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Abstract. We present the new retrosynthesis prediction method
RetroTRAE using fragment-based tokenization combined with the
Transformer architecture. RetroTRAE represents chemical reac-
tions by using the changes of fragment sets of molecules using the
atomic environment fragmentation scheme. Atom environments
stand as an ideal, chemically meaningful building blocks together
producing a high resolution molecular representation. Describing
a molecule with a set of atom environments establishes a clear
relationship between translated product-reactant pairs due to con-
servation of atoms in reactions. Our model achieved a top-1 ac-
curacy of 67.1% within the bioactively similar range for USPTO
test dataset, outperforming the other state of the art, translation
methods. We investigated the effect of different encoding scenarios
on predicting the reactant candidates. We also critically assessed
the retrieval process that converts a set of fragments into a mole-
cule with respect to coverage, degeneracy and resolution. Our new
template-free model for retrosynthetic prediction provides fast and
reliable retrosynthetic route planning for substances whose frag-
mentation patterns are revealed.

1. Introduction

Planning the reaction pathways of an organic molecule is the central
component of organic synthesis. The idea of reducing the complexity
of a desired organic molecule by considering all logical disconnections
forms the basis of the retrosynthetic approach [1–3]. The aim of the
retrosynthetic approach is therefore to suggest a logical synthetic route
to generate a target molecule from a set of available reaction build-
ing blocks. The retrosynthetic approach acts recursively on the target
molecule until chemically reasonable pathways are identified [4]. From
a broader perspective, forward- and backward-reaction pathway pre-
dictors in the literature can be divided into those that rely on the
construction of reaction templates, and those that template-free data-
driven networks trained in an end-to-end fashion.

Template-free methods have emerged as an effective means of ad-
dressing the methodological limitations of the template-based para-
digm. The template-free methods can be further subdivided according
to the way of molecular representation: (i) graph-based methods [5–8]
and (ii) sequence-based methods [9–11, 43]. Sequence-based modeling
recasts the reaction pathway planning problem as a language trans-
lation problem by using a string representations of molecules. The
current state of the art, forward- and backward-reaction predictors
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are mostly built on the Transformer architecture [13]. The Trans-
former, developed as a result of a collaborative effort, is a neural ma-
chine translation (NMT) model which solely depends upon attention
mechanism [12, 13]. Molecular Transformer was the first adaptation
of Transformer with SMILES [25] for the forward reaction prediction
task [14, 15]. Further studies demonstrated the ability of making gen-
eral predictions using different compound databases including drug-like
molecules [16] and carbohydrate reactions [17] to examine regio- and
stereoselectivity. This success has paved the way for additional publi-
cations on retrosynthesis using SMILES [18–23].

SMILES strings are typical inputs of NMT models. Despite its wide-
spread usages, SMILES can easily lead to erroneous predictions due to
its grammatical complexity. In other words, SMILES-based prediction
methods tend to make grammatically invalid predictions, which deteri-
orate prediction efficiency. To solve this problem, SCROP [21] included
a neural network-based syntax correcter to decrease the invalidity rate.
Similarly, Duan et al [19] focused the causes of invalid smiles to improve
the prediction accuracy. In addition, grammatically valid SMILES are
not guaranteed to be semantically valid or synthetically accessible. In
our previous study [29], we demonstrated that representing molecules
as the sets of fragments is an effective solution to the aforementioned
problems.

Considering the complexity of retrosynthetic analysis, efficient repre-
sentation of source-target data structure is critical for accurate predic-
tions. In this study, we propose a direct translation approach for ret-
rosynthetic prediction by associating atomic environments of the reac-
tants with the products. Atom environments are topological fragments
centered with an atom with a preset radius [36]. The radius is defined
by the number of shortest topological distance between atoms via co-
valent bonds, i.e., the smallest number of covalent bonds. Throughout
the study, they are regarded as the basis of molecules and employed in
our prediction workflow. Our design enables us to capture the changes
of atom environments associated with the chemical reaction. To ac-
curately generate the reactant candidates for a target molecule we use
the best performing Transformer architecture as the state of the art, in
NMT applications. We show that our model achieves top-1 accuracy of
53.4% for exact matches and 67.1% if bioactively similar predictions are
included. These results are comparable to or better than the existing
methods without suffering from problems associated with the complex
grammar of SMILES.
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2. Method

