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Abstract

High-throughput virtual materials and drug discovery based on density functional theory has

achieved tremendous success in recent decades, but its power on organic semiconducting molecules

suffers catastrophically from self-interaction error until the optimally tuned range-separated hybrid

(OT-RSH) exchange–correlation functionals were developed. The accurate but expensive first-

principles OT-RSH transitions from a short-range (semi-)local functional to a long-range Hartree–

Fock exchange at a distance characterized by the inverse of a molecule-specific, non-empirically-

determined range-separation parameter (ω). In the present study, we proposed a promising stacked

ensemble machine learning model that provides an accelerated alternative of OT-RSH based on

system-dependent structural and electronic configurations. We trained ML-ωPBE, the first func-

tional in our series, using a database of 1,970 organic semiconducting molecules with sufficient struc-

tural diversity, and assessed its accuracy and efficiency using another 1,956 molecules. Compared

with the first-principles OT-ωPBE, our ML-ωPBE reached a mean absolute error of 0.00504a−1
0 for

the optimal value of ω, reduced the computational cost for the test set by 2.66 orders of magnitude,

and achieved a comparable predictive power in various optical properties.
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Organic semiconducting molecules with large-scale π-conjugations1–3 have been the spot-

light of next-generation materials4–8 and biological sciences9–13 since the 1960s because of

their compelling electronic and optical properties. Due to the ever-growing demand for mate-

rials and drug discovery, high-throughput development of organic semiconducting molecules

gradually shift gear from old-school trial-and-error experiments to first-principles approaches

like density functional theory (DFT).14–19 One outstanding example for such a computational

design was thermally activated delayed fluorescence (TADF) emitters, for which overall flu-

orescence quantum yields were predicted based on the DFT-evaluated electronic configura-

tions, especially the alignment of frontier orbitals.20–22

The reliability of DFT can however be impaired by the self-interaction error (SIE)23,24 of

a (semi-)local exchange–correlation (XC) functional, which leads to an overdelocalized elec-

tronic density and an incorrect derivative discontinuity (DD),25–30 and eventually a violation

of Koopmans’31 and Janak’s32 theorems and an underestimated charge transfer excitation

energy.33–36 An effective solution is an error-canceling hybrid of the exact Hartree–Fock (HF)

exchange energy and some (semi-)local XC functionals, including global hybrids,37–41 as well

as range-separated hybrids (RSHs) which typically utilize the scheme of34,42–66

1

|r− r′|
=

1− erf (ω |r− r′|)
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+
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LR

(1)

Here r12 represents the interelectron distance and erf the Gauss error function. The range-

separation parameter (ω) characterizes the inverse of distance where the short-range (SR)

(semi-)local functional transitions into the long-range (LR) HF exchange. Its ideal value is

sensitive to the structural and electronic configuration of a molecule and can be optimally

tuned (OT) based on Koopmans’ theorem31 by minimizing

J2 (ω) = [εHOMO (ω) + I (ω)]2 + [εLUMO (ω) + A (ω)]2 (2)
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where HOMO and LUMO represent the highest occupied and lowest unoccupied molecular

orbitals, and I and A describe the ionization potential and the electron affinity, respectively.

OT-RSH functionals possessed promoted predictive powers in electronic and optical prop-

erties properties,33,67–81 but they are expensive because the optimization of J2 (ω) typically

requires 20 to 50 converged self-consistent field calculations in the lack of an analytical gra-

dient. Multiple machine learning (ML) strategies have been reported to alleviate the prob-

lem.82–95 For instance, Chen and coworkers trained long-range-corrected Becke–Lee–Yang–

Parr functional using the neural network as the algorithm (LC-BLYP-NN) and atom–atom

interactions as molecular descriptors, and minimized the errors of several thermodynamic

quantities.82 Zhang and Wang constructed a variant of the long-range-corrected Perdew–

Burke–Ernzerhof functional based on the localized orbital locator (LC-ωPBELOL) that was

defined using the kinetic energy, and predicted the singlet–triplet gap (∆EST) of metal-

free TADF emitters in comparable quality to OT-ωPBE with a small mean absolute error

