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Abstract 
Hydrophobic interactions drive numerous phenomena involving surfaces that are chemically 

heterogeneous at the nanoscale. Nonadditive contributions to the hydrophobicity of such surfaces 

depend on the chemical identities and spatial patterns of polar and nonpolar groups in ways that 

remain poorly understood. Here, we develop an active learning framework that utilizes molecular 

dynamics (MD) simulations, enhanced sampling, and a convolutional neural network to predict 

the hydration free energy (a thermodynamic descriptor of hydrophobicity) for nearly 200,000 

chemically heterogeneous self-assembled monolayers (SAMs). Analysis of this data set reveals 

that SAMs with distinct polar groups exhibit substantial variations in hydrophobicity as a function 

of their composition and patterning, but the clustering of nonpolar groups is a common signature 

of highly hydrophobic patterns. Further MD analysis relates such clustering to the perturbation of 

interfacial water structure. These results provide new insight into the influence of chemical 

heterogeneity on hydrophobicity via quantitative analysis of a large set of surfaces, enabled by the 

active learning approach. 
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Introduction 
The hydrophobicity of an interface dictates the magnitude of attractive, water-mediated 

hydrophobic interactions that drive diverse processes, including molecular recognition,1-3 protein 

folding,2, 4, 5 colloidal aggregation,3, 6 and assembly at the nano-bio interface.7-9 While the 

hydrophobicity of spherical, uniformly nonpolar solutes can be related to the molecular 

rearrangement of water,10 the hydrophobicity of solutes with chemically heterogeneous surfaces—

characterized by polar and nonpolar groups in close (~nm) proximity—is less well-understood.11, 

12 Approaches to predict quantitative metrics of hydrophobicity for these surfaces often assume 

that contributions from polar and nonpolar groups are additive; example approaches include 

predicting water contact angles based on area-weighted sums of the contact angles of polar and 

nonpolar surface regions (i.e., the Cassie equation),13, 14 predicting transfer free energies by 

multiplying the nonpolar solvent-accessible surface area of a solute by a constant fitting 

parameter,15-19 or predicting partitioning into nonpolar media by summing hydrophobicity scale 

values20 or octanol-water partition coefficients.21-24 However, experiments have demonstrated that 

the hydrophobicity of chemically heterogeneous surfaces can deviate from these additive 

approximations depending on the spatial arrangement of polar and nonpolar groups at the 

nanoscale (i.e., surface patterning) and the chemical identity of polar groups. For example, 

Woodward et al. attributed deviations from the Cassie equation in binary self-assembled 

monolayers (SAMs) to a “boundary region” around hydrophobic patches.25 Wang et al. and Ma et 

al. found that the hydrophobic force between a nonpolar SAM and a 𝛽𝛽-peptide containing polar 

and nonpolar amino-acid side chains was only measurable if the polar side chains were adjacent 

to a well-defined nonpolar patch.11, 26 These same studies revealed the impact of the adjacent polar 

groups: lysine side chains (with an amine group) had no measurable effect on the hydrophobic 

force, whereas glutamine side chains (with an amide group) eliminated the hydrophobic force 

completely.11, 26 This interplay between surface patterning and polar group chemistry on the 

hydrophobicity of chemically heterogeneous surfaces remains poorly understood. 

To complement experimental studies, atomistic molecular dynamics (MD) simulations 

have been employed to analyze interfacial water structure at chemically heterogeneous interfaces 

and examine the effect of surface patterning on hydrophobicity.27-34 For example, Xi et al. studied 

the impact of surface patterning by systematically varying the distance between hydroxyl groups 

in a binary SAM and found a nonmonotonic relationship between this distance and interfacial 
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water density fluctuations.12 Monroe and Shell leveraged a genetic algorithm to show that 

hydroxylated surfaces with highly clustered polar domains had the highest surface water 

diffusivity as a measurement of hydrophobicity.35 This work seeks to build upon these and related 

studies36, 37 by exhaustively mapping surface patterning to hydrophobicity, thereby enabling the 

quantitative analysis of pattern features that impact hydrophobicity. A key challenge is the 

combinatorial complexity associated with surface patterning; for example, a binary SAM with 

polar and nonpolar ligands arranged on an n×n lattice has ~2𝑛𝑛2 arrangements of polar and nonpolar 

groups. Enhanced sampling methods that calculate the hydration free energy (HFE), a 

thermodynamic descriptor of hydrophobicity,27, 28  are too computationally expensive to tractably 

explore all such patterns. We recently developed a data-driven method for predicting HFEs 

utilizing a convolutional neural network (CNN) that requires minimal simulation time.32 However, 

the CNN’s reduced accuracy combined with the combinatorial complexity of patterning 

necessitates more efficient methods to study the effect of patterning on hydrophobicity, 

particularly when considering multiple types of polar groups. 