2.1. Model overview. The main goal of the Transformer architecture
is to generate the next word of the target sequence. Transformer uses
an encoder and a decoder unit to translate between sequences by effec-
tively employing multi-head attention mechanism on each unit. Input
and output sequences to our Transformer model are the lists of frag-
ments. We tested several different schemes to convert molecules into
a list of fragments: MACCS keys [55], bit vectors of extended circular
fingerprint (ECFP) [54], and atom environment (AE) [36]. As the
next section will show, we identified that the atom environment repre-
sentation leads to the best model. Atom environments are fragments
consisting of a center atom and its covalently bonded neighbors with a
predefined radius. They can be considered as the basis of constructing
molecules, which is similar to the pieces of a puzzle. Each atom envi-
ronment is described by a simplified molecular-input line-entry system
arbitrary target specification (SMARTS) pattern [26].

An overview of our Transformer model, namely RetroTRAE, is de-
picted in Figure 1. Starting from a product molecule, it is decomposed
into a set of unique integer values. Each AE, a SMART pattern is
associated with an unique integer value. The lists of AEs are provided
as input sequences for RetroTRAE. RetroTRAE is trained to predict
proper AE sequences of reactants corresponding to true reactants.

Figure 1. A schematic diagram of RetroTRAE includ-
ing input-output structure.
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2.2. Atom Environments. We employed the concept of circular atom
environments to represent molecules in the reaction dataset. Circu-
lar environments are defined as topological neighborhood fragments of
varying ‘radii’ containing all bonds between included atoms [36]. They
are centered on a particular atom, called the central atom. The ‘ra-
dius’ refers to the maximum allowed topological distance between the
center atom and all covalently bonded atoms. The topological distance
between two atoms is measured as the number of bonds on the shortest
path between them. Thus, an atom environment of radius “r” contains
all atoms in the molecule with a topological distance r or smaller to
the center atom, and all bonds between them.

To construct the AEs, we used ECFPs of varying radii implemented
in RDKit. We extracted all unique fragments that are folded into
bits of ECFPs. AEs generated by the ECFP algorithm are invariant
to rotation and translation and are easily interpretable as SMARTS
patterns [32–34] as shown in Figure 2. For example, AEs with radius
r = 0 include only the atom type of the center atom. We call the set
of all AEs with r = 0 AE0. Atom environments with r = 1 contain the
center atom, all atoms adjacent to the center atom (nearest neighbors),
and all the bonds between these atoms. The set of all AEs with r = 1
is denoted as AE2.

In Figure 2, the string representation of benzene is given as common
SMILES and SMARTS patterns representing the atom environments
generated by the ECFP fingerprint, along with the recently developed
SELFIES [35] description. SMARTS and SELFIES closely resemble
regarding the level of information they display. The text parts of the
SMARTS description contains two levels of detail. The first detail is
about the aromaticity and the H count of the element. The second
level of detail includes the number of neighboring heavy atoms and
ring information (represented by the ”D” and ”R” respectively). By
definition, an environment of radius 0 corresponds to a single atomic
environment, the radius 1 bits all have at least three atoms, and the
radius 2 bits each have at least 5 atoms.

We focused on two fragmentation schemes: AEs and ECFPs. Word-
based tokenization scheme was applied both to AEs and the indices
of ECFP bit vectors. An ECFP bit vector corresponds to an one-hot
encoded vector in fingerprint space, like a sentence, which is an one-hot
encoded in vocabulary space. In this work, the following representa-
tions encoded as bit indices and SMARTS are attempted:

• AE2 and AE2, indicating atom environments of radius 0 and 1,
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Figure 2. String representations of benzene are repre-
sented in the form of SMILES, SELFIES and as a com-
bination of SMARTS patterns generated by the Morgan
fingerprint. In atom environment renderings the central
atom is highlighted in blue, aromatic and aliphatic ring
atoms are highlighted in yellow and gray. A wildcard [*]
is used for any atom.