(MAE = 0.09 eV).83 Corminboeuf and coworkers designed a ML-based ωPBE functional that

recovers the exact DD using the piecewise relationship between the average energy curvature

and the electronic number, and reduced the error of the fundamental gap (Eg) of large hole-

transporting molecular materials from 0.54 eV by one version of LC-ωPBE (ω = 0.400a−1
0 )

to 0.15 eV.84 Compared to direct ML predictions of excited state properties,96–100 these ML-

RSH schemes maintain rigorous solutions of time-(in)dependent Kohn–Sham equations along

with valid physical meanings, although they suffer from overfitting and undergeneralization

problems due to the limited size and diversity of training sets.

Herein we proposed an “top-down” ML strategy because it optimizes the molecule-specific

ω in a RSH based on inexpensive molecular descriptors rather than Koopmans’ theorem or

the energy v.s. electron number curvature. Our representative functional ML-ωPBE borrows

the formula of LC-ωPBE64 but leaves the value of ω to be determined using ML. We will

show that ML-ωPBE reaches a comparably strong predictive power to OT-ωPBE but only

consumes a fractional time after complete training. To ensure the high generalizability and
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accuracy of our model, we were very cautious in deciding the database, molecular descriptors,

and algorithms.

For our database we needed molecules that possess rich spectroscopic and photochemical

properties but are notorious in theoretical studies due to SIE. We selected 3,926 such species

from existing databases, including 1,941 solar cell materials from the Harvard Clean En-

ergy Project (CEP),101,102 904 pharmaceutically significant compounds from the DeepChem

database,103 431 fluorescence species from the ChemFluor database,104 337 organic photo-

voltaic (OPV) molecules from the Harvard Organic Photovoltaic Dataset (HOPV15),105 84

organic light-emitting diode (OLED) materials studied by Aspuru-Guzik and coworkers,106

and 229 oligomers added by us in the present work. These compounds were randomly dis-

tributed into a training set of 1,970 and a test set of 1,956, and their structures were provided

as simplified molecular-input line-entry system (SMILES) strings in the Supporting Infor-

mation (SI). We generated the optimal value of ω for each molecule using OT-ωPBE (ωOT).

For the training set these ωOT’s were included in the training data along with molecular

descriptors, while for the test set they were utilized as a reference to calibrate ML-ωPBE.

A wide distribution of these ωOT’s was shown to be between 0.120a−1
0 and 0.330a−1

0 for the

entire database (Fig. 1), with statistics of ωOT = (0.206 ± 0.029)a−1
0 . Different databases

presented distinct ranges of ωOT, but only 10 species lied at ωOT > 0.300a−1
0 . This result

confirmed the diversity of our database but meanwhile invalidated the choice of ω = 0.300a−1
0

in the default LC-ωPBE64 to the majority of organic semiconducting molecules.

To describe important molecular features, we needed a molecular descriptor that captures

unique structural and electronic properties. We herein introduced a “composite molecular

descriptor” which implements contributions from several singular molecular descriptors like

combined molecular fingerprints (CMF),107–111 physical organic descriptors (POD),108,109

and electronic structure properties (ESP).112–114 Detailed information about the singular

and composite molecular descriptors were provided in the SI. A precursor of our composite

molecular descriptor was designed by Ju and coworkers and proved a success.104 In a pre-
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Figure 1: ωOT evaluated using Koopmans’-theorem-based OT-ωPBE for all 3,926 organic
semiconducting molecules in the database, labeled by their sources.101–106 The default LC-
ωPBE with ω = 0.300a−1

0 (vertical dashed line)64 is a poor representation for the present
dataset.

liminary model of ML-ωPBE constructed using the extreme gradient boosting (XGBoost)

algorithm,115 our composite molecular descriptor (CMF + POC + ESP) outperformed all

singular or dual molecular descriptors in predicting ωML for the test set (Table S3), exhibit-

ing the lowest mean absolute errors: MAE = 0.00573a−1
0 for composite, ≥ 0.00621a−1

0 for

singular and ≥ 0.00577a−1
0 for dual, with all errors defined as ∆ = ωML − ωOT. This result

endorsed our choice of the composite molecular descriptor.