In this work, we develop a new computational approach to efficiently map surface 

patterning to hydrophobicity for chemically heterogeneous surfaces. Our approach uses a Gaussian 

Process Regression (GPR) model to predict the HFE of a patterned SAM surface using a binary 

matrix representation of the pattern as input. To efficiently train the GPR model, we develop a 

dual-loop active learning scheme to label a small subset of patterned SAMs with HFEs. Active 

learning accelerates model training by choosing training data using an information gain criterion38 

and has been recently employed for materials discovery.39-41 Our scheme combines a fast, reduced-

accuracy method (a pre-trained CNN) with a slow, higher-accuracy method (Indirect Umbrella 

Sampling) to label selected training patterns with HFEs. Once trained, the GPR model can rapidly 

predict HFEs for tens of thousands of patterns without additional simulations. We leverage this 

capability to identify patterns that display large deviations from additive behavior (i.e., the HFE 

cannot be approximated by additive contributions from polar and nonpolar groups) for nearly 

200,000 binary SAMs containing either amine, hydroxyl, or amide polar end groups. Analysis of 

this large dataset reveals that SAMs with different polar groups exhibit substantial variations in 

hydrophobicity as a function of surface composition and patterning, but highly hydrophobic 

patterns are always distinguished by the clustering of nonpolar groups which we attribute to the 

disruption of interfacial water molecules. These results thus provide new physical insight into the 
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role of chemical heterogeneity on hydrophobicity via quantitative analysis of a substantially larger 

set of surfaces than would be accessible by simulations alone. 

  

Results 

Set of patterned surfaces and descriptor for hydrophobicity 

Identifying patterned surfaces with interfacial hydrophobicities that deviate from additive behavior 

requires defining (i) the set of patterned surfaces, (ii) a descriptor of interfacial hydrophobicity, 

and (iii) additive behavior. We chose a set of patterned binary SAMs consisting of alkanethiol 

ligands terminated with either methyl groups (referred to as nonpolar ligands) or one of three polar 

end groups – amine, hydroxyl, or amide (referred to as polar ligands). Ligand and end group 

chemical structures are shown in Figure 1A. SAMs were constructed from a hexagonal lattice of 

64 ligands with a 4×4 patch of polar and nonpolar ligands embedded within a background of 48 

nonpolar ligands. The number and spatial positioning of polar and nonpolar ligands within the 

patch were permuted to generate different patterns as shown in Figure 1B. In total, this set included 

 
Figure 1: Space of self-assembled monolayers and labels. (A) Ligands used to create patterned self-assembled 

monolayers (SAMs) consist of an alkane backbone with either a nonpolar (methyl) or polar (amine, hydroxyl, or 

amide) end group. (B) Representative pattern obtained from varying the number and spatial positioning of nonpolar 

and polar ligands within a central 4×4 ligand patch. Nonpolar ligands within the pattern are blue, polar ligands within 

the pattern are red, and nonpolar ligands surrounding the pattern are gray. Beneath each pattern is a corresponding 

Voronoi diagram to illustrate the partitioning of the 2×2 nm2 area covered by the cavity (described in C) into polar 

and nonpolar cells following the same color scheme. Each diagram is labeled by the corresponding polar area fraction.  

(C) Simulation snapshot of a 2×2×0.3 nm3 cavity, indicated by 𝜈𝜈, placed at the SAM-water interface. The snapshot 

illustrates the cavity when emptied of water during an indirect umbrella sampling simulation.  
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3×216=196,608 SAMs, permitting broad exploration of the relationship between spatial patterning 

and hydrophobicity for different polar end groups. 

We quantified SAM interfacial hydrophobicity via the hydration free energy (HFE), which 

measures the magnitude of water density fluctuations.27, 28 Equation 1 defines the HFE in terms of 

the probability, 𝑃𝑃𝜈𝜈(0), that a cavity (indicated by subscript 𝜈𝜈) near the SAM is occupied by zero 

water molecules:27  

HFE = −𝑘𝑘𝐵𝐵𝑇𝑇 ln�𝑃𝑃𝜈𝜈(0)� (1) 

Water density fluctuations are enhanced near hydrophobic surfaces, increasing 𝑃𝑃𝜈𝜈(0) and 

decreasing the HFE. The HFE is an appropriate descriptor of hydrophobicity for chemically 

heterogeneous surfaces because it has been shown to vary for surfaces with hand-selected 

patterns.12, 42 Previous studies have also shown HFEs to correlate with experimental measurements 

of surface contact angles43, 44 and hydrophobic forces.33, 42 Because the HFE is sensitive to the 

placement and size of the cavity, all HFE calculations used a 2.0×2.0×0.3 nm3 cavity (Figure 1C) 

positioned with its base on a constant water (number) density isosurface.45 SI Section S1.1 further 

discusses the cavity placement. HFEs were obtained either by Indirect Umbrella Sampling 

(INDUS),27, 28 an enhanced sampling technique that biases the removal of water molecules from 

the cavity during independent MD simulations, or by using a previously developed 3D 

convolutional neural network (CNN),32 a machine learning model that maps interfacial water 

positions sampled from a short MD simulation to an HFE. INDUS is a high accuracy approach but 

requires substantial MD simulation time (~65 ns) whereas the CNN is less accurate but requires 

minimal simulation time (~2 ns). Details on the usage of these two methods are provide below. 