• ECFP0, ECFP2, and ECFP4 [37] corresponding to the Morgan
fingerprints of radius 0,1 and 2 – hashed into a dimension of
1024.

Atom environments of radius 2 (AE4) results in millions of distinct
fragments present in large data sets. Due to a vast vocabulary size of
AE4, they are not suitable for translation purposes. Thus, only hashed
version of the Morgan fingerprint is selected for radius 2. The open-
source RDKit module version 2020.03.1 is utilized to generate ECFPs
and AEs.

2.3. Dataset. Neural machine translation methods require a large cor-
pus of diverse source-target pairs for successful translation. To evaluate
and compare our model with the current state of the art, we used a
subset of the filtered US patent reaction dataset, USPTO-Full, which is
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obtained with a text-mining approach [27,28]. This subset [5] contains
480K atom-mapped reactions after removing duplicates and erroneous
reactions from USPTO-Full. For training our models, atom-mapping
information was not used. However, we implicitly benefit from the fact
that each atom in the product has an unique corresponding atom in
the reactants. Also, there are no reaction class information is available
in this dataset. The product-reactant pairs are carefully curated in
the same manner with our previous study [29]. As a result, we gener-
ated two distinct curated datasets consist of unimolecular (P =⇒ R)
and bimolecular (P =⇒ R1 + R2) reactions, with sizes 100K and 314K
respectively. Additionally, we used the PubChem compound database
containing 111 million molecules and the ChEMBL database to recover
molecules from a list of AEs and compare the space of AEs [30,31].

2.4. Training Details. Our curated datasets were randomly split into
9:1 to generate training and testing sets. The validation sets were ran-
domly sampled from training sets (10%). We used the stochastic gra-
dient descent algorithm [40] to train model parameters in combination
with negative log-likelihood (NLL) loss function. For each dataset, we
performed multiple tests within the range of hyper-parameter space
as described in the Supplementary Table 1 to achieve optimal perfor-
mance. The best hyperparameters are chosen according to the perfor-
mances on the validating set. With these hyperparameters, the aver-
age training speed was approximately 11 min per epoch corresponding
to 1000 steps for single reactant dataset. We trained our models for
a minimum of 1000 epochs with the learning rate scheduler stochastic
gradient descent with warm restarts (SGDR) [39] and applied a residual
dropout with a rate of 0.1 [38]. The details of our key hyper-parameters
are described in the Supplementary Information.

2.5. Evaluation. To evaluate the performance of our translation model,
a suitable similarity metric needs to be selected to measure the simi-
larity between predictions and true reactants. The Tanimoto (Tc) and
the Sørrensen-Dice coefficient (S) as two of the special cases of Tversky
index are the selected metrics for the purpose this study. The exact
form of the Tversky Index is given below:

(1) S(X, Y ) =
|X ∩ Y |

|X ∩ Y |+ α|X − Y |+ β|Y −X|
Here, α, β ≥ 0 are the parameters of the Tversky index. Setting
α = β = 1 leads to the Tanimoto coefficient; setting α = β = 0.5
leads to the Sørrensen-Dice coefficient. Tanimoto and Dice coefficients
measured between two molecules range between 0 and 1. The value of
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zero represents the total dissimilarity while value of 1 represents the
exact match. Pairwise similarities between the predicted and correct
sequences are calculated at the end of each epoch for every pair present
in the validation set using the chosen metrics.

As there are many ways to decompose a molecule, retrosynthetic
prediction tools are able to procure large number of possible synthetic
routes. However, selecting an appropriate synthetic route is challeng-
ing. As a rule of thumb, we used top-1 predictions as the best rec-
ommendations to report network performance, as well as of molecular
search and retrieval. We used the ccbmlib Python package [47] to gen-
erate similarity value distributions of the fingerprints and assess the
statistical significance of Tanimoto coefficients. This implementation
also allows a quantitative comparison of similarity values between var-
ious fingerprint designs.