To enhance the overall predictive power of ML-ωPBE and future ML-RSH functionals, we

desired an algorithm that supersedes simple regression models and artificial neural networks

in terms of promoting the predictive power and mitigating the overfitting problem. Earlier

methodological studies established the stacked ensemble machine learning (SEML) approach

on top of multiple regression methods (base learners) using an overall analytical algorithm

(meta learner), and proved them to meet our demands.116–121 For our present SEML protocol

(Fig. 2), we selected eight base learners, including two versions of least absolute shrinkage

and selection operator (LASSO 1 and LASSO 2),122,123 random forest (RF),124,125 gradient

boosted regression trees (GBRT),126 XGBoost,115 light gradient boosting machine (Light-

GBM),127 kernel ridge regression (KRR),128–131 and support vector machine (SVM).132–136
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The criteria of selecting base learners include (a) their accuracy and (b) their abilities to

differentiate between each other. Criterion (a) makes sure a base learner provides effective

information to the meta learner, and criterion (b) guarantees that the stacked ensemble

learning algorithm improves the predictive power over every single base learner. Therefore,

we chose tree-based algorithms, kernel-based algorithms, and linear algorithms. Each base

learner generated a quantitative relationship between the composite molecular descriptor

and the optimal value of ω though the out-of-fold (OOF) cross-validation.137 After that

the least angle regression (LARS)138 algorithm was used as the overall meta learner, which

analyzed all trained relationships, exploited advantages of all base learners, and optimized

the combined results.116–121 Given the rate-limiting step of SEML to be the low-level elec-

tronic structure calculation (GFNn-xtb in Fig. 2), the meta learner does not add significant

computational costs to the entire procedure. In a performance analysis of ML-ωPBE in the

accuracy of ωML for the test set (Fig. 3(a)(b) and Table S5), our SEML model is superior

to every single base learner by giving the lowest errors in ωML (MAE = 0.00504a−1
0 ), the

strongest linear correlation between ωML and ωOT (R2 = 0.930139), as well as the smallest

occurrence of large errors: only 13.2% of molecules showed |∆| > 0.010a−1
0 and 2.6% pre-

sented |∆| > 0.020a−1
0 . Compared to OT-ωPBE, our SEML-based ML-ωPBE reduced the

average computational cost in determining ω for the test set by 2.66 orders of magnitude,

from 41,940 s to 92 s for the test set. Our analysis supported the earlier assertion that SEML

surpasses all individual base learners regarding applicability and predictability.

Following the discussions of the ML strategy and the accuracy of ωML, we will validate

the potential of ML-ωPBE in high-throughput materials and drug discovery by showing

that its generalizability and reliability is quantitatively comparable to OT-ωPBE140 and is

more substantial than other popular functionals, including four non-tuned RSH function-

als: LC-ωPBE with ω = 0.300a−1
0 ,64 CAM-B3LYP,47 M06-2X,141 and ωB97X-D354 and

four non-RSH functionals: HF,142 PBE,143 PBE0,40,41 and B3LYP.37–39 We will evaluate

their performances on multiple experimentally observables including Eg, the vertical absorp-
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Figure 2: Schematic illustration for our SEML protocol.116–121 The model reads structural
and electronic properties, translates them into composite molecular descriptors,108,109,112–114

and optimizes ω based on eight base learners115,122–127,131,135 and the meta learner of LARS.138

tion, fluorescence, and phosphorescence energies (Eabs, Efl, and Eph), the singlet–triplet gap

(∆EST), and the fluorescence transition dipole moment and lifetime (µfl and τfl
144). We

selected molecules with corresponding experimental measurements from the test set, and

categorized them into subsets based on their structural features, excited-state properties,

and real-life applications, such as OPV,140,145 TADF,146 polycyclic aromatic hydrocarbons

(PAH),140 aggregation-induced emission molecules (AIE),147 fluorophores (FL)148 and bio-

organic molecules (BIO).140 The majority of molecules in the present test set of optical

properties, such as all AIE compounds and many OPV and TADF structures were not in-

cluded in the above-mentioned test set of ωML, so that they served as great benchmarks

for the generalizability of our model. The statistics of errors, defined based on the signed

differences between calculated and experimental values, are summarized in Figs. 4 and S2,

as well as Tables S6 through S9.