 We expect the HFE of a surface that exhibits additive behavior to depend on the relative 

amounts of polar and nonpolar area covered by the cavity.10, 15-19 Accordingly, we computed 

Voronoi diagrams to partition the total area covered by the cavity into polar and nonpolar cells 

determined by the closest ligand end group at equilibrium (Figure 1B). Cells were generated from 

a subset of MD simulations for each polar end group and were found to be nearly equal hexagons 

in all simulations. We thus define the polar area fraction as the fraction of covered area that is 

occupied by polar cells, assuming that cell areas are independent of the pattern and polar end group, 

and define a pattern as exhibiting additive behavior if its HFE is a linear combination of the HFEs 
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of SAMs containing only polar and only nonpolar ligands weighted by its polar area fraction. 

Because the cavity has a square 2D footprint while the SAM lattice is hexagonal, the polar area 

fraction can vary by up to ~0.05 for patterns containing the same number of polar groups and 

reaches a maximum of ~0.82 for a pattern with only polar groups due to the boundary of nonpolar 

groups (Figure 1B). Details on the calculation of the polar area fraction are provided in the 

Supplementary Information. 

Dual-loop active learning scheme to efficiently map patterns to hydrophobicity 

The large number of possible patterned SAMs inhibits the direct calculation of HFEs for all 

possible SAMs. Instead, we trained a Gaussian Process Regression (GPR) model to map patterns 

(encoded as 4×4 binary matrices) to HFE labels; the model is trained on HFEs calculated from 

simulation data, but after training the GPR model can predict HFEs for all patterns without 

additional simulations. To minimize the amount of training data while maximizing GPR model 

accuracy, we designed a dual-loop active learning scheme that exploits the advantages of both 

INDUS (high accuracy, more computationally expensive) and the CNN (lower accuracy, less 

computationally expensive) during GPR model training. This scheme uses accurate INDUS 

calculations to label selected patterns with large deviations from additive behavior and faster, but 

less accurate, CNN calculations to explore large portions of pattern space.  

Figure 2 illustrates the active learning scheme; individual elements are detailed in the 

Methods. The GPR model is initially trained using a “seed” set of 52 SAMs for each polar end 

group with INDUS-calculated HFE labels. Two loops are then performed in parallel to iteratively 

label additional SAMs with HFEs: a “fast loop” utilizing the CNN and a “slow loop” utilizing 

INDUS. 50 iterations of the fast loop require approximately the same computational time as one 

iteration of the slow loop. A pattern is chosen for each iteration of the fast loop by maximizing an 

acquisition function that optimizes the tradeoff between choosing patterns with high deviations 

from additive behavior and sampling patterns in uncertain regions of pattern space. The chosen 

pattern is then labeled with the CNN. The pattern that was labeled with the largest deviation from 

expected additive behavior during the 50 iterations of the fast loop is then chosen for the slow 

loop; the fast loop continues for an additional 50 iterations while this pattern is labeled with 

INDUS. The parallel execution of the fast and slow loops is repeated until convergence of GPR 

predictions,46 which required only 30 iterations of the slow loop and 1448 iterations of the fast 



7 
 

loop (detailed in the Supplementary Information). Table 1 summarizes the scheme, which we 

repeated once for each polar end group.  

Predictions from the Gaussian Process Regression model before and after active learning 

We first trained the GPR model using the same set of randomly selected seed patterns for 

all three polar end groups, then initiated the dual-loop active learning scheme. Figure 3A depicts 

envelopes of GPR-predicted HFEs after being trained only on seed patterns. Each envelope 

illustrates the range of GPR-predicted HFEs for different patterns as a function of polar area 

 
Figure 2: Illustration of the dual-loop active learning scheme. (A) A Gaussian Process Regression (GPR) model 

is used to map SAM patterns (𝒙𝒙 ∈ ℝ𝑑𝑑) to HFE labels (𝑦𝑦 ∈ ℝ). The GPR model predicts a mean HFE value (𝜇𝜇) and 

uncertainty in the predicted mean (𝜎𝜎) for all possible patterns given training data (patterns labeled with HFEs). (B) 

The pattern which maximizes the acquisition function 𝑢𝑢(𝒙𝒙), is chosen as the next pattern to sample during the fast 

loop. (C) An unbiased MD simulation of a SAM with the chosen pattern is performed. Interfacial water molecules 

are converted to an input representation for the pre-trained CNN following previous work.32 (D) Schematic of the 

CNN, which receives the interfacial water molecule representation as input and outputs an HFE label. (E) The 

pattern with the highest deviation from expected additive behavior identified during the previous 50 iterations of the 

fast loop is chosen for the slow loop. This pattern is labeled using accurate but computationally expensive Indirect 

Umbrella Sampling (INDUS) simulations. The HFE label calculated from the INDUS simulation is then added to 

the GPR training data. 
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fraction; predicted HFEs for all possible SAM patterns lie within the envelopes. The linear 

interpolation line depicts additive behavior. The differences in HFEs for patterns with equivalent 

polar area fractions indicate the impact of patterning. All HFE envelopes monotonically increase 

with polar area fraction as observed previously.32, 35 However, there are substantial differences 

between polar groups; HFEs for the amine SAMs (i.e., SAMs containing polar ligands with amine 

end groups) are clustered near the linear interpolation line, hydroxyl SAMs display large positive 

deviations from additive behavior, and amide SAMs display positive deviations less than those of 

the hydroxyl SAMs.  Figure 3B shows that the envelopes of GPR-predicted HFEs increase in area 

after convergence of active learning, indicating that active learning amplifies HFE variations 

associated with patterning.46 To quantify these changes, we characterize the envelope of INDUS-

calculated HFEs before (i.e., for only the seed patterns) and after active learning (i.e., including 

patterns selected for the slow loop). Only INDUS-calculated HFEs are considered because of their 

low error and because patterns were selected for the slow loop to maximize deviations from 

additive behavior. We define the average envelope width as the difference between the maximum 

and minimum INDUS-calculated HFEs averaged over all polar area fractions and the maximum 

envelope width as the largest difference in maximum and minimum INDUS-calculated HFEs for 

any polar area fraction.  