3. Results and Discussion

3.1. Performance of RetroTRAE. We evaluated the retrosynthetic
predictor performance of the selected fingerprint variants to find the
best molecular structure encoding. We compared the results of our
Transformer models with the previously developed substructure-based
retrosynthetic predictor as presented in Table 1. The Transformer
model representing molecules with the union of AE0 and AE2 out-
performed all other models, achieving an exactly matching accuracy of
53.4%. The relationship between structural similarity and biological ac-
tivity has been extensively investigated in systematic analyses [48–51].
Molecules are found to have similar biological activities when their
similarity is over 0.85. The addition of bioactively similar predictions
(Tc ≥ 0.85) increases the accuracy by 13.7% over the exact matches,
resulting in 67.1% overall model accuracy. Using ECFP2 also per-
formed well and showed slightly worse performance than using AEs.
From now on, we refer to the model with the union of AE0 and AE2
as RetroTRAE.

The Transformer-based models show marked improvements over the
previous bi-LSTM-based method regarding the exact match accuracy.
This enhancement represents a substantial overall performance gain by
15-17%. However, when MACCS keys are used for fragmentation, the
number of exact and bioactively similar matches are found to be similar.
This suggests that the combination of MACCS keys may have limited
diversity, i.e., low resolution power. In contrast, AE2 describes the
chemical space more precisely and provides 60 times higher resolution
power than MACCS keys (Supporting Table 5).
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Table 1. Performance summary of various
Transformer-based models trained with different
fragmentation schemes and a comparison with the
Bi-LSTM-based models. Success rates (%) are given
in terms of the exact and bioactively similar matches
(Tc ≥ .85) and the mean Taniomoto coefficient of all
predictions are listed.

Model Unimolecular dataset

Tc = 1.0 Tc ≥ .85 Tc

Bi-LSTM-based [29]

MACCS 29.9 57.7 0.84

ECFP2 35.6 50.7 0.80

ECFP4 9.1 28.4 0.66

Transformer-based

MACCS 30.1 57.5 0.85

ECFP0 50.8 61.2 0.85

ECFP2 52.9 66.6 0.88

ECFP4 26.0 50.1 0.73

AE0 47.2 57.4 0.83

AE2 50.9 59.9 0.84

AE0 ∪ AE2 53.4 67.1 0.88

Another interesting observation is the low performance of ECFP4.
The number of exact matches is dropped by nearly half of ECFP2.
This poor performance may be due to a high collision rate of ECFP4
(Figure 3). We investigated the number of unique AEs of radius 0,
1 and 2 associated with the activated bits of hashed ECFPs for the
unimolecular reaction dataset. With a radius of 0 and 1, each ECFP
bit contains less than 10 and 20 unique AEs. However, with a radius
of 2, most bits correspond to many unique AEs ranging from 100 to
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Figure 3. The histogram of Morgan bits according
to the number of unique SMARTS patterns from AE0
(blue), AE2 (green), and AE4 (red).

160. In other words, ECFP4 has a much higher bit collision rate than
ECFP2 or ECFP0. The presence of higher density bits would com-
plicate the relationships between the fragments of a product and true
reactants, deteriorating the prediction power of a model. Therefore,
finding an optimal set of fragments representing a molecular structure
most accurately is a critical factor in improving predictive power for
retrosynthesis planning.

Table 2. The accuracy (%) of single and double reac-
tant predictions by using the union of AE0 and AE2.

Datasets Tc = 1.0 SM DM Tc ≥ .85 Tc ≥ .80 Tc S

Unimolecular 53.4 55.8 60.1 67.1 72.5 0.88 0.94

Bimolecular 61.9 62.7 64.6 67.2 69.7 0.77 0.87
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Prediction performance as a function of different similarity threshold
values for the best performing model is shown in Table 2. By using
AEs, we can select more reasonable thresholds that are size dependent,
similar to the similarity metrics. Single and double mutations represent
changes to one and two fragments with respect to ground truth. We call
these soft thresholds. For unimolecular reactions, the average reactant
length is 27. The single and double fragment mutations correspond
to Tc ≥ 0.96 and Tc ≥ 0.92. The degree of similarity is different for
bimolecular reactions, because both reactants have an average length
of 17. Detailed description of the similarity scale can be found in
Supporting Information for the soft thresholds as a function of reactant
fingerprint length (see Supporting Table 6).