Eg is the most straightforward observable to assess because it is the difference between

two important eigenvalues that are relevant to Koopmans’ theorem, εHOMO and εLUMO (Eq.

(2)), and is susceptible to the quality of the asymptotic density decay. As we expected (Fig. 4

and Table S7), non-RSH functionals that had been successful on small organic molecules were

no longer accurate for medium and large organic semiconducting molecules (MAE ≥ 2.401
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Figure 3: (a) Comparison in the error of ωML (∆) optimized using eight base learners and
the SEML algorithm. (b) Comparison between ωOT (x-axis) and ωML (y-axis) with labels
of |∆| = 0.000 (black line), 0.010a−1

0 (dark gray lines) and 0.020a−1
0 (light gray lines). Our

SEML-based ML-ωPBE presents the lowest MAE of 0.00504a−1
0 and the lowest RMSE of

0.00761a−1
0 , as well as the smallest percentages for large errors (13.2% for |∆| > 0.010a−1

0

and 2.6% for |∆| > 0.020a−1
0 ). The average computational cost of ML-ωPBE is 2.66 orders

of magnitude smaller than OT-ωPBE.
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eV), while the performance of any RSH functional was more acceptable (MAE ≤ 1.209 eV)

especially ML-ωPBE (MAE = 0.681 eV) and OT-ωPBE (MAE = 0.733 eV). The advantage

was magnified for molecules with large spatial extents of π-conjugations like OPV (MAE

= 0.441 eV, Fig. S3(a)) and PAH (MAE = 0.271 eV, Fig. S3(b)) whose energetics are keen

to the choice of ω, but vanished with smaller π-bonds like BIO (MAE = 1.870 eV, Fig. S3(c))

without fitting to experimental values. The surprisingly better behavior of ML-ωPBE than

OT-ωPBE was probably due to the bias from the incomplete test subset or the cancellation

between systematic and random errors, but it did not damage our conclusion about the

accuracy of ML-ωPBE.
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Figure 4: MAEs of Eg, Eabs, Efl, Eph, and ∆EST (all in eV) were compared across various XC
functionals for selected molecules in the test set. The lowest and second lowest MAEs were
labeled with stars and circles respectively. For these organic semiconducting molecules, ML-
ωPBE exhibits a quantitatively comparable accuracy to OT-ωPBE, especially for molecules
with large π-conjugations and charge-separated excited states.

In spite of weaker relevance to Koopmans’ theorem, optical band gaps Eabs, Efl, and Eph

are more interesting benchmark quantities because they have more abundant and reliable

experimental data from UV-vis spectra and their accurate predictions rely on electron–hole

interactions in addition to asymptotic properties.140 They were all evaluated using linear-

response time-dependent DFT (LR-TDDFT),149–151 with Eabs at the ground state geometries
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where the training occurred and Efl and Eph at corresponding excited state geometries.

For these three optical band gaps, although hybrid non-RSH functionals like PBE040,41

and B3LYP38,39 can outperform non-tuned RSHs due to error cancellation between density-

overlocalized HF and density-overdelocalized (semi-)local functionals, they were generally

less accurate than ML-ωPBE and OT-ωPBE. ML-ωPBE illustrated the lowest MAE of

0.194 eV for Efl and the second lowest MAEs of 0.182 eV and 0.206 eV for Eabs and Eph,

respectively. These errors were only marginally different from OT-ωPBE which provided

MAEs of 0.170 eV, 0.204 eV, and 0.215 eV for Eabs, Efl, and Eph, respectively (Fig. 4 and

Tables S6 and S7). Interestingly, just like OT-ωPBE, ML-ωPBE minimized the systematic

errors and made the overall errors more evenly distributed around zero, showing the second

lowest MSEs of +0.106 eV, +0.109 eV, and +0.115 eV for Eabs, Efl, and Eph. This discovery

confirmed that ML-ωPBE trained over ground state configurations are robustly generalizable

to low-lying excited state structures.