Table 1: Summary of the dual-loop active learning algorithm.  
Dual-Loop Active Learning Algorithm  

1 Generate a set of 52 seed patterns and label with INDUS simulations 
2 Use GPR model to map patterns to HFE labels 
3 while (convergence criterion is not met): 
4  Execute 50 iterations of the fast loop and 1 iteration of the slow loop in parallel 
5 end 

 
Fast Loop 

1 Maximize the acquisition function to select next pattern to sample 
2 Perform unbiased MD simulation and predict HFE using a CNN 
3 Append the CNN-predicted HFE to the training data with proper replicate error 
4 Use GPR model to map patterns to HFE labels 

 
Slow Loop 

1 Choose pattern with max deviation from expected additive behavior from last 50 fast loop iterations 
2 Perform INDUS simulation of chosen pattern to calculate HFE 
3 Append INDUS-calculated HFE to training data with proper replicate error 
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Figure 3B shows that amine SAMs still display behavior close to additive behavior after 

active learning. However, the average envelope width increases from ~3.3 kBT to ~5.5 kBT, 

indicating that active learning successfully identifies patterns with higher deviations from 

additivity than present in the seed set. Similarly, the maximum envelope width increases from ~6.3 

kBT to ~9.7 kBT after active learning. Hydroxyl SAMs exhibit a plateau in the calculated HFEs as 

the polar area fraction reaches ~0.6, a value lower than a pure polar pattern (0.82), in qualitative 

agreement with past studies.32, 35 All INDUS-calculated HFEs exhibit positive deviations from 

  

Figure 3: Hydration free energy (HFE) envelopes generated using Gaussian Process Regression (GPR) models. 

Each envelope is plotted using the highest and lowest GPR-predicted HFEs for each polar area fraction (binned in 

intervals of 0.04); GPR-predicted HFEs for all 65,536 possible patterns lie inside each envelopes. The black dashed 

linear interpolation lines indicate HFEs corresponding to additive behavior (a weighted average of pure polar and pure 

nonpolar HFEs based on the polar area fraction). (A) Envelopes after training only on the set of seed patterns. Green 

points denote GPR predictions for the set of seed patterns, which have low uncertainty because they are labeled with 

INDUS. (B) Envelopes after active learning. Green points denote GPR predictions for INDUS-labeled patterns 

(including seed patterns). Blue circles denote GPR predictions for CNN-labeled patterns. 
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additive behavior, with some tracking the upper edge of the GPR-predicted envelope. None of the 

INDUS-calculated HFEs lie below the linear interpolation line, where the GPR model predicts 

negative deviations from additive behavior. This discrepancy is an artifact of the CNN which tends 

to systematically underpredict values at the lower end of the HFE range. Despite this quantitative 

inaccuracy, active learning still discovers new patterns with large deviations from additive 

behavior; the average envelope width for hydroxyl patterns increases from ~4.7 kBT to ~7.1 kBT 

after active learning and the maximum envelope width substantially increases from ~8.1 kBT to 

~15.7 kBT. The largest positive deviation from additivity for INDUS-calculated HFEs also 

increases from ~17.9 kBT to ~20.1 kBT. Amide SAMs exhibit behavior between that of the amine 

and hydroxyl SAMs, with most INDUS-calculated displaying positive deviations from additive 

behavior but without plateauing at intermediate polar area fractions. The average envelope width 

increases from ~5.6 kBT to ~7.2 kBT while the maximum envelope width increases from ~12.7 kBT 

to ~15.4 kBT after active learning. Together, these data indicate that active learning identifies larger 

deviations from additivity for all three sets of SAMs while confirming that varying patterning at 

fixed polar area fraction substantially impacts HFEs, even for amine SAMs that only moderately 

deviate from additive behavior. 

 The trained GPR model identifies patterns with large deviations from additive behavior 

A chief benefit of the GPR model is the ability to label all possible SAM patterns, permitting 

analysis of the distribution of GPR-predicted HFEs as a function of polar area fraction. We 

quantified this distribution by binning the number of patterns with respect to the polar area fraction 

(in increments of 0.04) and GPR-predicted HFE (in increments of 0.5). Each bin was normalized 

by the largest number of patterns in any bin for the same polar area fraction to obtain the relative 

probability of obtaining a HFE for any given polar area fraction. Figure 4 plots the distribution of 