Soft thresholds present two clear advantages over hard thresholds
particularly when working with close analogs. First, soft thresholds al-
low us to find the type and number of the fragments deviated from the
ground truth easily. In contrast, classifications done by arbitrarily de-
fined thresholds are difficult to grasp intuitively. Because, there is sim-
ply no way to envision a molecule knowing in advance the structure and
the pair-wise similarity value of a reference molecule. For this reason,
similarity maps are developed for better interpretation of the result-
ing similarity by visualizing the atomic contributions [53]. Second, by
using soft thresholds, we avoid any risk of losing high-quality reactant
candidates which can be excluded with hard thresholds. The idea of
structural complexity is closely associated with the fingerprint length.
This suggest that the high-quality predictions with low and medium
complexity have a higher chance to be excluded by hard thresholds.
As such, a high-quality double mutated prediction with medium com-
plexity represented with 13 atom environments can be overlooked by
commonly used bioactively similar threshold (Tc ≥ .85)

3.2. Comparison with existing retrosynthesis planning meth-
ods. Table 3 presents a performance comparison of our model with
available retrosynthesis models trained without reaction class infor-
mation. For a fair comparison, we compared with the models that
were trained and tested with the MIT-full, large versions of USPTO
dataset. Our approach achieves a top-1 exact matching accuracy of
53.4% and 61.9% for unimolecular and bimolecular reactions without
reaction class information (Table 2). In general, This level of accuracy
is better than most existing non-Transformer and Transformer models.
The performance of RetroTRAE is comparable to the best of exist-
ing methods, namely Lin’s Transformer model [20]. When bioactively
similar predictions are considered, the overall accuracy of both datasets
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increases to 67.1%. This result surpasses all the current state-of-the-art
approaches by a large margin.

Table 3. Model performance comparison without ad-
ditional reaction classes.The results are based on either
filtered MIT-full or MIT-fully atom mapped reaction
datasets.

Model top-1 accuracy (%)

Non-Transformer

Coley et al., Similarity, 2017 [42] 32.8

Segler et al., Neuralsym, 2017 [41] 35.8

Segler-Coley,–rep. by Lin, 2020 [20,41] 47.8

Dai et al., GLN, 2019 [44] 39.3

Liu et al.–rep. by Lin, 2020 [20,43] 46.9

Transformer-based

Zheng et al., SCROP, 2020 [21] 41.5

Wang et al., RetroPrime, 2021 [45] 44.1

Tetko et al., AT, 2020 [22] 46.2

Lin et al., 2020 [20] 54.1

RetroTRAE – this work 53.4

RetroTRAE + Bioactive – this work 67.1

The mean Tc of the predictions by the best-performing model is
found 0.88, which is highly statistically significant with a p-value <
10−5 (Table 2). Figure 7 shows the statistical significance of the se-
lected similarity thresholds above which the quality of non-exact pre-
dictions assessed in chemical terms. While the inset of the figures show
the regime with Tc values having a p-value of 0.1, our lowest similarity
threshold value (Tc > 0.8) has a p-value of 1e-04 or lower. Therefore,
the predictions satisfying Tc > 0.8 are said to occur in high similarity
regime. The statistical equivalence between similarity scores of each
fingerprint type we used are shown in Figure 7C. The unified atom
environments and ECFP2 share the similar distribution profiles (See
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Supporting Figure 7A and 7B). Hence we find that they return al-
most identical similarity values as presented in Figure 7C. The vertical
dashed line corresponds to a p-value of 1e-04. Landrum [52] showed
that only 250 of the 25K pairs have a Taniomoto similarity value higher
than 0.434 and 0.655 if computed with ECFP2 and MACCS keys re-
spectively. Likewise, our lowest similarity threshold Tc > 0.8 corre-
sponds to Tc > 0.9 computed with MACCS keys.

3.3. Examples of high-quality predictions. As we have stressed in
our previous report [29], the similarity score can be seen as an effective
metric to assess the retrosynthetic quality of predictions. High simi-
larity scores indicate higher-quality retrosynthetic predictions. Thus,
we included the single and double fragment mutations, bio-active and
highly similar predictions as high-quality reactant candidates. Figure 4
gives a representative example for each category. These examples help
us interpret non-exact but high-quality reactant candidates chemically.

