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Abstract

The kinetics of surface reactions are often described using a lattice model. Since

it is expensive to propagate the configuration probabilities of the entire lattice, it is

practical to consider the occupation probabilities of a typical site or a cluster of sites

instead. This amounts to a moment closure approximation of the chemical master

equation (CME). Unfortunately, simple closures, such as the mean-field (MF) and the

pair approximation (PA), exhibit weaknesses in systems with significant long-range

correlation. In this paper, we show that machine learning (ML) can be used to con-

struct accurate moment closures in chemical kinetics, using the lattice Lotka-Volterra

model (LLVM) as a model system. We trained feed-forward neural networks (FFNNs)

to estimate the three-site occupation probabilities, using kinetic Monte Carlo (KMC)

results at select values of rate constants and initial conditions. Given the same level of

input as PA, the machine learning moment closure (MLMC) gave drastic improvements

in the simulated dynamics and descriptions of the dynamical regimes throughout the

parameter space. In this way, MLMC is a promising tool to interpolate KMC simula-

tions or construct pre-trained closures that would enable researchers to extract useful

insight at a fraction of the computational cost.
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Introduction

Machine learning (ML) is an important tool in computational chemistry. On one hand, it

has been used to accelerate the discovery of drugs and materials by deducing the electronic

properties of molecules,1–5 reactivities of organic compounds,6–8 and secondary structures

of proteins9–11 using just the topologies of the molecules. On the other hand, it has been

used to improve simulations by replacing the approximate right hand sides, such as density

functionals,12,13 electron densities,14,15 and force fields,16–19 with ML models. Meanwhile,

there have been few applications of ML in chemical kinetics. We believe that ML might

provide a way to improve the solution of the chemical master equation (CME).

There is a duality in what various authors mean by CME. First, there are homogeneous

systems, where the state of the system is defined by the numbers of molecules,20–24 and the

positions of the molecules are not explicit variables. Second, there are heterogeneous systems,

where the state of the system is defined by the configuration of a lattice.25–27 Hence, not only

the numbers of molecules, but also their positions are explicit variables. In both cases, CME

is a system of ordinary differential equations (ODEs) that propagates the probabilties of all

possible states of the system, and the computational costs are exponential. Only, the homo-

geneous case scales as the number of molecules raised to the number of species, whereas the

heterogeneous case scales as the number of species raised to the number of molecules. In this

paper, we focus on the heterogeneous case. Nonetheless, due to the mathematical common-

alities, results that hold in heterogeneous systems might have counterparts in homogeneous

systems, and vice versa.

Since the shear size of state space often makes it impractical to solve the full CME,

moment closure approximations have been considered an affordable approach to extract

qualitative insight. The kinetic equations are written in terms of n-species subsystems (ho-

mogeneous case) or n-site clusters (heterogeneous case), and the higher-order moments,

which describe the interactions of the n-th order moments with the rest of the system, are

approximated using a moment closure. In homogeneous systems, the most popular clo-
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sures are stochastic closures, such as the normal,28,29 Poisson,30 and log-normal closures.31

Recently, Smadbeck and Kaznessis proposed an alternative scheme that computes the higher-

order moments and their probability distribution by maximizing information entropy.23 In

heterogeneous systems, the most popular closures are the mean-field (MF) and the pair ap-

proximation (PA).32–35 There have been attempts to go to higher-order moments, such as

the triple approximation,36 the approximate master equations,37,38 and the cluster mean-

field approximation.26 In principle, moment closure approximations become more accurate

as higher-order moments are used as the basis. However, an increase in the order is accom-

panied by a steep rise in the computational costs.

Recently, Mjolsness et al. demonstrated that moment closures based on deep Boltzmann

machines (DBMs) can obtain accurate dynamics of the Lotka-Volterra model on the lattice.27

In analogy to the empirical construction of density functionals, we believe that ML could

provide a breakthrough in overcoming the complexity-accuracy trade-off of moment closure

approximations, provided that it can be formulated in a way that is intuitive and accessible

to the chemical community.