GPR-predicted HFEs for the three end groups as a function of the polar area fraction. For the amine 

and amide SAMs, most patterns have HFEs clustered near the linear interpolation line. The inset 

in Figure 4 shows the relative probability of patterns for an amine SAM with a polar area fraction 

of 0.38, indicating that most patterns also have HFEs clustered near the average HFE. Together, 

these features indicate that randomly sampled patterns for these SAMs would likely exhibit 

additive behavior, emphasizing the need for active learning to identify patterns with large 

deviations from ideality. Conversely, average HFEs for hydroxyl SAMs cluster near the linear 
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interpolation line at small polar area fractions but deviate from this line at larger polar area 

fractions, indicating that most patterns for SAMs with large numbers of hydroxyl groups would 

exhibit deviations from additive behavior (as noted in prior computational studies).35   

We next sought to confirm the patterns lying on the extremes of the GPR-predicted HFE 

distributions with higher accuracy INDUS calculations. We selected four patterns—corresponding 

to the two largest and two smallest GPR-predicted HFEs—in each polar area fraction bin that 

contained at least 4000 patterns, resulting in 32 patterns per polar group. GPR-predicted and 

INDUS-calculated HFEs are highly correlated for these patterns with a Pearson’s r of ~0.9 for 

amine SAMs and ~0.8 for hydroxyl and amide SAMs. SI Figure S8 shows INDUS-calculated 

HFEs superimposed on the final GPR-predicted HFE envelope for the selected SAMs. Figure 4 

shows that patterns predicted by the GPR model to have the highest positive deviations from 

ideality have INDUS-calculated HFEs (denoted by red plusses) that consistently lie on the upper 

edge of the envelope in regions where the relative probability of finding patterns is extremely low, 

with outliers noted only for the amide SAMs. On average, these patterns have INDUS-calculated 

HFEs that deviate by ~3.0 kBT more from additivity than the set of seed patterns (shown as black 

crosses in Figure 4). These results indicate that the GPR model reliably identifies patterns with 

large deviations from additivity in addition to those patterns chosen for the active learning slow 

 
Figure 4: Distribution of hydration free energies (HFE) predicted by Gaussian Process Regression. Each plot 

shows the relative probability of HFEs as a function of polar area fraction (normalized per polar area fraction). Black 

crosses denote INDUS-calculated HFEs of seed SAMs and red plusses denote INDUS-calculated HFEs of patterns with 

the largest GPR-predicted HFEs after active learning. The inset of the left panel shows the relative probabilities of HFEs 

for amine SAMs with a polar area fraction of 0.38 (shown by the gray arrow). While the seed patterns cluster near the 

most probable HFE (black crosses), after active learning the GPR model correctly identifies low-probability patterns 

with the largest GPR-predicted HFEs (red plusses).   
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loop, enabling the study of pattern features that distinguish hydrophobicity utilizing a much larger 

number of patterns than in previous studies.12, 30, 35 

Clustering of nonpolar ligands distinguishes hydrophobic and hydrophilic patterns 

Having identified large numbers of patterns with substantial deviations from additive behavior for 

all three sets of SAMs, we sought to identify features of these patterns that distinguish extremes 

of hydrophobicity. Figure 5A visualizes patterns with high and low HFEs at constant polar area 

fraction. Visually, patterns with high HFEs appear to have more densely clustered polar groups, 

whereas patterns with low HFEs appear to have a higher degree of “connectedness” between 

nonpolar groups. To quantify these observations, we defined a variety of clustering and spatial 

autocorrelation metrics that could be computed for patterns. Clustering metrics were computed 

using a graph-based approach; either polar or nonpolar ligands were defined as vertices and edges 

were defined between neighboring ligands. We calculated the edge connectivity, node 

connectivity, and the average clustering coefficient for distinct graphs of polar and nonpolar end 

groups (a total of 6 metrics for each pattern). Spatial autocorrelation metrics included Moran’s I 

Figure 5: Analysis of ligand clustering for hydrophobic and hydrophilic patterns. (A) Representative high HFE 

(hydrophilic) and low HFE (hydrophobic) patterns for different hydroxyl polar area fractions. Each column is at fixed 

polar area fraction. Values noted in the inset for all patterns are INDUS-calculated HFEs. Patterns include an additional 

layer of nonpolar ligands for ease of visualization. (B) Median of the average clustering coefficient of nonpolar ligands 

computed for hydrophilic (blue circles) and hydrophobic (red squares) patterns. Shaded regions encompass all patterns 

between the first and third quartile of clustering coefficient values; only polar area fractions with >4000 patterns are 

included. Points with no shaded region have the same median, first quartile, and third quartile values. Hydrophobic 

patterns have more clustered nonpolar regions on average than hydrophilic patterns (seen as breaks in the polar ligand 

patterns in panel A). 
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and adjusted Geary’s C. Patterns displaying extremes of hydrophobicity were defined based on 

their GPR-predicted HFEs: patterns with HFEs at least two standard deviations larger than the 

mean HFE for any given polar area fraction (binned following the same approach as in Figure 4) 

were defined as hydrophilic for this analysis, whereas patterns with HFEs at least two standard 

deviations smaller than the mean HFE were defined as hydrophobic. We only included polar area 

fraction bins with more than 4000 patterns to ensure statistical significance. We then used a binary 

support vector machine (SVM) classifier with an 𝑙𝑙1 weight penalty to select the metrics that can 

accurately classify a pattern as hydrophobic or hydrophilic. More details on the calculation of these 

metrics and the SVM classifier can be found in the Supplementary Information. 

