
Gaussian accelerated molecular dynamics with

the weighted ensemble method: a hybrid method

improves thermodynamics and kinetics sampling

Surl-Hee Ahn,∗,†,¶ Anupam A. Ojha,†,¶ Rommie E. Amaro,† and J. Andrew

McCammon†,‡

†Department of Chemistry, University of California San Diego, La Jolla, CA, USA

‡Department of Pharmacology, University of California San Diego, La Jolla, CA, USA

¶These authors have contributed equally.

E-mail: s3ahn@ucsd.edu

Abstract

Gaussian accelerated molecular dynamics (GaMD) is a well-established enhanced

sampling method for molecular dynamics (MD) simulations that effectively samples the

potential energy landscape of the system by adding a boost potential, which smoothens

the surface and lowers energy barriers between states. Although equilibrium properties

can be recovered exactly in principle, GaMD is unable to give time-dependent proper-

ties such as kinetics directly. On the other hand, weighted ensemble (WE) method can

efficiently sample transitions between states with its many weighted trajectories, which

directly yield rates and pathways. However, performance of the WE method (i.e., con-

vergence and efficiency) depends heavily on its initial conditions or initial sampling

of the potential energy landscape. Hence, we have developed a hybrid method that

combines the two methods, wherein GaMD is first used to sample the potential energy

landscape of the system, and WE method is subsequently used to further sample the
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potential energy landscape and kinetic properties of interest. We show that the hybrid

method can sample both thermodynamic and kinetic properties more accurately and

quickly compared to using either method alone.

1 Introduction

Molecular dynamics (MD) simulations are becoming quintessential tools in many fields,

including biology, chemistry, materials science, chemical and biological engineering, and

medicine. An increasing number of researchers have used MD simulations to uncover mech-

anisms of their biological system of interest in atomistic detail. Applications of MD simula-

tions range from studying protein folding, protein-protein or protein-ligand interactions to

computer-aided drug design (virtual screening and ligand docking). However, MD simula-

tions are not without their challenges. MD simulations have to be run using femtosecond

time steps due to being limited by the fastest motions in the system (e.g., bond-length vi-

brations). In contrast, biological processes of interest are often on the order of microseconds

or longer. Additionally, systems often get “stuck” in metastable states and do not change

conformations for an extended period. Hence, MD simulations can be computationally costly

when attempting to observe rare events, which is often the case of interest.

Fortunately, researchers have developed several “enhanced sampling methods” to over-

come this timescale gap between MD simulations and biological processes. Many enhanced

sampling methods work by adding a biasing potential to force the system away from metastable

states. These include but are not limited to Gaussian accelerated dynamics (GaMD),1–4

metadynamics,5–9 umbrella sampling,10–13 and adaptive biasing force (ABF).14–18 Among

these, GaMD has the advantage of not requiring any collective variables (CVs) to steer the

simulation. Rather, it allows unrestrained sampling of configuration space. Another sim-

ilar class of methods changes the system’s temperature instead to sample states difficult

to reach at room temperature, including replica exchange molecular dynamics (REMD) or

parallel tempering.19–23 Although both of these classes of methods are effective at obtain-
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ing thermodynamic properties like the free energy landscape of the system, they alter the

actual kinetics of the system, preventing them from directly getting kinetic properties from

the system. Note that there are methods to derive kinetic properties like rate constants

from simulations that used these methods. Still, they need to be obtained either by using

Kramers’ Rate Theory in the high friction or “overdamping” regime,24 constructing a master

equation,25,26 or assuming a low residence time in the transition states.27

As a result, several path-sampling methods focus on sampling kinetic properties, such

as rate constants from the reactant state to the product state, including milestoning,28–32

forward flux sampling,33–36 transition interface sampling,37–40 and others. These methods

divide the path space from reactant state to product state into many interfaces and run

many short simulations to efficiently obtain rate constants and the free energy landscape

of the path space. However, since these methods primarily focus on sampling the path of

interest, the rest of the free energy landscape is not extensively sampled.

