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ABSTRACT: A molecular-field-based regression analysis using computational screening data for N-heterocyclic carbene (NHC)-
Cu-catalyzed asymmetric carbonyl additions of a silylboronate to aldehydes is reported. A computational screening was performed 
to collect enantioselectivity data (DDG‡: energy differences between the transitions states leading to each enantiomer) via transition-
state (TS) calculations using density functional theory (DFT) methods. A molecular field analysis (MFA) was carried out using the 
obtained calculated DDG‡ values and TS structures (30 samples in total). Important structural information for enantioselectivity ex-
tracted by the MFA was visualized on the TS structures, which provided insight into an asymmetric induction mechanism. Based on 
the obtained information, chiral NHC ligands were designed, which showed improved enantioselectivity in these carbonyl additions. 

Data-driven machine-learning-based optimization of molecular 
catalysis is an emerging and promising research area.1 Regres-
sion analysis, i.e., quantitative structure–property relationships 
(QSPR) modeling of catalytic reactions typically correlates mo-
lecular descriptors with experimental catalytic activity values. 
High quality-experimental data suitable for QSPR modeling are, 
however, not always available. In some cases, experimental 
data include non-negligible noise derived from various factors, 
such as side reactions and experimental errors. The use of such 
data in regression analysis/QSPR can reduce its predictive per-
formance, and in some cases, the information extracted by the 
analysis may not provide reliable insights into the reactions. 
The use of computational-screening data obtained through ab-
initio calculations avoids this potential shortcoming, as the cal-
culated activity data do not include the aforementioned noise. 
In addition, computational-screening approaches do not require 
experiments to collect data, thereby enabling data analysis of 
reactions that involve expensive and synthetically difficult cat-
alysts. Despite these attractive features, reports of data-driven 
molecular design in molecular catalysis using the QSPR frame-
work with the calculated catalytic-activity values as the target 
variables are scarce,2 although virtual screening using transi-
tion-state force fields developed via the quantum-guided mo-
lecular-mechanics method has been investigated in asymmetric 

catalysis.1e,1f,3 As transition-state (TS) DFT calculations with 
appropriate calculation conditions have become a reliable 
method to design asymmetric catalytic reactions,4,5 the use of 
the calculated selectivity values as target variables for QSPR or 
quantitative structure-selectivity relationships (QSSR) can be 
expected to further accelerate the development of asymmetric 
catalytic reactions. Recently, a QSSR study of the asymmetric 
propargylation of aryl aldehydes has been reported,6 in which 
more than 600 training samples with literature-reported calcu-
lated activation-energy values5 were used. However, the calcu-
lation cost of DFT-based TS modeling is high. Therefore, it 
would be highly desirable to develop a regression-based method 
that enables molecular design to improve enantioselectivity by 
analyzing a relatively small set of DFT-based computational-
screening data. Here, we report the data-driven design of chiral 
catalysts for N-heterocyclic carbene (NHC)-Cu-catalyzed 
asymmetric carbonyl additions of a silylboronate to aldehydes 
through molecular-field-based regression analysis7,8 using the 
calculated DDG‡ values and transition-state structures with a to-
tal of 30 training samples (Figure 1a). 



 

 

Figure 1. Molecular field analysis (MFA) in asymmetric catalysis 
and molecular design based on the visualized structural information 
(introducing substituents that overlap at the light blue points im-
proves the enantioselectivity). (a) This work: MFA using transi-
tion-state structures and calculated DDG‡  values. (b) Previous 
work: MFA using intermediate structures and experimental DDG‡ 
values.  Blue points correspond to positive regression coefficients 
where molecular structures overlap [up (overlap)]. Light blue 
points correspond to positive regression coefficients where molec-
ular structures do not overlap and if substituents are introduced 
there, selectivity will increase [up (non-overlap)]. Red points cor-
respond to negative regression coefficients where molecular struc-
tures overlap [down (overlap)]. Light red points correspond to neg-
ative regression coefficients where molecular structures do not 
overlap and if substituents are introduced there, selectivity will de-
crease [down (non-overlap)]. 