The SVM classifier identified the average clustering coefficient of nonpolar ligands as the 

most important metric for distinguishing hydrophobic and hydrophilic patterns. Figure 5B shows 

that there is a distinct difference between the average clustering coefficient of nonpolar ligands 

computed for hydrophobic and hydrophilic patterns for all end groups and polar area fractions, 

with the difference most pronounced as the polar area fraction reaches an intermediate value 

(consistent with the widest HFE envelopes in Figure 3). The impact of clustered nonpolar group 

on hydrophobicity has been demonstrated in previous computational studies of patterned 

chemically heterogeneous surfaces12, 32, 35, 36, 42 and in experimental studies of 𝛽𝛽-peptides with 

extended nonpolar domains,11, 26 but to our knowledge has not been demonstrated quantitatively 

for a large number of patterns and different polar end groups. The other clustering and spatial 

autocorrelation metrics do not distinguish between patterns with large variations in HFEs, 

emphasizing the importance of clustered nonpolar domains over other possible pattern features. 

This finding underscores the importance of using a quantitative, data-driven approach with enough 

sampling to find measurable differences in factors affecting hydrophobicity. 

Clustering of nonpolar ligands impacts the pinning of water molecules  

To explain why the clustering coefficient of nonpolar ligands distinguishes hydrophobic and 

hydrophilic patterns, we hypothesized that this metric reports on the pinning of the SAM-water 

interface. Pinning refers to the strong attraction of water molecules to hydrophilic regions of the 

surface, which reduces water density fluctuations and decreases the likelihood of dewetting (thus 

contributing to a smaller value of 𝑃𝑃𝜈𝜈(0) and larger HFE).12, 33 Because water molecules are highly 

correlated due to strong water-water interactions, pinning impacts water density fluctuations across 
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multiple molecular lengths and is influenced by the patterning of chemically heterogeneous 

surfaces. Pinning can be quantified by using MD simulations to analyze spatial variations in the 

average height of the SAM-water interface, which tends to decrease near hydrophilic regions due 

to pinning.12, 42 In our recent study of surfaces with hand-selected patterns, we found that SAMs 

with uniformly distributed polar and nonpolar groups more tightly pinned water molecules 

(leading to lower interfacial heights) and appeared more hydrophilic than SAMs with large 

nonpolar domains.42 We thus sought to investigate if the clustering coefficient of nonpolar ligands 

similarly captures a relationship between patterning and pinning for SAMs with patterns that do 

not fit these hand-selected extremes. We characterized pinning by performing MD simulations of 

representative SAMs and calculating the SAM-water interface height, which we defined as the 

difference between the height of a constant water density isosurface (described in the 

Supplementary Information) and the height of the center of mass of ligand end groups. 

Figure 6 shows interface height contours for a representative pair of hydroxyl SAMs with 

the same polar area fraction but with INDUS-calculated HFEs differing by ~15 kBT. The average 

clustering coefficient of nonpolar ligands is 0.63 for the more hydrophobic pattern (HFE of 76.9 

kBT) and 0 for the more hydrophilic pattern (HFE of 92.1 kBT). A larger region of loose pinning 

 

Figure 6: Differences in interface height for a representative pair of patterns. (A) Contours of SAM-water 

interface height for hydroxyl SAMs with the same polar area fraction (0.47) but HFEs differing by ~15 kBT. A larger 

region of tight pinning (denoted by the contours in shades of red) is apparent for the hydrophilic pattern (92.1 kBT) 

compared to the hydrophobic pattern (76.9 kBT). (B) Histogram of SAM-water interface heights. The area covered by 

the cavity is discretized into a grid and the average SAM-water interface height is calculated at each grid point. The 

hydrophobic pattern has a larger proportion of loosely pinned areas (height > 0.21 nm) whereas the hydrophilic pattern 

has a larger proportion of tightly pinned areas (height < 0.15 nm). 
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(i.e., a region with a high interface height) is apparent for the hydrophobic pattern. In the 

hydrophilic pattern, the interface height is reduced near the nonpolar ligand that is bordered by 

polar ligands, reflecting the perturbation of water structure due these ligands. Figure 6B quantifies 

these differences by plotting the distribution of interface heights for both patterns. In agreement 

with prior studies of hand-selected patterns, there is a greater prevalence of larger areas of loose 

pinning (interface height ~0.21 nm) for the hydrophobic pattern and tight pinning (interface height 

<0.15 nm) the hydrophilic pattern. Similar distributions were identified for other patterns 

(examples shown in SI Figure S11), pointing to a general relationship between pinning and the 

clustering of nonpolar ligands. These findings illustrate the non-obvious changes to interfacial 

water structure that can be related to patterns identified by the GPR model without being selected 

by hand.  