Suppose a more comprehensive picture of the entire configuration space is needed along

with its thermodynamic and kinetic properties. In that case, either one can build a Markov

state model (MSM)41–48 or run the weighted ensemble (WE) method49–59 on the system of

interest. Both methods decompose the configuration space into small volume elements called

“macrostates” and run many short simulations to obtain good statistics. The macrostate

construction with feature selection or appropriate CVs and setting parameters such as lag

time or simulation time τ differ between the two methods. This difference is due to MSMs

requiring Markovian property to hold and being constructed with MD trajectories of the sys-

tem. In contrast, WE method starts sampling the system after the macrostate construction,

and parameters such as the simulation time τ are set a priori. Both methods have proven to

be useful in uncovering insights into the mechanisms of important biophysical systems.60–77

However, both require a sufficient sampling of the configuration space either by having many

long MD trajectories or by having many initial configurations to get accurate results quickly.

As a result, we have developed a hybrid enhanced sampling method that combines GaM-
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Dand the WE method called GaMD-WE. There also exist hybrid methods that combine

REMD and GaMD78,79 and well-tempered metadynamics and GaMD,80 but both aim to

improve sampling of thermodynamic properties. In contrast, GaMD-WE aims to enhance

sampling of both thermodynamic and kinetic properties. In GaMD-WE, GaMD is initially

run to sample the free energy landscape efficiently with its harmonic boost potentials. Then,

after reweighting is performed to recover the original free energy landscape, the WE method

is run with many initial configurations produced from the GaMD run. This way, the two

methods complement each other and reduce each other’s limitations. This paper will in-

troduce both methods, the hybrid method, and the results that demonstrate the hybrid

method’s power to obtain thermodynamic and kinetic properties more accurately and more

quickly than one method by itself.

2 Methods

2.1 Gaussian accelerated molecular dynamics

Gaussian accelerated molecular dynamics (GaMD) is an enhanced sampling method for MD

simulations that can efficiently sample thermodynamic properties such as the free energy

landscape of the system. When the system potential V (r), where r denotes the position

vector of an N -atom system, is lower than a threshold energy E, GaMD fills the energy wells

by adding a harmonic boost potential ∆V (r), i.e.,

∆V (r) =
1

2
k (E − V ( r))2, (1)

where k denotes the harmonic force constant. If V (r) ≥ E, then no boost potential is added.

There are several criteria that the boost potential ∆V (r) needs to satisfy for GaMD to

work, and readers can refer to the original GaMD paper1 for specific details about the boost

potential ∆V (r) and the harmonic force constant k.
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If the anharmonicity of the harmonic boost potential ∆V (r) is small, then ∆V (r) follows

a near Gaussian distribution and the cumulant expansion to the second order can be used

to approximate the exponential average term 〈eβ∆V (r)〉, where β denotes the thermodynamic

beta or 1/kBT . This exponential average term 〈eβ∆V (r)〉 is needed to reweight and recover the

original free energy landscape from GaMD. Readers can refer to the original GaMD paper1

for specific details about energetic reweighting with cumulant expansion to the second order.

A significant advantage of GaMD is that CVs, which describe the state of a molecular

system, are not needed. Identifying the appropriate CVs for a particular system is still an

active area of research and can be difficult for new or unfamiliar systems.81–83 In contrast,

metadynamics requires CVs to be chosen a priori, which similarly fills energy wells with

repulsive Gaussian potentials. However, metadynamics does not suffer from having uncon-

verged high energy regions like GaMD since metadynamics recovers the original free energy

landscape as the opposite sum of all Gaussians. Nonetheless, GaMD is one of the few en-

hanced sampling methods that do not require tuning of many parameters and can be easily

applied to various systems. Additionally, GaMD is fully implemented in Amber84 (starting

from Amber16) and NAMD85 (starting from 2.13),2 which makes it easier for users to use

the method.

2.2 Weighted ensemble method

The weighted ensemble (WE) method is another enhanced sampling method for MD sim-

ulations that runs many short simulations instead of one long simulation to sample ther-

modynamic and kinetic properties efficiently. These short simulations or “walkers” carry

probabilities or “weights” that evolve throughout the simulation via “resampling,” a sta-

tistical procedure to maintain a number of these short simulations at visited regions of the

configuration space. More details can be found in the original WE method paper,49 in a

review article,50 and in the Weighted Ensemble Simulation Toolkit with Parallelization and

Analysis (WESTPA) papers,86,87 but the general scheme is as follows.

5



1. The following parameters are chosen a priori for the WE method simulation: CVs,

simulation time τ for walkers, partitioning of macrostates (small volume elements of

the configuration space), and target number of walkers per macrostate nw. If there

is only one initial state, then there will be nw walkers, each with a weight of 1/nw.

Otherwise, there will be multiple nw walkers, each with an appropriate weight that

sums up to 1 for the entire system.