In this paper, we show that a simple ML architecture can be used to construct an accurate

moment closure for chemical kinetics. Our choice of feed-forward neural networks (FFNNs)

has both theoretical and practical relevance. On the theoretical side, FFNNs are the simplest

neural networks. They are oblivious of time, nor do they have memory of the previous

inputs and outputs. Indeed, they are functions that approximate the instantaneous values

of the higher-order moments using the instantaneous values of the lower-order moments.

On the practical side, FFNNs are fast to train and evaluate. They might scale better to

larger numbers of species and higher orders of moments. Moreover, FFNNs are already

available in popular software libraries, such as TensorFlow39 and scikit-learn.40 Hence, it is

an architecture with which many chemists are already familiar.

The remainder of this paper is organized as follows. We begin by introducing the lattice

Lotka-Volterra model (LLVM) as the model system, and we explain the origin, strengths,
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and weaknesses of MF and PA. Then, we train FFNNs to estimate the three-site occupation

probabilities, using the results of kinetic Monte Carlo (KMC) simulations at select values

of rate constants and initial conditions. At the same level of input as PA, the machine

learning moment closure (MLMC) can reduce the absolute and relative errors in the three-

site probabilities by an order of magnitude. Furthermore, MLMC gives drastic improvements

in the simulated dynamics and improved descriptions of the dynamical regimes throughout

the parameter space of the model system.

Theory

Model System

The Lokta-Volterra model is a classic model system in which the activities of competing

components lead to the emergence of oscillations. Originally, it was devised to describe

autocatalytic chemical reactions,41 but its application has been extended to biological sys-

tems,42–44 where it had another intuitive interpretation. Our implemtnation of LLVM is

given by

O + A
k1−→ A+ A (1)

A+B
k2−→ B +B (2)

B
k3−→ O (3)

where one often interprets O as the vacancy, A as the prey, and B as the predator. To our

knowledge, there is no chemical reaction that follows this mechanism per se. However, it

can be regarded as a coarse-grain approximation. In the SI, we discuss how the NO + CO

reaction on the Pt(100)-(1× 1) surface45 might be coarse-grained on to LLVM.

Variations of LLVM have been a subject of interest in the physics community.46–48 They

are known to display a number of features that are insensitive to the implementation.49 In
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Figure 1: Snapshots of a 100 × 100 sublattice of a 500 × 500 lattice in a KMC simula-
tion. The rate constants were (k1, k2, k3) = (0.5, 0.3, 0.1), and the initial conditions were
([O], [A], [B]) = (0.2, 0.3, 0.5).
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particular, the collective activities of the prey and the predator give rise to spatiotemporal

patterns,50 along with density oscillations51 that average out in the thermodynamic limit.47,48

Some of the spatiotemporal patterns in our implementation are shown in Figure 1. It is

interesting to see traveling wave patterns emerge. First, A grows into islands (Figures 1a

and 1b). As the islands of A expand, B begins to grow (Figure 1c) and then proceeds to

overrun the islands (Figures 1d and 1e). The cycle resets as B gives way to O (Figure 1f).

We emphasize that the individual molecules are immobile in our implementation, but their

formation and consumption as a collective give rise to the apparent pursuit-evasion behavior.

Self-organization of reactants is not uncommon in surface reactions. Even the benign

A + B → AB ↑ model is known to result in monospecific islands of A and B,52,53 and

numerous real-world examples can be found in heterogeneous catalysis.54 Indeed, the NO +

CO/Pt(100) reaction is one of them. Similar to LLVM, the NO + CO reaction gives rise to

spatiotemporal patterns, and the dephasing of local oscillations45,55 leads to the damping

of global oscillations.56 The types of correlations in LLVM are quite relevant to chemical

systems.