For single mutant cases, the changes were often associated with mis-
placement of functional groups at ortho/meta/para positions. For dou-
ble mutant cases, most changes were also observed in ortho/meta/para
substitution patterns, similar to the single mutation cases. In addition,
the length of simple aliphatic chains is often predicted incorrectly be-
cause many fragments from a long aliphatic chain are identical. Thus,
the length of a aliphatic chain may not be described accurately with
the set of unique fragments. As indicated in similarity maps, none of
the atoms of the reactant candidates negatively contributes (red) to
the similarity value. After inspecting the bioactively similar predic-
tions, we concluded that the most significant aspects of retrosynthetic
analysis, such as bond disconnections, reactive functional groups, and
core structures are correctly predicted. When we utilize hard thresh-
olds the number of altered atomic environments can be more than two.
However, they are mainly observed at the core structure, and not af-
fecting the accuracy of reactive sites. More reaction examples with
high quality predictions are shown in the Supporting Information.
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Figure 4. A representative example belong to each
threshold level is shown. Distinct fragments are given as
SMARTS patterns. Predictions are drawn as similarity
maps using the Morgan fingerprints. The first reactant is
predicted correctly and the qualities of second reactants
are evaluated. The fragments only belong to prediction
or its true counterpart are given as set notation difference
which allows us to describe the chemical change more
concretely. Colors indicate atom-level contributions to
the overall similarity (green: increases similarity score,
red: decreases similarity score, uncolored: has no effect).
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3.4. Covering chemical space with atom environments. As pre-
viously mentioned, AEs can be considered as the basis of molecules.
We generated the AE0 and AE2 sets using all compounds in PubChem
(111M), ChEMBL (2.08M), and the USPTO 500K (1.3M) dataset and
visualized their diversity and the coverage (Figure 5). The coverage
is defined as the chemical space spanned by those unique atom envi-
ronments. From the area-proportional Euler graph (Figure 5), it is
clear that the AEs of the reactants of the USPTO dataset do not span
a broad range of chemical space. We believe that our model would
perform more accurately, if we have more diverse reaction datasets.
USPTO reaction dataset contains 275 (r = 0) and 15,982 (r = 1) unique
AEs. ChEMBL and PubChem contain 386 (r = 0), 39,149 (r = 1) and
3450 (r = 0), 533,276 (r = 1) unique AEs, respectively. Although there
are large differences in favor of PubChem, a significant portion of those
unique AEs occurs only once in the whole set. In fact, many AEs from
PubChem are found in only one compound record and we call them
singletons. The percentages of singletons are 38.5% and 35.2% for the
AE0 and AE2 sets generated from PubChem. The cardinality of each
set of unique AEs is supplied as supporting information together with
their intersections.

3.5. Retrieving a molecule from atom environments. After pre-
dictions are made by RetroTRAE, the chemical structures of predicted
reactants can be retrieved through database search. We investigated
the success rate of retrieving a reactant candidate with 1000 USPTO
test molecules using PubChem. The retrieval test result shows that
more than half of the predictions (55.7% of them) can be retrieved ac-
curately (Figure 6). Allowing single mutations increases retrieval rate
by 30 percent. When double mutations are allowed, all test molecules
could be retrieved successfully. These results suggest that represent-
ing and predicting molecules with fragments is a viable and practical
approach.

Using the top-1 predictions does not necessarily lead to a single syn-
thetic route considering the degeneracy of the fragment representation.
It is always possible to access multiple candidates in the process of con-
verting fragments into valid molecules. This may correspond to multi-
ple possible reaction pathways. Considering small differences between
molecules with high Tc values (Figure 4), multiple molecules gener-
ally have differences in stereochemistry, the length of aliphatic chains,
and the location of peripheral functional groups, such as ortho/meta/-
para positions. Thus, such small differences can easily be corrected by
experienced chemists. Last, it is worth mentioning that AEs are less
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Figure 5. Area-proportional Euler graph represent-
ing the space of atomic environments for the following
databases; PubChem 110M, ChEMBL 2.08M (ChEMBL
v28, as of May 2021) and USPTO-Fully atom-mapped
500K reactions (ca. 1.3M molecules). AE0 is scaled up
by 20 times for better visual interpretation.

degenerate, i.e., have fewer reactant candidates corresponding to a pre-
diction, than ECFP fingerprints in retrieval process. Using ECFP bit
indices for database search retrieves 1.7 times more reactant candidates
on average. The difference is mainly due to bit collisions that occur
during truncation to the bit vector and the absence of stereochemical
information in our dataset.
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Figure 6. Retrieval of reactant candidates via a large
PubChem compound search database.