2. Walkers are run for τ amount of time and binned to appropriate macrostates depending

on their CV values.

3. Walkers go through “resampling,” i.e., merged or replicated in a statistically correct

way so that the target number of walkers per macrostate nw is maintained for each

macrostate. Each walker ends up with a weight between Pi/nw and 2Pi/nw where Pi

denotes the sum of the weights in macrostate i.

4. Steps 2 and 3 are repeated until desired convergence is reached.

With resampling, the walkers are maintained in each visited macrostate regardless of

its energy barrier height. Computational cost is also curtailed since walkers are merged

in oversampled, low energy regions and replicated in rare, high energy regions. Since no

statistical bias is added to the system, one can directly obtain both thermodynamic and

kinetic properties of the system from the evolution of walkers’ weights in each macrostate.

Although several parameters need to be chosen a priori as stated in Step 1, simulation

time τ can be selected without having to worry about fulfilling the Markovian property,

a requirement that other enhanced sampling methods have such as Markov State Models

(MSMs) and milestoning. The simulation time τ should be chosen to be short enough so

that the WE method does not inadvertently miss transitions.53,74,88 However, since many

macrostates have to reach convergence to extract correct thermodynamic and kinetic prop-

erties of the system, the WE method can be computationally costly if the initial states are

not close to steady-state.
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2.3 Gaussian accelerated molecular dynamics-weighted ensemble

method

The hybrid Gaussian accelerated molecular dynamics-weighted ensemble (GaMD-WE) method

aims to combine strengths and mitigate weaknesses of both methods. By initially running

GaMD to sample the free energy landscape of the system, one can obtain a well-sampled

initial state distribution for the WE method. Then with WE, one can get a more refined free

energy landscape closer to steady-state and sample kinetic properties such as rate constants

from one state to another state. We show that the hybrid method is significantly more

effective than running a conventional WE method to sample thermodynamic and kinetic

properties within the same amount of simulation time in the subsequent Results section.

We have developed a GaMD-WE package for users to run GaMD and prepare initial

states for the WE method, specifically for the Weighted Ensemble Simulation Toolkit with

Parallelization and Analysis (WESTPA).86,87 The current package is not fully integrated

with WESTPA, i.e., user needs to use the GaMD-WE package for the GaMD portion and

run a WESTPA simulation separately for the WE method portion using initial states from

the GaMD-WE package, but we plan to make it fully integrated in the future. The GaMD-

WE package is fully customizable, i.e., the desired force fields, water models, and others can

be added, and it follows a series of scripts as the following.

1. System is prepared for simulation after the Protein Data Bank (PDB) structure is

downloaded from the PDB server. Appropriate force field parameters are added fol-

lowed by system solvation.

2. Solvated system is then minimized, heated, and equilibrated using the OpenMM89

simulation engine. Directories are created for the subsequent GaMD simulations.

3. Six GaMD simulations are run using the Amber84 simulation engine for varying de-

grees of potential boosts, i.e., dihedral potential boost (upper and lower bound), total
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potential boost (upper and lower bound), and dual (dihedral + total) potential boost

(upper and lower bound), for the desired amount of simulation time.

4. Simulation data is then extracted from the output log files for each of the six GaMD

simulations. Reweighting is then performed with several reweighting methods, i.e.,

cumulant expansion to the first order, second order, and third order, to recover the

original free energy landscape. Then with the desired target number of walkers per

macrostate nw, initial structures/configurations for the WE method are saved with

appropriate weights from the binning probabilities.

5. Initial structures for the WE method are minimized in two steps (Step 1: Heavy atoms

Cα, N, C, O of the protein are minimized, Step 2: Entire system including solvent is

minimized) so that none of them “crash” during the WE method simulation. User can

set the minimization steps.

6. WE method simulation directory is created with proper initial structures. Number

of initial structures can be compared among the six simulation outputs (see Supple-

mentary Information). GaMD simulation that yielded the largest number of initial

structures can be subsequently used for the WE method simulation since that would

indicate the greatest coverage of the free energy landscape.

