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ABSTRACT: We report enantioselective one-carbon ring expansion of aziridines to make azetidines as a new, abiologcal ac-
tivity of engineered ‘carbene transferase’ enzymes. A laboratory-evolved variant of cytochrome P450BM3, P411-AzetS, not only 
overrides the inherent reactivity of aziridinium ylides to undergo cheletropic extrusion of ethylene, it also exerts unparalleled 
stereocontrol (99:1 er) over a [1,2]-Stevens rearrangement, a notoriously challenging reaction class for asymmetric catalysis. 
These unprecedented selectivities enable an entirely new strategy for the synthesis of chiral azetidine products from readily 
available synthetic precursors. The utility of this reaction is highlighted by the synthesis of an enantiopure azetidine on gram 
scale. The exquisite selectivity of the enzyme enables new-to-nature ring-expansion chemistry that overcomes a longstanding 
synthetic problem.

Ring-size manipulation has emerged as a powerful strat-
egy to convert readily available cyclic structures into ring-
expanded or ring-contracted compounds that are more dif-
ficult to synthesize using conventional means.1 In particu-
lar, “cut and sew” strategies relying on transition-metal cat-
alyzed oxidative addition to form C-C bonds have emerged 
as powerful tools for insertion of carbon monoxide or two-
carbon fragments such as olefins and alkynes into existing 
rings to effect one- or two-carbon ring expansions, respec-
tively.2 For nitrogen-containing heterocycles, one possible 
strategy is to induce a [1,2]-Stevens rearrangement to enact 
a one-carbon ring expansion.3 Pioneering work by Hata, 
West, and Couty has demonstrated the power of this ap-
proach for 4- to 5-membered ring expansions, wherein 
treatment of an azetidine with a diazo compound in the 
presence of a copper catalyst provides facile access to the 
corresponding pyrrolidine.4 Conceptually, carbene transfer 
followed by an intramolecular [1,2]-Stevens rearrangement 
complements “cut and sew” reactions for non-carbonyla-
tive, one-carbon homologation of nitrogen-containing com-
pounds. Given the prevalence of nitrogen heterocycles 
across numerous sectors of chemical industry, especially 
pharmaceuticals,5 general strategies to extend this ap-
proach to other nitrogen-containing compounds would rep-
resent a powerful new approach for the synthesis of im-
portant pharmacophores. 

Azetidines are valuable isosteres of pyrrolidines and pi-
peridines, as they often have enhanced metabolic stability 
and potency compared to their 4- and 6-membered ring 
congeners.6 Azetidines are underexplored in medicinal 
chemistry due to the lack of robust synthetic strategies to 
access them,7 particularly in enantioenriched form.8  State-
of-the-art methodologies such as  [2+2] cycloadditions of 

imines and olefins,9 have been developed to address the 
lack of robust methods for the synthesis of azetidines.10 
However, direct synthesis of enantioenriched azetidines us-
ing asymmetric catalysis has remained elusive. Application 
of a ring-expansion strategy for the asymmetric, one-carbon 
homologation of aziridines via carbene insertion would be 
a powerful new entry for the synthesis of chiral azetidines. 
However, this approach comes with two major selectivity 
challenges that, to date, have not been addressed in a gen-
eral fashion. The first is the innate reactivity of the interme-
diate aziridinium ylides, which undergo highly favorable 
cheletropic extrusion of ethylene in many contexts.11 While 
these intermediates can be harnessed in [2,3]-Stevens rear-
rangements and other ring-opening reactions,12 no exam-
ples of [1,2]-Stevens rearrangements from aziridinium 
ylides have been reported. Secondly, the diradical mecha-
nism of the [1,2]-Stevens rearrangement13 has made it a 
challenging reaction for asymmetric synthesis. Few asym-
metric variations of this reaction have been reported.14 En-
antiopure quaternary ammonium salts can undergo [1,2]-
Stevens rearrangements with N-to-C chirality transfer;15 

however, escape of the radical pair from the solvent cage is 
often competitive with radical recombination,16 and erosion 
of enantiopurity is often observed in these reactions. The 
joint selectivity challenges presented by the one-carbon 
ring expansion of aziridines into azetidines not only require 
a potential catalyst to select the [1,2]-Stevens rearrange-
ment in preference to cheletropic extrusion of ethylene but 
also to exert enantiocontrol over a potential diradical inter-
mediate. We are unaware of any successful examples of a 
one-carbon ring expansion of aziridines through a [1,2]-Ste-
vens rearrangement strategy. 