Chemical Master Equation and Moment Closure Approixmation

Consider a chemical reaction on a lattice. The molecules can adsorb on a vacant site, desorb,

diffuse to a neighboring site, or react with another molecule. Let pΨ denote the probability

of finding the lattice in configuration Ψ. The chemical master equation (CME) is given by

dpΨ

dt
= −

∑
Φ

kΨ→ΦpΨ +
∑

Φ

kΦ→ΨpΦ (4)

where kΨ→Φ is a sum of the elementary rate constants, if any, that would take a lattice in

configuration Ψ to configuration Φ. Assuming Markovian processes and an a priori knowl-

edge of the rate constants, CME gives an exact treatment of both static disorder (site-to-site

variations that are reflected in the rate constants, kΨ→Φ)57,58 and dynamic correlation (segre-
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gation and self-organization of reactants that manifest on the explicit lattice configurations,

Ψ).52,53 Unfortunately, the dimensionality of CME scales as SL, where S is the number of

species and L is the number of sites on the lattice, making CME intractable in many systems

of practical relevance.

In princple, the kinetic Monto Carlo (KMC)20,25,59 can recover the static disorder and

dynamic correlation. A stochastic simulation of the lattice amounts to sampling a trajectory

through the configuration space. By averaging over multiple simulations, one can approach

the full CME results. However, the computational cost of the simulations can be formidable,

especially if rapid equilibrium or diffusion is involved.25,59,60

Since the desired outcome in chemical kinetics is often an ensemble average, such as the

surface coverage or the reaction rate, we are motivated to rewrite the kinetic equations in

the occupation probabilities of n-site clusters (n-site probabilities)

[X] ≡ [X]i =
∑

Ψ

δψiXpΨ (5)

[XY ] ≡ [XY ]ij =
∑

Ψ

δψiXδψjY pΨ (6)

[XY Z] ≡ [XY Z]ijk =
∑

Ψ

δψiXδψjY δψkZpΨ (7)

where i, j, and k are a string of typical sites on the lattice; and δψiX = 1 if the occupant of

the site i is ψi = X and 0 otherwise. These n-site probabilities are special cases of moments.

The kinetic equations of one-site clusters are given by

d[X]

dt
=−

∑
Y

kX→Y [X] +
∑
Y

kY→X [Y ]

−N
∑
W,Y,Z

kWX→Y Z [WX] +N
∑
W,Y,Z

kY Z→WX [Y Z] (8)

where kXY→UV is the rate constant of the elementary step, X +Y → U +V , if it exists; and

N is the number of nearest neighbors. Observe that the equations are not closed. Unless the

7



elementary steps consist of unimolecular reactions only, the equations of n-site clusters are

going to depend on information about (n+1)-site clusters. In order to create a closed system

of equations, we need a prescription to approximate the higher-order moments using just the

information about the lower-order moments – hence, a moment closure approximation. The

simplest and the most popular closure is the mean-field approximation (MF), [XY ] = [X][Y ],

which neglects any correlation that might exist between the sites.

The next simplest closure, which incorporates some site-to-site correlation, is the pair

approximation (PA). Consider the kinetic equations of two-site clusters

d[XY ]

dt
=−

∑
U,V

kXY→UV [XY ] +
∑
U,V

kUV→XY [UV ]

− (N − 1)
∑
U,V,W

kWX→UV [WXY ]− (N − 1)
∑
U,V,Z

kY Z→UV [XY Z]

+ (N − 1)
∑
U,V,W

kUV→WX [UV Y ] + (N − 1)
∑
U,V,Z

kUV→Y Z [XUV ] (9)

With the two-site probabilities, [XY ], as the variables, the kinetic equations now depend on

the three-site probabilities, [XY Z], which must be approximated in terms of the two-site

probabilities. PA estimates the three-site probabilities using the definition of conditional

probability

[XY Z] =
[XY ][Y Z]

[Y ]
(10)

Due to its simple rationale, it has been invented many times by independent workers in

chemistry,32 population biology,33,34 and epidemiology.35

In principle, the closed system of equations would become more accurate as higher-

order moments are used as the basis of the moment closure approximation. Formally, one

can interpret MF and PA as special cases of product approximations,61,62 so it should be

possible to generalize PA to n-site probabilities. Examples of these attempts include the

triple approximation,36 the approximate master equations,37,38 and the cluster mean-field

approximation.26 However, the derivation and computation of the kinetic equations become
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challenging, as the geometries of the clusters come into play, and the number of moments

grows with the order as Sn.