In the subsequent Results section, we show that GaMD has greater coverage of the free

energy landscape and closer to steady-state probabilities compared to the WE method within

the same simulation time. Even if the WE method has a similar amount of coverage of the

free energy landscape compared to GaMD for some systems, GaMD has an advantage over

the WE method with reweighting since appropriate probabilities or weights can be recovered

from the added biasing potentials. In contrast, since the WE method does not add any

statistical bias to the system, the system needs to evolve naturally or reach convergence to

appropriate probabilities or weights, which in most cases would take longer than adding a

biasing potential to the system.
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3 Results

We have tested our hybrid method on two systems: alanine dipeptide in explicit solvent

and chignolin in implicit solvent. We show how GaMD-WE outperforms either method in

obtaining thermodynamic and kinetic properties. To further illustrate that GaMD surpasses

the WE method in getting the free energy landscape, we show the free energy landscapes of

bovine pancreatic trypsin inhibitor (BPTI) in explicit solvent obtained from the two methods.

Amber ff14SB force field parameters90 were used for all three systems. Simulations were run

under the canonical ensemble, and the temperature T was set to 300 K for all three systems.

Three simulations were run for each system using GaMD-WE and the WE method, and

average of the three is shown as the final result for all systems. Error bars for the WE

method and GaMD-WE rate constants represent 95% confidence intervals (i.e., 1.96 × σ√
3

where σ denotes standard deviation). Each point in the WE method and GaMD-WE rate

constant graph was calculated cumulatively in 50 iteration blocks.

3.1 Alanine dipeptide

Alanine dipeptide is a 22-atom system that is commonly used as a test system for new

methods. Initial structure was obtained from https://markovmodel.github.io/mdshare/

ALA2/. TIP3P water model91 was used to solvate the system explicitly. For GaMD-WE,

GaMD was run for 50 ns, and the WE method was run for 11.95 µs so that the total

simulation time amounted to 12 µs. Simulation time, τ for the WE method was set to 10 ps,

equal to GaMD’s sampling frequency. The target number of walkers per macrostate nw was

set to 4. CVs were set to be the dihedral angles, φ and ψ. Macrostates were evenly spaced

in intervals of 10◦ for both φ and ψ (ranging from -180◦ to 180◦).

First, we show that GaMD covers the free energy landscape more than the WE method

within the same simulation time. Figures 1a and 1b show the average free energy landscape

(−kBT lnP , where P denotes probability) of alanine dipeptide after 50 ns of GaMD and the
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WE method, respectively. The lowest energy state was set to be zero for each of the free

energy landscapes. In particular, the GaMD run with the upper bound of the dihedral boost

potential yielded the maximum number of initial structures on average as compared to the

other five GaMD potential settings (see Supplementary Information). Cumulant expansion

to the second order was used for GaMD reweighting. As seen in Figure 1, GaMD can cover

the high energy regions such as the left-handed α-helix region αL on the right side, whereas

the WE method cannot sample it within 50 ns of simulation time. This shows that it can be

more beneficial to use GaMD instead of WE method to sample the free energy landscape,

even for this simple system.

Second, we show that GaMD-WE can converge to the correct rate constants faster and

more accurately than the WE method. In particular, rate constants between the three

regions of interest shown in Figure 1c were measured over simulation time. αR region was

defined to be −120◦ ≤ φ ≤ 0◦, −100◦ ≤ ψ ≤ 50◦, PII region was defined to be −120◦ ≤

φ ≤ 0◦, 100◦ ≤ ψ ≤ 180◦, and αL region was defined to be 0◦ ≤ φ ≤ 120◦, −50◦ ≤

ψ ≤ 100◦. Initial structures for the three GaMD-WE runs were from one of the three

GaMD runs with an upper bound of dihedral boost potential that yielded the largest number

of initial structures. The WE method and brute force simulations used the same initial

structure as the GaMD runs. In addition, since GaMD covered a wider free energy landscape

within 50 ns, another set of GaMD-WE simulations was run with equal weights. Although

reweighting would give more accurate weights for each region, we wanted to investigate

whether there will be any improvements in obtaining kinetics solely from covering more of

the free energy landscape with GaMD vs. the WE method. Figure 2 shows the evolution

of rate constants over aggregate simulation time, and Table 1 summarizes the final rate

constants for brute force, WE method, and GaMD-WE simulations after 12 µs of simulation

time. Reference brute force simulation values were obtained from averaging all first passage

times from three independent 4 µs runs and performing Bayesian bootstrapping for 95 %

confidence intervals.87 The first 200 ns of simulation time was cut off in the rate constant
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Figure 1: Average free energy landscape (−kBT lnP , where P denotes probability) of alanine
dipeptide after (a) 50 ns of GaMD (with upper bound of dihedral boost potential), and (b)
50 ns of the WE method, respectively. (c) shows the average free energy landscape obtained
after 12 µs of the WE method (after cutting out the first 200 ns of simulation time to
eliminate initial structure bias), with the regions of interest (αR, αL, and PII) marked. The
lowest energy state was set to be zero for each free energy landscape.
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calculation to eliminate initial structure bias for brute force, WE method, and GaMD-WE

simulations.