Discussion 

We investigated nonadditive contributions to the hydrophobicity of chemically heterogeneous 

surfaces by training a GPR model that relates patterning to HFEs for SAMs with three different 

polar end groups (amine, hydroxyl, and amide). To efficiently train the GPR model, we developed 

a dual-loop active learning scheme that leverages the strengths of two simulation methods to label 

HFEs: a fast method with lower accuracy (a pre-trained CNN) that is used to explore pattern space 

and a slow method with high accuracy (INDUS) that is used to identify patterns with large 

deviations from additive behavior. The active learning scheme enables the GPR model to map 

65536 patterns to HFEs by training on simulation data for only ~2% of the patterns (labeled with 

82 INDUS and 1448 unbiased simulations). GPR-predicted HFEs reveal substantial differences in 

the impact of patterning and composition on hydrophobicity for SAMs with different polar groups, 

emphasizing the need for inclusion of diverse polar groups in studies of chemically heterogeneous 

surfaces. The trained GPR model also consistently identifies patterns with HFEs that substantially 

deviate from additive behavior. Analysis of pattern features further shows that a metric quantifying 

the clustering of nonpolar ligands distinguishes more hydrophobic from more hydrophilic patterns 

at constant polar area fraction, which we attribute to differences in the local pinning of the SAM-

water interface. To our knowledge, this is the first analysis of a large number (thousands) of 

patterns to quantitatively demonstrate the effect of clustering on the hydrophobicity of diverse 

chemically heterogeneous SAMs, enabled by the new active learning approach. 
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The success of the dual-loop active learning scheme suggests several possibilities for future 

investigation. To correct the tendency of the GPR model to underpredict the lower bounds of 

possible HFEs, future work will investigate machine learning models that exploit more informative 

data representations (e.g., hydrogen bond graphs) or alternative deep learning architectures (e.g., 

recurrent neural networks) to improve the accuracy of HFE predictions during the fast loop. We 

also envision extending the active learning scheme to train a single GPR model that maps both 

polar group chemistry (encoded as a molecular fingerprint, for example) and patterning to HFEs, 

permitting efficient investigation of a broader range of polar groups. Finally, the dual-loop active 

learning scheme could be modified to include experimental measurements during the slow loop, 

thereby guiding the design of experiments for the targeted exploration of systems expected to 

exhibit deviations from additive behavior. 

Methods 

Molecular dynamics simulations 

Each SAM was constructed by positioning 64 ligands in the x-y plane with a grafting density of 

21.6 Å2/ligand to mimic self-assembly onto a gold (111) lattice.47 Gold atoms were not modeled 

because prior work showed that removing the gold substrate leads to SAM properties in better 

agreement with experiments without influencing water structure.31 Ligands were oriented with the 

end groups pointing in the positive z-direction. A 5-nm thick water layer was placed above the 

SAM and in contact with the ligand end groups. A 3-nm thick buffering vacuum layer was added 

above the water layer. Periodic boundary conditions were applied in all dimensions. Ligands were 

modeled using the CHARMM36 force field48 with the TIP4P/2005 water model.49 Electrostatic 

interactions were calculated using the smooth Particle Mesh Ewald algorithm50 with short-range 

Coulomb, van der Waals, and neighbor list cutoffs set to 1.2 nm. Because gold-sulfur bonds were 

omitted in the simulations, harmonic restraints with a spring constant of 50,000 kJ/mol/nm2 were 

applied to the sulfur atoms to maintain SAM structure. All MD simulations were performed in the 

NVT ensemble using Gromacs 2016 with a 2-fs timestep. The temperature was maintained at 300 

K using a velocity rescaling thermostat with a temperature-coupling time of 0.1 ps.51 
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Seed patterns and hydration free energy calculations 

The set of seed patterns included patterns generated from 50 random binary matrices and two 

patterns corresponding to all polar and all nonpolar groups. The same seed patterns were used for 

all polar end groups. Seed patterns and patterns chosen for the slow loop during active learning 

were labeled with HFEs using INDUS. INDUS samples 𝑃𝑃𝜈𝜈(0) (Equation 1) by biasing the number 

of water molecules in the cavity 𝜈𝜈 because 𝑃𝑃𝜈𝜈(0) is too small to be sampled during unbiased 

simulations if the cavity is large.27, 28 We performed INDUS using GROMACS 2016.652 patched 

with the PLUMED 2.5.1 plugin.53 Each SAM was equilibrated for 5 ns, INDUS was performed 

using 13 independent, 5-ns simulation windows, and the unbiased value of 𝑃𝑃𝜈𝜈(0) was obtained 

using the Weighted Histogram Analysis Method.54 Details are included in the Supplementary 

Information. The error associated with HFEs calculated using INDUS is ~2 kBT.32, 42 

Patterns chosen for the fast loop were labeled using a CNN developed in our prior work.32 

The CNN was previously trained on a set of homogeneous SAMs36 containing amine, amide, and 

hydroxyl ligands with scaled partial charges. Input to the CNN consists of a short unbiased MD 

simulation (~1 ns) converted into a sequence of atomic density histograms. The CNN predicts 

HFEs that are highly correlated with INDUS-calculated HFEs and accurate up to a multiplicative 

constant. The error associated with HFEs predicted by the CNN is ~6 kBT. CNN details are 

included in the Supplementary Information.  