Among all test species, subsets of TADF exhibited MAEs of 0.139 eV, 0.194 eV, and 0.206

eV from ML-ωPBE for Eabs, Efl, and Eph, respectively, (Fig. S3(d)) and AIE showed MAE

= 0.239 eV from ML-ωPBE for Eabs, (Fig. S3(e)). They illustrated apparent preference

towards ML-ωPBE and OT-ωPBE because their HOMO and LUMO are located at two

different parts of the molecule or complex, which stretches the electronic density to the

asymptotic limit, and is stable over slightly varied local electron–hole interaction. The

result of the AIE subset was of particular interest because it indicated a great potential to

extend our model from single molecules to molecular complexes or aggregates without extra

treatment, even when no molecular complexes and aggregates were included in the training

set. On the contrary, HOMO and LUMO for the OPV subset (with MAE = 0.147 eV from

ML-ωPBE for Eabs, Fig. S3(a)) are greatly overlapped in space and emphasizes the subtlety

in the electron–hole interaction, allowing the error-canceling PBE0 to win. In addition to

the argument about orbital configurations, the large discrepancy between ML-ωPBE and

OT-ωPBE in OPV indicates a second possible but resolvable origin of the error: a poor
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prediction of ω in ML-ωPBE due to the lack of electron acceptors in the training set.

In addition to optical band gaps, ∆EST is an essential property for the TADF subset

because it is explicitly correlated to the quantum yield of TADF146,152 and is highly responsive

to the extent of charge separation. ∆EST exhibited a different but understandable trend from

Efl or Eph (Fig. 4 and Table S8): many functionals that had significantly overestimated Efl

and Eph (like M06-2X) or underestimated them (like PBE) predicted equally accurate ∆EST

to ML-ωPBE and OT-ωPBE due to the cancellation in systematic error between singlet

and triplet states. Such accidentally good results with other functionals, again, do not

compromise the advantage of ML-ωPBE.

Finally, we benchmarked the performance of ML-ωPBE in µfl and τfl, which are key

quantities to determine difficult-to-evaluate composite photodynamic properties like the flu-

orescence quantum yield18,19 and the luminescence dissymmetry factor.153,154 We selected

only five RSH functionals in our comparison due to their successful descriptions of electronic

density distributions (Fig. S4(a)(b) and Table S9), and evaluated both µfl and τfl using LR-

TDDFT. Because of a successful prediction of excited state electronic density, ML-ωPBE

provided almost equally accurate prediction to OT-ωPBE for both µfl (MAE = 0.830 debye

versus 0.827 debye) and τfl (MAE = 1.89 ns versus 1.90 ns), and outperformed other RSH

functionals. This result allowed us to safely assert that ML-ωPBE best described photody-

namic properties in the LR framework. However, because the LR approximation is not able

to capture large electronic rearrangement during charge-transferred transitions, it might end

up with a poor emissive geometry and might introduce a systematic error that consistently

overestimates µfl while underestimating τfl. This problem explained the sizable MSEs across

all functionals and cannot be resolved without methodological treatment.155–158

To conclude the present study, our ML-ωPBE functional was established using a top-

down SEML strategy based on eight base learners and the LARS meta learner, and it can

accurately and efficiently reproduced the molecule-specific formula of Koopmans’ theorem-

based OT-ωPBE using computationally inexpensive structural and electronic properties, as
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well as theoretically challenging optical properties using low-cost DFT and LR-TDDFT. To

make sure of sufficient reliability and generalizability for our SEML method, we selected

3,926 structurally diverse and experimentally well-studied organic semiconducting molecules

into our training and test sets, and extracted their composite molecular descriptors based on

structural analyses and the GFNn-xtb semi-empirical calculations. After a two-step training

through the base and meta learners, we constructed an explicit map between ωML and the

composite molecular descriptor, and obtained an outstanding agreement between ωML and

ωOT
140 for the test set, with an MAE of 0.00504 a−1

0 and a shorter timescale than OT-ωPBE

by 2.66 orders of magnitude.