 



 

 
Figure 1: Classification of enzyme-mediated carbene transfer re-
actions for various bond disconnections. 

 

Nature utilizes ring size manipulation in the biosynthe-
sis of natural products, with common strategies for biocat-
alytic one-carbon ring expansion including oxidative ring 
expansions17 and carbocation rearrangements.18 We hy-
pothesized that engineered carbene transferases could po-
tentially extend enzymatic ring expansions through a [1,2]-
Stevens-type mechanism (Figure 2). Over the past decade, 
enzymes derived from cytochrome P450BM3, such as cyto-
chromes P411, and other hemoproteins have emerged as 
powerful catalysts for carbene transfer reactions,19 and for-
mation of strained rings such as cyclopropanes and cyclo-
propenes with excellent stereoselectivities has been re-
ported.20 The most common reactions of the iron-carbenoid 
intermediate are additions across π-systems or X–H bond 
insertions:21 C–N bond insertion through Stevens rear-
rangements of any kind have yet to be reported. We envi-
sioned that the reaction of a hemoprotein with a suitable 
carbene precursor could form an electrophilic iron-carbe-
noid intermediate, which could be trapped by a sufficiently 
nucleophilic aziridine. Ammonium ylides are commonly 
proposed as intermediates in carbene N–H insertion reac-
tions,22 supporting the feasibility of this step. Finally, the 
aziridinium ylide could potentially undergo the desired 
[1,2]-Stevens rearrangement preferentially over 
cheletropic extrusion of ethylene, liberating the desired 
product and regenerating the hemoprotein—if this 
chemoselectivity could be achieved, we hypothesized that 

the enzyme may be able to control the stereoselectivity of 
this reaction. Hemoproteins demonstrate high stereoselec-
tivity in radical reactions, both in their native activity23 and 
in abiological reactions cultivated through protein engi-
neering.24 In addition, we envisioned that the active site of 
an enzyme could mimic solvent cage effects which are 
known to exert control over radical recombination in [1,2]-
Stevens rearrangements.16  Provided an enzyme could over-
come both of these selectivity challenges, this approach 
could be a facile and powerful strategy to access enantioen-
riched azetidines. 

 

 

 

Figure 2: Putative catalytic cycle for one-carbon ring expansion of 
aziridines to furnish chiral azetidines, as well as cheletropic extru-
sion of ethylene as a possible side reaction. 

 

We initiated our studies by screening a panel of hemo-
proteins for the model reaction of benzyl azirdine-1-carbox-
ylate 1 with ethyl diazoacetate (EDA) as a carbene precur-
sor to provide enantioenriched azetidine 2 (Table 1) in sus-
pensions of Escherichia coli (E. coli) whole cells. The highest 
activity for this reaction was observed with a variant of 
P411BM3-CIS25 with the additional mutations P248T, I263G, 
and L437F (“Parent F2”), providing the product with 3.7% 
yield, 73 total turnover number (TTN), and 90:10 er for the 
(S)-enantiomer (Entry 1).  Parent F2 is derived from hemo-
proteins originally engineered for the cyclopropanation of 
heteroatom-substituted olefins26 and is 17 mutations away 
from its wild-type progenitor, cytochrome P450BM3 from 



 

Bacillus megaterium, which natively catalyzes the oxidation 
of long-chain fatty acids.27 Control experiments revealed 
that hemin is unable to catalyze this reaction (see SI for de-
tails). Encouraged by this promising initial activity and high 
enantioselectivity, we chose Parent F2 as a starting point for 
directed evolution to improve enzyme performance using 
iterative site-saturation mutagenesis (SSM) of residues lo-
cated in the heme domain (Entries 2–11) and screening for 
improved azetidine yield by gas chromatography.  

 

Table 1: Lineage and Reaction Optimizationa 

 
 

aReactions were performed on the designated scale and run for 
16 h with 10 mM of 1, 15 mM of EDA, and 5 μM of protein. TTN and 
yields were determined via GC analysis of crude reaction mixtures 
relative to internal standard and represent the average of three ex-
periments. The enantiomeric ratio (er) was determined by chiral 
GC. 