 

For the initial training dataset, we employed three ring-satu-
rated C2-symmetric NHC ligands (L1–3), which have shown 
low to moderate enantioselectivity in a previous investigation 
(Table 1).7b Moreover, six aromatic aldehydes (S1–6) were se-
lected. We calculated the TSs of a possible enantio-determining 
step for all combinations of the three catalyst and six substrate 
structures. We hypothesized that the reaction proceeded via the 

four-centered reaction mechanism that is frequently observed in 
related Cu(I)-catalyzed reactions.8,9 As an example, the TS 
structure derived from ligand L3 and substrate S1 (L3S1) is 
shown in Figure 2. The calculated DDG‡ values exhibited a cor-
relation with the experimental DDG‡ values (see Figure S9). For 
data analysis, we employed a 3D-QSSR approach,1c which we 
refer to here as molecular field analysis (MFA). MFA is a re-
gression analysis between reaction outcomes and molecular 
fields calculated from three-dimensional molecular structures. 
In our previous study, we found that MFA of the intermediates 
in the enantio-determining step of asymmetric catalytic reac-
tions enabled the extraction and visualization of structural in-
formation that led to the design of molecules with improved en-
antioselectivity (Figure 1b).10,11 Thus, we were interested in 
whether MFA between the calculated DDG‡ values and the TS 
structures would be able to extract similar information (Figure 
1a). The seminal report of the use of MFA in asymmetric catal-
ysis by the Kozlowski group employed TS structures; however, 
the authors did not use the extracted and visualized information 
for molecular design, and their target variables were the exper-
imental DDG‡ values.12 Our specific goal in this study was to 
evaluate our approach through the data-driven design of the cur-
rent optimum NHC ligand L6 in the targeted carbonyl addi-
tions7 starting from a set of 18 training samples (Table 1). 
 
Table 1. Enantioselectivity of the training samples (%ee). 

 

 L1 L2 L3 L4 L5 

S1 21  
(0.34) 

31 
(0.58) 

73 
(1.77)  

87 
(1.83)  

82 
(2.25)  

S2 18  
(0.59) 

41  
(0.65) 

17  
(1.67) 

85 
(2.29) 

85 
(2.32) 

S3 15  
(0.60) 

38  
(0.71) 

63  
(1.33) 

80 
(2.31) 

78 
(2.81) 

S4 11  
(0.04) 

18 
(0.70) 

66 
(1.82) 

78 
(2.43) 

74 
(2.41) 

S5 19 
(0.16) 

27 
(0.30) 

69 
(0.85) 

82 
(2.18) 

81 
(2.76) 

S6 17 
(0.38) 

31 
(–0.25) 

63 
(1.28) 

88 
(2.17) 

78 
(2.30) 

Calculated DDG‡ values (kcal/mol) are shown in parentheses. The 
18 initial training samples are highlighted in grey. 
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Figure 2. Transition-state structures of L3S1; calculations were 
performed at the wB97XD/SDD(Cu) & 6-311+G**-
SMD(toluene)//B3LYP-D3/LANL2DZ(Cu) & 6-31G* level of 
theory. 

As molecular fields, we employed steric indicator fields com-
posed of indicator variables (with values of 0 or 1), as shown in 
Figure 1. The indicator fields were calculated for each unit cell 
of a grid space. A unit cell that includes the van der Waals ra-
dius of any atom was assigned a value of 1, otherwise, the cell 
was given a value of 0 (Figures 1 and S2). The indicator fields 
were calculated from the TS structures of a minor pathway (the 
R pathway), as we aimed to obtain guidelines for the design of 
chiral NHC ligands that would destabilize the minor pathway. 
By correlating the calculated DDG‡ values and the indicator 
fields using LASSO13 or Elastic Net14 regression according to 
the reported procedure15 employing the R package glmnet16, we 
generated a regression model (for more details regarding the 
MFA, see the SI section ‘Details of the molecular field analy-
sis’). The important structural information obtained from the re-
gression coefficients is visualized in the TS structures of L1S1 
and L3S1 (Figure 3a and 3b). The blue and red points corre-
spond to positive and negative coefficients (for regression coef-
ficient values with coordinates of unit cells, see Table S5). If 
molecular structures are located on the blue or red points, the 
enantioselectivity increases or decreases, respectively. We fo-
cused on the blue point observed above the phenyl group of the 
aldehyde. While the phenyl group on the NHC nitrogen atom of 
the TS structure L1S1 did not overlap with the blue point, as 
indicated by the yellow arrow (Figure 3b), the corresponding 
phenylene moiety of L3S1 did overlap with the blue point, as 
indicated by the green arrow (Figure 3a). The difference in the 
position of the phenylene moiety occurs due to steric repulsion 
between the iPr group of the NHC ligand and the silyl group of 
L3S1 (for details, see Figure S8), which induces a steric inter-
action between the phenylene moiety of the NHC ligand and the 
phenyl group of the aldehyde and destabilizes the R pathway 
(Figure 2). On the other hand, this steric effect between the lig-
and and aldehyde does not exist in the S pathway (Figure 2). 
Inspired by this mechanistic insight, we introduced a phenyl or 
p-tolyl group in the place of the iPr group of NHC ligand L3 to 
further destabilize the R pathway by increasing the steric repul-
sion. The transition-state structures L4S1 and L5S1 overlap at 