A subset of the readers might be more familiar with stochastic closures, such as the

normal,28,29 Poisson,30 and log-normal closures,31 which are often used in homogeneous sys-

tems. The physical and mathematical arguments behind these closures are quite different,

since the moments in the homogeneous case are expected numbers of molecules (∈ R) as

opposed to occupation probabilities (∈ [0, 1]). In short, stochastic closures assume that the

numbers of molecules have a certin probability distribution. Applying stochastic closures

to heterogeneous systems amounts to considering a probability distribution of probabilities.

Although it can be done with suitable adjustments, our experience indicates that stochastic

closures encounter instabilities and unphysical values in heterogeneous systems that exhibit

strong spatial correlation, such as LLVM. PA is robust as long as the removable discontinuity

at zero is assigned an appropriate value. Thus, we focus on PA.

Pair Approximation and Machine Learning Moment Closure

Figure 2: Time-dependent coverages according to MF (dotted lines), PA (dashed lines),
and KMC (solid lines). (a) The rate constants were (k1, k2, k3) = (0.4, 0.5, 0.2), and the
initial conditions were ([O], [A], [B]) = (0.7, 0.1, 0.2). (b) The rate constants and the initial
conditions were (0.2, 0.7, 0.1) and (0.2, 0.4, 0.4), respectively. Clearly, PA provides significant
but not satisfactory improvement over MF in both cases.

Figure 2 demonstrates the strengths and weaknesses of PA. Although PA (dashed lines)
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does give a noticeable improvement over MF (dotted lines), it still looks too much like MF as

opposed to KMC (solid lines). In the oscillatory regime (Figure 2a), PA underestimates the

amplitude and period. In the non-oscillatory regime where [A] and [B] go to zero (Figure

2b), PA can still predict damped oscillations. Moreover, the steady-state coverages are

mispredicted. The source of the error is the long-range correlation. Because PA only knows

about the short-range (two-site) correlation, it is not able to anticipate the formation of

islands or traveling waves that span a large number of sites. That is, not without information

about the mechanism and the nature of the correlation built into the approximation. The

goal of MLMC is a smarter closure that still takes low-order moments as the input, but uses

mechanism-specific information to give a more accurate output.

Figure 3: Self-crossings of the time-dependent one-, two-, and three-site probabilities. The
curve was obtained as an average over 20 KMC simulations on a 1000× 1000 lattice. (a) On
the 2D plot, the self-crossings on the xy-plane are indicated by crosses, and the coordinates
and the standard deviations are provided on the upper left. (b) On the 3D plot, the self-
crossings on the xy-plane are indicated by bold dots, and the vertical dotted lines are visual
aids. The rate constants were (k1, k2, k3) = (0.5, 0.3, 0.1), and the initial conditions were
([O], [A], [B]) = (0.2, 0.6, 0.2).

But what is the lowest order at which the moments can be expect to be predictive of

the correlation? For the case of LLVM, Figure 3 gives some insight. Since the system

is undergoing non-equilibrium dynamics, it is not possible in priciple to write the n-site
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probabilities as functions of the k-site probabilities (k < n). Indeed, Figure 3a shows that

it is not plausible to write the two-site probability, [BB], as a function of the one-site

probability, [B]. Due to the oscillatory nature of the dynamics, the system returns to the

same value of [B] multiple times, and it is clear that the relationship between [B] and [BB]

is not one-to-one. Hence, there is no function such that [BB] = f([B])

On the other hand, there are far fewer points where the system returns to the same values

of [B] and [BB] at the same time. These appear as self-crossings of the curve in Figure 3a.

Of course, there are still differences in the three-site probability, [BBB], each time the curve

crosses itself, so it is not possible to write [BBB] = f([B], [BB]) in strict terms. However, the

numbers on the upper left of Figure 3a and the three-dimensional plot in Figure 3b indicate

that the differences are small. In many cases, they are on the same order of magnitude as the

statistical noise in the KMC simulations, and they can be negligible if the curve crosses itself

with minimal time for the correlationn to evolve. Similar results were obtained using other

initial conditions and reference species (Figures S1–S3). Therefore, we conjecture that the

three-site probabilities can be written to a good approximation as functions of the two-site

probabilities. A viable ML model of the three-site probabilities could be constructed using

no more than the two-site probabilities as the input.