Figures 2a and 2b show that the convergence is comparable between the WE method

and GaMD-WE for the rate constants between the two central metastable states αR and PII

since both methods covered both regions well. However, GaMD-WE underestimated both

rate constants (see Table 1), which the WE method obtained more accurately. This might

be due to GaMD-WE having lower weights than actual for the initial αR and PII structures,

which would slow down the rate of convergence for GaMD-WE. The GaMD-WE simulations

with equal weights, on the other hand, had larger error bars than regular GaMD-WE and

performed similarly to GaMD-WE.

For the rate constants that involved the higher energy region αL, however, GaMD-WE

performed better than the WE method. Figures 2c and 2e highlight GaMD-WE having the

rate constants that go from αL to either primary metastable state αR or PII converge faster

with smaller error bars (see Table 1) compared to the WE method. GaMD-WE simulations

with equal weights, on the other hand, did not perform better than either the WE method

or GaMD-WE. As for the reverse rate constants that go from either primary metastable

state αR or PII to αL, GaMD-WE and the WE method have comparable performances with

GaMD-WE slightly underestimating both rate constants as seen from Figures 2d and 2f

and Table 1. GaMD-WE simulations with equal weights performed marginally better than

GaMD-WE by underestimating the rate constants lesser. This might be due to having higher

weights for the regions of interest than GaMD-WE.

These results indicate that GaMD-WE can obtain kinetics involving higher energy regions

like αL faster and more accurately than the WE method alone. In contrast, the WE method

performs as well as GaMD-WE in getting kinetics involving central metastable states, which

both methods can sample sufficiently well. In addition, GaMD-WE needs reweighting to

have more accurate weights and have an advantage over the WE method, i.e., GaMD-WE

does not necessarily have an advantage over the WE method from solely covering more of
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the free energy landscape within the same simulation time. However, this might not be

the case if GaMD had covered a region with a higher energy barrier that is difficult for the

conventional WE method to sample quickly, so this hypothesis needs to be tested on more

complex systems in the future.

Table 1: Alanine dipeptide rate constants (in ns−1) after 12 µs of simulation time. In the
brute force simulation column, the first value indicates the average rate constant value, and
the second value indicates the 95% confidence interval calculated from Bayesian bootstrap-
ping. For the WE method and GaMD-WE, the error bars represent 95% confidence intervals
calculated from the standard deviation of three independent runs.

Brute force WE method GaMD-WE GaMD-WE with equal weights
αR → PII 6.81, [6.71, 6.90] 6.79 ± 0.052 6.54 ± 0.088 6.47 ± 0.12
PII → αR 2.97, [2.92, 3.02] 2.96 ± 0.055 2.88 ± 0.035 2.88 ± 0.040
αL → αR 0.30, [0.25, 0.36] 0.38 ± 0.25 0.34 ± 0.087 0.23 ± 0.14
αR → αL 0.0099, [0.0083, 0.012] 0.0083 ± 0.0011 0.0081 ± 0.0021 0.0092 ± 0.0017
αL → PII 0.33, [0.27, 0.40] 0.32 ± 0.020 0.33 ± 0.012 0.31 ± 0.019
PII → αL 0.0099, [0.0083, 0.012] 0.0085 ± 0.0014 0.0082 ± 0.0020 0.0090 ± 0.0018

3.2 Chignolin

To investigate whether GaMD-WE will be significantly more effective than the WE method

for more complex systems, we tested the two methods on chignolin, a 138-atom system with

ten residues (PDB: 1UAO). The modified Generalized Born implicit model with the model

II radii92 was used to solvate the system implicitly. For GaMD-WE, GaMD was run for 500

ns, and the WE method was run for 39.5 µs so that the total simulation time amounted to

40 µs. Simulation time, τ for the WE method was set to 20 ps, equal to GaMD’s sampling

frequency. Target number of walkers per macrostate nw was set to 4. CVs were set to be the

mass-weighted root-mean-square-deviation (RMSD) of Cα atoms from the initial folded state

(PDB: 1UAO) and the mass-weighted radius of gyration (Rg) of Cα atoms. Macrostates were

evenly spaced in intervals of 0.2 Å for both RMSD and Rg (ranging from 0 Å to 8 Å).

