TADF material. Furthermore, our models predict that TPA-2 have a 

high thermal stability. Thus, TPA-2 was selected for further experimental validation. 

The chemical structure and synthetic route of TPA-2 are presented in Scheme 1. Before 

testing, the compound was purified by column chromatography and temperature-

gradient vacuum sublimation. The structure of TPA-2 was characterized by 1H NMR 

and 13C NMR (vide Fig. S5, Fig. S6 and Fig. S7). The emission maxima of TPA-2 in 

https://pubs.rsc.org/en/content/articlelanding/2021/tc/d0tc05662f#sch1


toluene solution is greater than 600 nm and ΔEST of TPA-2 is 0.07 eV, indicating that 

TPA-2 can be used as a red-TADF OLED material (Fig. S8 and Table S12). The thermal 

properties of TPA-2 were determined by differential scanning calorimetry (DSC) and 

thermogravimetric analysis (TGA) under a nitrogen atmosphere. A (Tg) of 411 K 

(138 °C) and (Td) of 697 K (424 °C) were observed (Fig. 7), in good agreement with 

the predicted values by machine learning. The predicted Tg value is 426 K, 

demonstrating an error of 15 K, while the predicted Td value is 738 K, demonstrating 

an error of 41 K. As expected, the TPA-2 compound has good thermal stability. These 

results show that it is feasible to apply our ML models to predict the thermal stability 

of unknown OLED materials. Our ML models could be served as a useful tool to 

quickly screen high thermal stability OLED materials. 

 

Scheme 1 Chemical structure and synthetic route of TPA-2. 

 

Fig. 7. DSC and TGA curves for TPA-2. 

3.4 Website for Tg and Td Predictions 



Currently, hundreds of articles about OLED materials are published every year 8. There 

are a lot of useful data in the literature, but there is no existing database that organizes 

OLED material data. With the aims of archiving the thermal stability data of OLED 

materials and helping experimental scientists utilize the models reported in this paper 

for designing new OLED compounds with desired Tg and Td values, an online tool was 

developed. This website is accessible at http://oledtppxmpugroup.com. Users can make 

predictions by inputting canonical SMILES, and the outputs include Tg (K) and Td (K). 

The Tg and Td data in this article are also placed on this website. A screenshot of the 

website homepage interface is shown in Fig. 8. More details can be found by visiting 

the website. We will continue updating the dataset and optimal model on the website in 

order to more accurately predict Tg and Td of OLED materials. 

 

Fig. 8. Screenshot of the interface of our website homepage 

4. Conclusion 

Motivated by the challenge of quick and accurate prediction of Td and Tg to characterize 

the thermal stability of OLED materials, we developed ensemble ML models coupled 

with combined descriptors. 1944 experimental Tg values and 1182 experimental Td 

values were collected from experimental literature to construct a new dataset in order 



to support the data-driven ML models. With the dataset and the combined descriptors, 

the optimal LightGBM models offer satisfactory accuracy for the prediction of Td and 

Tg, with higher accuracy than other six classic ML models (SVM, PLS, LASSO, KRR, 

kNN, and RF ML models). The models are further validated by two types of out-of-

sample prediction (including recently reported host and guest materials as well as 

organic ETMs and HTMs), exhibiting good robustness and universality. Finally, the 

experimental validation of a high thermal stability OLED material further confirms the 

reliability of our models and practical application potential. In addition, we constructed 

a website including all the data and the optimal ML models in order to provide a simple 

and quick tool for estimating these two important properties for unknown compounds. 

We believe this website will assist with the design of future OLED materials. 
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