Results and Discussion

As detailed in Methods, we trained FFNNs to predict the three-site probabilities in terms

of the two-site probabilities

[XY Z] = f([XY ], [XZ], [Y Z], · · · ) (11)

Figure 4 demonstrates the accuracy of MLMC. Based on the spreads of the training sets and

the test set, there does not appear to have been serious over-fitting. Moreover, there are

qualitative improvements compared to PA (Figure 5). Not only is the off-diagonal spread
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Figure 4: Scatter plots of the ML estimates against the KMC three-site probabilities. The
training set is plotted in blue dots, and the test set is plotted in orange dots.
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Figure 5: Scatter plots of the PA estimates against the KMC three-site probabilities. Only
the test set is plotted, since PA is not a trained model.
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of the data points narrower in general, but also the spread is narrower towards the smaller

values in particular. As desired, MLMC has reduced the relative error. For a quantitative

evaluation, we computed two types of root mean squared error (RMSE) on the test set: the

root mean squared absolute error and the root mean squared relative error. The values are

shown on the upper left of Figures 4a-f and 5a-f. Indeed, MLMC gives an order-of-magnitude

improvement over PA in both critera.

Remarkably, the kinetic equations (Equation 9) employing MLMC can be integrated us-

ing a standard ODE solver.63–66 The numerical integrability is non-trivial in a number of

ways. Even though our FFNNs should be continuous functions, there are a number of patho-

logical properties that can make numerical integration difficult, such as wild oscillations and

jaggedness. Moreover, the FFNNs have not been encoded with even basic laws of probability,

such as the sum rule
∑

Z [XY Z] = [XY ] and the inequality [XY Z] ≤ [XY ]. Indeed, numer-

ical integration can be problematic if the inequality is violated, because overestimation of

the three-site probabilities and hence the reaction rates can cause the two-site probabilities

to overshoot zero and take negative values. The replacement of zero-valued probabilities in

the training data with PA estimates helps to mitigate the problem by guiding the FFNNs

to go to zero as the probabilties go to zero.

Figure 6 shows some of the dynamics that were obtained using MLMC. Additional exam-

ples are shown in Figure S6. Overall, MLMC gives qualitative improvements over PA. In the

ocillatory regime, MLMC gives accurate predictions of the amplitude and period (Figures

6a and S6a), though it can underestimate the damping (Figure S6b). The transition to the

non-oscillatory regime also appears to be predicted with good accuracy (Figures 6b, S6c,

and S6d). A challenging situation is when one or both of [A] and [B] are near zero. The

minority species has a chance to recover or vanish altogether. In the recovering case, KMC

has a hard time converging on the dynamics, because the dynamics hinges on a small number

of seed molecules. Since the accuracy of MLMC is limited by the training data and hence

KMC, MLMC also gives eratic dynamics (Figure 6c). Nonetheless, it is an improvement
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Figure 6: Time-dependent coverages according to PA (dashed lines), ML (dash-dot lines),
and KMC (solid lines). (a) The rate constants were (k1, k2, k3) = (0.5, 0.6, 0.2), and the
initial conditions were ([O], [A], [B]) = (0.8, 0.1, 0.1). (b) The rate constants and the initial
conditions were (0.2, 0.3, 0.4) and (0.8, 0.1, 0.1), respectively. (c) The rate constants and the
initial conditions were (0.8, 0.4, 0.1) and (0.2, 0.1, 0.7), respectively. (d) The rate constants
and the initial conditions were (0.2, 0.7, 0.1) and (0.2, 0.4, 0.4), respectively. In general,
MLMC gives both qualitative and quantitative improvements over PA.
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over the PA prediction of periodic oscillations. In the vanishing case, MLMC can capture

the depletion of a species (Figures 6d and S6e), but sometimes it predicts fictitious recovery

with erratic oscillations (Figure S6f). The source of the error might be the replacement of

zero-valued probabilities in the training data with PA estimates. Hence, there might be some

trade-off between accuracy and robustness.