To further evaluate the quality of ML-ωPBE, we compared its performance on a few

experimental observable optical properties with OT-ωPBE, four non-tuned RSH functionals,

and four non-RSH functionals. Taking into account all possible error cancellations, the fully

trained ML-ωPBE reached a wonderful performance that was quantitatively analogous to

OT-ωPBE in all optical properties, and surpassed every single non-RSH and non-tuned RSH

functional. The fact that ML-ωPBE was trained based solely on ground state properties and

monomeric molecules did not weaken its predictive power on excited state properties and

molecular aggregates or complexes. Our result validated the practical usefulness of ML-

ωPBE in reproducing and predicting optical properties for real-life materials and drugs.

In conclusion, the present study did not only propose an accurate and efficient way to

determine selected parameters in the XC functional, but also expanded the horizon of ML

applications in the framework of quantum chemistry. We expected adequately trained ML-

ωPBE and future ML-RSH functionals to replace first-principles OT-RSHs in large-scale

virtual materials and drug discovery to overcome the bottleneck in the computational cost.

Supporting Information The Supporting Information is available free of charge on

the ACS Publications website at DOI: XXX/XXXXXX. SMILES strings and ω values for

all 3,926 molecules in the training and test sets, brief proof of Koopmans’ theorem and

asymptotic decay of electronic density, descriptions of details for general OT-ωPBE and ML-
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ωPBE functionals, composite molecular descriptors, the SEML model, quantum chemical

calculations, and summaries of statistics of errors of ML-ωPBE and other XC functionals in

optical properties (PDF).
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(17) Jacquemin, D.; Perpète, E. A.; Ciofini, I.; Adamo, C. Assessment of Functionals for

TD-DFT Calculations of Singlet–Triplet Transitions. J. Chem. Theory Comput. 2010,

6, 1532–1537.

(18) Kohn, A. W.; Lin, Z.; Van Voorhis, T. Toward Prediction of Nonradiative Decay

Pathways in Organic Compounds I: The Case of Naphthalene Quantum Yields. J.

Phys. Chem. C 2019, 123, 15394–15402.

(19) Lin, Z.; Kohn, A. W.; Van Voorhis, T. Toward Prediction of Nonradiative Decay

Pathways in Organic Compounds II: Two Internal Conversion Channels in BODIPYs.

J. Phys. Chem. C 2020, 124, 3925–3938.

(20) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic

Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234–238.

(21) Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C.

Efficient Up-Conversion of Triplet Excitons into a Singlet State and Its Application

for Organic Light Emitting Diodes. Appl. Phys. Lett. 2011, 98, 083302.

(22) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W.

Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of

Organoelectronics. Adv. Mater. 2014, 26, 7931–7958.

(23) Perdew, J. P.; Zunger, A. Self-Interation Correction to Density-Functional Approxi-

mations for Many-Electron Systems. Phys. Rev. B 1981, 23, 5048.

(24) Bao, J. L.; Gagliardi, L.; Truhlar, D. G. Self-Interation Error in Density Functional

Theory: An Appraisal. J. Phys. Chem. Lett. 2018, 9, 2353–2358.

16



(25) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Density-Functional Theory for

Fractional Particle Number: Derivative Discontinuities of the Energy. Phys. Rev. Lett.

1982, 49, 1691–1694.

(26) Perdew, J. P.; Levy, M. Physical Content of the Exact Kohn–Sham Orbital Energies:

Band Gaps and Derivative Discontinuities. Phys. Rev. Lett. 1983, 51, 1884.

(27) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Fractional Charge Perspective on the Band

Gap in Density-Functional Theory. Phys. Rev. B 2008, 77, 115123.

(28) Yang, W.; Cohen, A. J.; Mori-Sánchez, P. Derivative Discontinuity, Bandgap and

Lowest Unoccupied Molecular Orbital in Density Functional Theory. J. Chem. Phys.

2012, 136, 204111.

(29) Chai, J.-D.; Chen, P.-T. Restoration of the Derivative Discontinuity in Kohn–Sham

Density Functional Theory: An Efficient Scheme for Energy Gap Correction. Phys.

Rev. Lett. 2013, 110, 033002.

(30) Mori-Sánchez, P.; Cohen, A. J. The Derivative Discontinuity of the Exchange–

Correlation Functional. Phys. Chem. Chem. Phys. 2014, 16, 14378–14387.
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