the blue point described above (Figures 3c and S4). The calcu-
lated DDG‡ values for L4S1 (1.8 kcal/mol) and L5S1 (2.2 
kcal/mol) are higher than that of the design template L1S1 (0.3 
kcal/mol). We experimentally confirmed that the enantioselec-
tivity of the reactions L4S1 (87% ee) and L5S1 (82% ee) are 
improved relative to the selectivity of L3S1 (73% ee), which 
exhibited the highest value among the 18 training samples (for 
more details of the molecular design workflow, see the SI, page 
S4). Thus, we successfully improved the enantioselectivity 
through data-driven catalyst design using computational-
screening data. 

 

Figure 3. Important structural information visualized in the TS 
structures. The information extracted by the MFA using 18 samples 
is shown, together with the TS structures (a) L3S1, (b) L1S1, and 
(c) L4S1. Calculated DDG‡ and experimentally determined enanti-
omeric excess values are also shown. The silyl group was removed 
for the MFA (for more details, see Figure S2), and thus, we have 
omitted the silyl group in Figures 3 and 4. 
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Figure 4. Important structural information visualized in the TS 
structures. The information extracted by the MFA using 30 samples 
is shown together with the TS structures (a) L4S1, (b) L6S1, and 
(c) L7S1. Calculated DDG‡ and experimentally determined enanti-
omeric-excess values are also shown. 

 
We then performed the MFA again, this time including the data 
calculated from the designed ligands (30 samples, Table 1). Fig-
ure 4a shows the structural information in the TS structure L4S1, 
in which a blue point that did not overlap with the structure was 
identified near the 3-position of the aromatic group of the NHC 
ligand, as indicated by the yellow arrow. Based on this infor-
mation, we designed L6 and L7, which bear Me or iPr groups 
at the 3- and 5-positions of the aromatic ring. The structures 
L6S1 and L7S1 overlapped with the structural information used 
for the design (Figures 4b, 4c and Figure S5). The calculated 
DDG‡ values are higher than that of the design template L4S1 
(L4S1: 1.8 kcal/mol; L6S1: 3.3 kcal/mol; L7S1: 2.1 kcal/mol). 
We then performed the reactions L6S1 and L7S1. To our 

delight, further improvement of the enantioselectivity was ob-
served (L6S1: 90% ee; L7S1: 96% ee; L4S6: 88% ee, which is 
the highest value among the 30 training samples). Although 
DFT calculations are useful to design chiral catalysts,4,5 DFT-
based computational predictions vary vastly depending on the 
calculation conditions and often fail as replacements for exper-
iments.17 In this case, we employed the wB97XD functional for 
the single-point calculations; we also confirmed that MFA us-
ing DDG‡ values obtained via single-point calculations using 
other representative functionals for the TS calculations in asym-
metric catalysis led to the same molecular design as described 
above (Figures S10–S12). Although we employed 30 training 
samples to secure the quality and reliability of the regression 
models, practically, we can in this case successfully design ap-
propriate  molecules using a smaller sample size (for details, see 
Figure S13). 
In summary, a molecular field analysis (MFA) using computa-
tional-screening data and the corresponding transition-state 
(TS) structures with a relatively small dataset (30 samples) en-
abled the design of chiral NHC ligands with improved enanti-
oselectivity for the Cu-catalyzed carbonyl addition of a silyl-
boronate. The design of ligands L6 and L7 was achieved 
through iterative MFA-based molecular design. Further optimi-
zation of asymmetric catalysis using this strategy is currently in 
progress. As the structural information comprises Cartesian co-
ordinates that computers can understand, the combination of 
our MFA-based strategy and a structure generator could lead to 
the future development of efficient computational chiral cata-
lyst optimization programs/software, as has been seen in the 
field of the computational design of drug-like molecules.18 
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