Gaussian Process Regression to map patterns to HFE labels 

GPR is a non-parametric Bayesian model that estimates the mean and uncertainty of unlabeled test 

data based on knowledge of labeled training data under the assumption that the joint distribution 

of training and test data is Gaussian.55 In our approach, input data are patterns encoded as 4×4 

binary matrices and labels are HFEs. We define elements of the symmetric covariance matrix 𝐊𝐊 

using a radial basis kernel function k(𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗):56 

k�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = exp �−
1

2𝛾𝛾2
��𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗��

𝟐𝟐
� (2) 

𝐱𝐱𝑖𝑖 and 𝐱𝐱𝑗𝑗 denote individual patterns and 𝛾𝛾 = √2 defines the characteristic length scale in pattern 

space. For any pattern 𝐱𝐱∗ not in the training data, estimates for the mean (𝜇𝜇𝑓𝑓∗) and uncertainty 

(𝜎𝜎𝑓𝑓∗) of the HFE for that pattern are:  
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𝜇𝜇𝑓𝑓∗ =  𝐤𝐤T�𝑲𝑲 + 𝝈𝝈𝐫𝐫𝐫𝐫𝐫𝐫𝟐𝟐 𝐈𝐈�
−1
𝐲𝐲 (3) 

𝜎𝜎𝑓𝑓∗ =  k(𝐱𝐱∗, 𝐱𝐱∗) − 𝐤𝐤T�𝐊𝐊 + 𝝈𝝈𝐫𝐫𝐫𝐫𝐫𝐫𝟐𝟐 𝐈𝐈�
−1
𝐤𝐤 (4)  

𝐲𝐲 is a vector of HFE labels (obtained from either INDUS or the CNN) for the t training patterns, 

𝛔𝛔𝐫𝐫𝐫𝐫𝐫𝐫 is a vector of error values for the training pattern HFEs (equal to 2 kBT for HFEs from INDUS 

and 6 kBT for HFEs from the CNN), and 𝐤𝐤 = [k(𝐱𝐱1, 𝐱𝐱∗), k(𝐱𝐱2,𝐱𝐱∗), … , k(𝐱𝐱t,𝐱𝐱∗)]T is a vector of 

kernel distances between each training pattern 𝐱𝐱i and 𝐱𝐱∗. Additional details are included in the 

Supplementary Information. 

Acquisition function for pattern selection 

Active learning requires an acquisition function, 𝑢𝑢(𝐱𝐱∗), which is maximized to choose a new 

pattern, 𝐱𝐱𝑡𝑡+1, to label and add to the t training patterns. We used the “Expectation of Improvement” 

acquisition function to balance the tradeoff between choosing patterns with high GPR-predicted 

uncertainties (exploration) and choosing patterns with large deviations from additive behavior 

(exploitation).56, 57 To define this tradeoff, we first define the expected additive HFE for a given 

pattern, HFEadd, as the average of INDUS-calculated HFEs for patterns with only polar (HFEpolar) 

and only nonpolar (HFEnonpolar) ligands weighted by the mole fraction of polar ligands in the 

pattern:   

HFEadd(𝐱𝐱∗) = HFEpolar × 𝜒𝜒𝐱𝐱∗ + HFEnonpolar × (1 − 𝜒𝜒𝐱𝐱∗) (5) 

𝜒𝜒𝐱𝐱∗  is the mole fraction of polar ligands in the pattern. Deviation from the expected additive HFE 

is quantified by: 

𝜇𝜇Δ(𝐱𝐱∗) = |HFEGPR(𝐱𝐱∗) − HFEadd(𝐱𝐱∗)| (6) 

HFEGPR(𝐱𝐱∗) is the GPR-predicted HFE for a pattern 𝐱𝐱∗. The acquisition function is then:  

𝑢𝑢(𝐱𝐱∗) = �
(𝜇𝜇Δ(𝐱𝐱∗) − 𝜇𝜇Δ+ − 𝜉𝜉)Φ(𝑍𝑍) + 𝜎𝜎𝑓𝑓(𝐱𝐱∗)𝜙𝜙(𝑍𝑍) 𝜎𝜎𝑓𝑓(𝐱𝐱∗) ≠ 0

0 𝜎𝜎𝑓𝑓(𝐱𝐱∗) = 0
(7) 

𝑍𝑍 = �
𝜇𝜇Δ(𝐱𝐱∗) − 𝜇𝜇Δ+ − 𝜉𝜉

𝜎𝜎𝑓𝑓(𝐱𝐱∗)
𝜎𝜎𝑓𝑓(𝐱𝐱∗) ≠ 0

0 𝜎𝜎𝑓𝑓(𝐱𝐱∗) = 0
(8) 
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𝜇𝜇Δ+ is the maximum deviation among the set of training points, 𝜙𝜙(𝑍𝑍) and Φ(𝑍𝑍) are the probability 

density function and cumulative density function of a standard Gaussian, respectively, and 𝜉𝜉 is a 

parameter that controls the exploration-exploitation tradeoff. We chose 𝜉𝜉 = 0.01 in accordance 

with past experiments.57 During the fast loop, 𝑢𝑢(𝐱𝐱∗) is computed for all possible SAM patterns 

and the pattern which maximizes 𝑢𝑢(𝐱𝐱∗) is chosen as the next pattern to label. 

Data Availability 

All data and code to reproduce this work are available at https://gitlab.com/atharva-kelkar/dual-

loop-active-learning.  
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