18 RETROTRAE: RETROSYNTHETIC PREDICTION WITH TRANSFORMER

4. Conclusion

We developed a new template-free retrosynthesis prediction model,
RetroTRAE, using the transformer architecture and atom environment
representation. RetroTRAE showed comparable or improved perfor-
mances to other state-of-the-art models. The present approach pro-
vided reactant candidates with an exact match accuracy of 53.4%. Be-
sides exact match accuracy, high-quality reactant candidates selected
by soft and hard thresholds are found to be statistically significant at
below 1.0e-04 level. The average prediction accuracy with a threshold
of Tc ≥ 0.85 is observed around 67%, outperforming the current state-
of-the-art methods by a large margin. We demonstrated atom environ-
ments as promising descriptors for studying reaction route prediction
and discovery since they provide highly descriptive representation free
from grammatical complexity of SMILES.

5. Supporting Information

Table 4. Hyper-parameter space and hyper-parameters
for the best model.

Parameter Possible Values Best Model
Parameters

Number of Layers 2-8 4

Number of head 4-12 8

Size of hidden layers 256, 512, 1024 512

Size of intermediates 512, 1024, 2048 2048

Optimizer Adam or SGD SGD

Dropout 0.1, 0.2, 0.5 0.1

Number of epoch 600-1500 1000

Validation per epoch @2—@100 @100

Learning Rate 0.01—2.5 0.1, 0.05, 0.01

Learning Rate Scheduler Decay, SGDR SGDR

Cycle per epoch 3/1—1/3 5/4

Decay factor 0.8 - 0.98 0.91
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Table 5

Representation Sequence length Vocabulary Size

Source Target Source Target

MACCS 32.30 39.15 130 131

ECFP0 9.95 13.44 79 99

AE0 9.95 13.44 119 118

ECFP2 18.33 21.37 1025 1028

AE2 18.33 21.37 7533 8007

ECFP4 46.39 52.78 2052 2053
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Figure 7. Figures A, B and D represent the cumulative
distribution function of the reactants in the USPTO DB
for the unified atom environments, ECFP2, and MACCS
keys respectively. The measure 1 – (p-value) is used to
assess significance. P-values has the range 0 to 1 and
smaller p-values indicate higher significance. The Figure
D shows the relation of MACCS Tc values to Tc values
of unified atom environments and ECFP2. The vertical
dashed line corresponds to a significance level of p-value
set to 1e-04.
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Table 6. The single and double mutant cases as a func-
tion of reactant fingerprint length

Length 5 8 11 14 17 20 23 26 29 32

Tc of SM 0.80 0.88 0.91 0.93 0.94 0.95 0.96 0.96 0.97 0.97

Tc of DM 0.60 0.75 0.82 0.86 0.88 0.90 0.91 0.92 0.93 0.94

Raw data of Figure 5.

USPTO -AE0 = 275,

ChEMBL -AE0 = 386,

PubChem -AE0 = 3450,

USPTO -AE0 ∩ ChEMBL -AE0 = 171,

USPTO -AE0 ∩ PubChem -AE0 = 250,

ChEMBL -AE0 ∩ PubChem -AE0 = 358,

USPTO -AE0 ∩ ChEMBL -AE0 ∩ PubChem -AE0 = 170,

USPTO -AE2 = 15982 ,

ChEMBL -AE2 = 39149,

PubChem -AE2 = 533276 ,

USPTO -AE2 ∩ ChEMBL -AE2 = 10251,

USPTO -AE2 ∩ PubChem -AE2 = 15224,

ChEMBL -AE2 ∩ PubChem -AE2 = 37725,

USPTO -AE2 ∩ ChEMBL -AE2 ∩ PubChem -AE2 = 10232,
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