 

Sites were selected for mutagenesis based on success in pre-
vious directed evolution campaigns of P450BM3 as well as 
prior knowledge of residues responsible for substrate bind-
ing and catalysis in the heme domain of this protein scaf-
fold.17a Ten beneficial mutations were identified during this 
campaign, resulting in a more efficient ‘azetidine synthase’ 
(P411-AzetS) with a net improvement of 16-fold in TTN and 
99:1 er. With P411-AzetS in hand, we next examined the im-
pact of varying the reaction conditions on the product yield 
(Entries 12–17). Notably, increasing the scale from 4 μmol 
to 100 μmol resulted in an increase in the reaction yield. 
When the concentrations of 1 and EDA were doubled to 20 

mM and 30 mM, respectively, a decrease in reaction yield was 

observed (although TTN increased). The ring expansion reac-

tion also proceeded in clarified cell lysate, albeit with decreased 

yields when compared to analogous reactions performed with 

whole-cell suspensions. Lastly, decreasing the reaction temper-

ature from 22 to 4 ºC did not have a meaningful impact on the 

reaction yields when run in whole-cell suspensions. 

Next, we sought to examine the substrate scope of this 
reaction. When this reaction was run at 0.5-mmol scale, 
azetidine 2 could be formed in 75% yield, 1490 TTN, 67% 
yield, and 99:1 er. Other aromatic groups could be used in 
lieu of a phenyl group with uniformly high enantioselection 
observed in all cases.  

 

Scheme 1: Substrate Scopea 

 

 

 
aReactions were performed on 0.5-mmol scale unless otherwise 

specified. Analytical yields and TTN were determined by GC-FID. 
Yields for isolated and purified material are designated in paren-
theses. The er was determined by Chiral GC. For 0.5-mmol scale re-
actions, all numbers reported represent the average of two trials. 
For 10-mmol scale reaction, numbers reported represent one run. 

 



 

Notably, a thiophene-bearing aziridine could undergo 
chemoselective ring expansion to azetidine 3 with no ob-
served cyclopropanation byproducts. This selectivity is no-
table not only because thiophenes are known to react with 
EDA-derived metal carbenoids under mild conditions,28 but 
also because Parent F2 was originally engineered to per-
form cyclopropanation of heteroatom-substituted olefins.26 

Fluorine substituents were also tolerated on the arene ring 
at the para, meta, and ortho positions to furnish fluorinated 
products 4–6. In addition to EDA, other diazoacetate com-
pounds could participate in one-carbon ring expansion with 
at least 99:1 er (7–8). When methyl diazoacetate was used 
as the carbene precursor to yield 9, a notable decrease in er 
(81:19) was observed. One hypothesis for this decrease in 
enantiopurity is that the smaller aliphatic chain allows for 
greater conformational freedom of the iron porphyrin car-
bene intermediate or the putative diradical intermediate. 
This explanation is consistent with prior work on enzyme-
mediated carbene transfer reactions using perfluoroalkyl-
stabilized diazo compounds as carbene precursors, where 
the substrate chain length has a profound influence on the 
absolute stereochemistry of the reaction.29 The reaction 
could also be scaled up from 0.5-mmol scale to 10-mmol 
scale to furnish 2 in 1220 TTN, 61% yield, and 99:1 er with 
an isolated yield of 1.44 g (55% yield), demonstrating that  
gram-scale production of enantioenriched azetidines is via-
ble using this platform. Taken together, the unprecedented 
chemo- and stereoselectivity observed demonstrates the 
tremendous synthetic potential of this approach for the syn-
thesis of enantioenriched azetidines. Currently, P411-AzetS 
and its lineage perform poorly with other classes of nitro-
gen protecting groups (e.g. -Boc, -tosyl, -benzyl, and -hydro-
cinnamoyl) and do not perform [1,2]-Stevens rearrange-
ments when presented with other acceptor-stabilized diazo 
compounds. Aziridine substrates with substituents on the 
carbon backbone of the ring were unable to undergo ring 
expansion due to their pronounced capacity for ring open-
ing by hydrolysis relative to unsubstituted aziridine rings. 
Efforts to expand the observed, unprecedented reactivity 
and selectivity to the synthesis of other classes of azetidines 
are ongoing. 

In summary, we have demonstrated unprecedented 
hemoprotein-catalyzed [1,2]-Stevens rearrangement in the 
context of a one-carbon ring expansion of aziridines to azet-
idines. This system not only represents a rare example of a 
highly enantioselective [1,2]-Stevens rearrangement of am-
monium ylides, it also exhibits unprecedented chemoselec-
tivity for rearrangement of aziridinium ylides over 
cheletropic extrusion of ethylene. We anticipate that this 
platform for azetidine synthesis can be extended to other 
substrate classes for synthesis of other enantioenriched 
azetidine cores, providing facile access to valuable chiral 
building blocks. We are optimistic that the reactivities and 
selectivities observed can be applied to other [1,2]-Stevens 
rearrangements as well, providing the grounds for future 
work in this area towards the synthesis of chiral amines. 
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