Figure 7: Contour plots of the nonlinear oscillation amplitudes according to the (a) MF, (b)
PA, (c) ML, and (d) KMC. Given the nonlinear oscillation of the coverages, the amplitude
was defined as the average crest-trough and trough-crest separation over the first two cycles
(or three if resolvable). The rate constants were normalized to k1 = 1.0, and the initial
conditions were ([O], [A], [B]) = (0.5, 0.3, 0.2).

For a comprehensive overview of the method performances, we conducted a systematic

survey of the rate constant space by fixing one of the rate constants (k1 = 1.0) and varying the

remaining rate constants (k2, k3 ∈ [0.1, 10.0]). Figures 7, S7, and S8 map the nonlinear oscil-
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lation amplitudes, frequencies, and damping ratios, respectively. Due to the time-consuming

nature of KMC simulations, the plots of the KMC data are sparser than the others. Again,

MLMC (Figure 7c) has qualitative resemblance to KMC (Figure 7d), whereas PA (Figure

7b) has more in common with MF (Figure 7a). MLMC predicts the accurate position of

the lower boundary on the oscillatory regime (k2 & k3) and an approximate position of the

upper boundary (k2 . 5k3). Notice a triangular region on the center left, where MLMC

predicts oscillations in contrast to KMC. The dynamics in this region corresponds to the

fictitious recovery discussed earlier (Figure S6f). Because the fictitious ocillations are slow

and sustained, the triangular region is almost invisible in the frequency plot (Figure S7) and

highlighted in the damping ratio plot (Figure S8). We expect that more training data in

that part of the parameter space would have mitigated the erroneous dynamics.

We emphasize that MLMC has not been trained to predict the dynamics. The FFNNs

were optimized to predict the instantaneous three-site probabilities using the instantaneous

two-site probabilities. On one hand, it is not surprising that accurate estimates of the three-

site probabilities could improve the dynamics, On the other hand, it is not obvious that

using the best estimates of the three-site probabilities at each instant would yield the best

estimate of the overall dynamics. MLMC has conceptual similarities to proposals of ML

differential equations, where a ML model is trained on time-dependent data to extract the

right hand side of the underlying equation.67–69 The kinetic equations in terms of moments

can be regarded as a special case, where the linear terms are known and the nonlinear terms

have well known properties. In the future, it would be interesting to investigate training the

FFNNs to output values that yield the best estimate of the dynamics, rather than the best

estimate of instantaneous values.

A weakness of MLMC is that it needs KMC data to be trained in the first place. However,

we have shown that MLMC can be applied to combinations of rate constants and initial

conditions to which it has not been exposed. The internal transferability suggests two

practical applications of MLMC.
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In the short term, MLMC could be used to interpolate KMC simulations. Often, one

needs to run numerous simulations in a small region of the parameter space in order to

obtain a phase diagram, locate a critical point, or fit rate constants. Considerable savings

in computational costs can result if a select subset of the simulations were performed using

KMC and the gaps were filled using MLMC. Indeed, the 500 × 500 lattice simulations to

create Figure 7d took 5 h per simulation. To make the plot at the same resolution as the

other methods, KMC would have taken 50 000 h of CPU time, disregarding repetitions to

average out stochastic noise. Using MLMC, we could complete the task in 600 h of CPU

time: 500 h of KMC to prepare the data, 60 h of training, and 40 h of MLMC simulation. Of

course, caution should be taken to detect and correct patches of poor performance, where

MLMC might exhibit erroneous dynamics.

In the long term, one can imagine pre-trained closures that are aimed at classes of reac-

tion mechanisms. Similar to the density functional theory (DFT), pre-trained closures can

help researchers extract useful insight about typical systems of interest at a fraction of the

computational cost of KMC.

Conclusion

We have explored the application of ML to derive moment closures for chemical kinetics. As

demonstrated by the case of LLVM, PA exhibits weaknesses in systems with strong long-

range correlation. In order to capture the long-range correlation at the same level of input as

PA, we trained FFNNs to predict the three-site probabilities using the two-site probabilities.

MLMC reduced the absolute and relative errors in the three-site probabilities by an order

of magnitude. Furthermore, MLMC gave drastic improvements in the simulated dynamics.

The amplitude and period in the oscillatory regime could be predicted to good accuracies,

and the dynamical transitions to the non-oscillatory regime could be located to a reasonable

precision. Based on these outcomes, we propose that MLMC could be used to interpolate
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KMC simulations or construct pre-trained closures to avoid KMC in certain systems.

In the future, we want to demonstrate MLMC on realistic models of specific chemical

systems. Given the proposal of pre-trained closures, it would be desirable to construct

MLMCs that are transferrable among reactions that share similar mechanisms. Further

development of the ML model design might be necessary, such as data transforms and neural

network architectures that enforce physical symmetries and the laws of probability. Finally,

it might be interesting to find ways to incorporate the effects of static disorder. It would

yield a method that can capture both static disorder and dynamic correlation at a fraction

of the computational cost of KMC.

Methods

The stochastic simulations were performed using rejection-free KMC25,59 with periodic bound-

ary conditions (PBC). Unless otherwise mentioned, the KMC coverages in the figures were

obtained as averages over 10 simulations on a 500× 500 lattice. The kinetic equations were

integrated using the variable-coefficient multistep backward differentiation formula (BDF)

method63–65 as implemented in the GNU Scientific Library 2.5.66 Unless otherwise men-

tioned, the equations were integrated using relative and absolute tolerances of 10−5 and

10−10, respectively.

For the training data, we used the outcomes of KMC simulations at select values of

initial conditions and rate constants. We ran the simulation only once at each combination

of parameters. First, the the initial conditions were fixed at ([O], [A], [B]) = (0.4, 0.3, 0.3),

and the rate constants were varied in k1, k2, k3 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The simulations

were performed on a 200×200 lattice. At intervals of 0.1 unit time up to 200.0 unit time, we

sampled the lattice configurations and counted the two- and the three-site clusters. Then,

we chose seven combinations of rate constants that gave distinct dynamics (Table S1). For

each combination, the initial conditions were varied in [O], [A], [B] ∈ {0.1, 0.2, ..., 0.9} with
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the constraint [O]+[A]+[B] = 1.0. This time, the simulations were performed on a 500×500

lattice, and the configurations were sampled at intervals of 0.1 unit time up to 500.0 unit

time. The 125 + 7× 36 = 377 simulations yielded a total of 1,171,229 data points.

We found it useful to apply a log transform y′ = log y to both the two-site probabilities,

[XY ], and the three-site probabilities, [XY Z], so that the ML models minimize the relative

error, as opposed to the absolute error. Constraining the relative error ensures that the

reaction rates and hence the dynamics would remain accurate when one or more of the

probabilities are small. In applying the log transform, we replaced the zero-valued two-site

probabilities with small values δ = 10−p/(2 · 5002) where p = 1, 2, 3 and the zero-valued

three-site probabilities with PA estimates. Even though the replacement somewhat reduces

the accuracy of the ML models in themselves, we found that it improves the robustness of the

chemical kinetic simulations as one or more of the probabilities approach zero. The treatment

of the zeros increased the number of data points to 1,232,155. Finally, we standardized the

input and output data with the mean µ = 0 and standard deviation σ = 1.

The ML models were constructed and trained using TensorFlow 1.13.39 We trained a

separate FFNN for each of the six three-site probabilities that appear in the kinetic equations.

The FFNNs shared a simple architecture: 6→ 100→ 100→ 75→ 50→ 25→ 12→ 1 units

on each layer, which were fully connected and had a rectified linear unit (ReLU) activation,

except the linear input and output. As a means of regularization, the data was shuffled and

split into six sets, one of which was set aside as the test set, and the other five sets were

utilized in a 5-fold cross-validation (CV). At each cycle of the CV, a FFNN was trained

by stochastic gradient descent (SGD) on the mean squared error (in the log space) via the

Adam optimizer.70 The SGD used a batch size of 10000 and stopped at 150 iterations. At

the end of the cycles, the FFNN that yielded the smallest loss on the test set was chosen as

the final model. Beside the CV, no further regularization methods were employed.
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