Figures 3a and 3b show the average free energy landscape (−kBT lnP , where P denotes

probability) of chignolin after 500 ns of GaMD and the WE method, respectively. The lowest
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Figure 2: Evolution of rate constants over aggregate simulation time for the WE method (in
red), GaMD-WE (in blue), and GaMD-WE with equal weights (in magenta). The reference
brute force values are in black. (a) and (b) show the rate constants between the two major
metastable states αR and PII. (c) and (d) show the rate constants between αR and αL, a
higher energy region, and (e) and (f) show the rate constants between PII and αL.
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energy state was set to be zero for each free energy landscape. In particular, the GaMD run

with the upper bound of the dihedral boost potential yielded the maximum number of

initial structures on average as compared to the other five GaMD potential settings (see

Supplementary Information). Cumulant expansion to the second order was used for GaMD

reweighting. Although GaMD and the WE method have comparable free energy landscape

coverage as seen in Figures 3a and 3b, GaMD has probabilities closer to actual values due to

reweighting as seen in Figures 3c and 3d. This shows that it can still be more beneficial to

use GaMD instead of the WE method to sample the free energy landscape as GaMD yields

a more accurate free energy landscape.

We also show that GaMD-WE can converge to the correct rate constants faster and

more accurately than the WE method, more notably than in the alanine dipeptide case.

Specifically, rate constants between the four regions of interest shown in Figures 3c and 3d

were measured over simulation time. The folded region was defined to be 0.0 Å ≤ RMSD ≤

1.0 Å, unfolded region was defined to be 4.0 Å ≤ RMSD, intermediate I region was defined

to be 3.5 Å ≤ RMSD ≤ 4.5 Å, 4.5 Å ≤ Rg ≤ 6.5 Å, and the intermediate II region was

defined to be 6.0 Å ≤ RMSD ≤ 7.0 Å, 7.0 Å ≤ Rg ≤ 8.0 Å. Initial structures for the three

GaMD-WE runs were from one of the three GaMD runs with an upper bound of dihedral

boost potential that yielded the largest number of initial structures. WE method and brute

force simulations used the same initial structure as the GaMD runs. Figures 4 and 5 show

the evolution of rate constants over aggregate simulation time, and Table 2 summarizes the

final rate constants for brute force, WE method, and GaMD-WE simulations after 40 µs of

simulation time. The reference brute force simulation values were obtained from averaging all

first passage times from five independent 8 µs runs and performing Bayesian bootstrapping

for 95 % confidence intervals.87 The first 2 µs of simulation time was cut off in the rate

constant calculation to eliminate initial structure bias for brute force, WE method, and

GaMD-WE simulations.

Figures 4a and 4b show that GaMD-WE is faster than the WE method at converging
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Figure 3: Average free energy landscape (−kBT lnP , where P denotes probability) of chig-
nolin after (a) 500 ns of GaMD (with upper bound of dihedral boost potential), and (b)
500 ns of the WE method, respectively. (c) and (d) show the average free energy landscape
obtained after 40 µs of the WE method (after cutting out the first 2 µs of simulation time
to eliminate initial structure bias), with the regions of interest marked. The lowest energy
state was set to be zero for each free energy landscape.
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to the reference rate constants between the folded and unfolded regions. GaMD-WE is

significantly better at obtaining the rate constants from unfolded to folded since GaMD-

WE had closer to actual probabilities for the unfolded region with reweighting. Without

reweighting, WE method takes a significantly longer time to converge to the reference rate

constants. Figures 5a, 5b, 5c, and 5d also show similar results that highlight GaMD-WE

converging faster to the reference rate constants, especially for rate constants that go from

either intermediate I or II region to the folded region. Performance for GaMD-WE is only

slightly better than the WE method in obtaining the rate constants between the intermediate

I region and the intermediate II region, however, as seen in Figures 5e and 5f. The two regions

are close to each other, making sampling between these two regions and converging to the

actual rate constants easier than the other cases. Finally, Table 2 indicates that the only

rate constant that WE method had within the reference confidence interval was for the

folded → intermediate II rate constant. In contrast, the GaMD-WE had all of the rate

constants fall within the confidence intervals except for the intermediate I → intermediate

II rate constant. Error bars for the GaMD-WE method were lower than the WE method

for all rate constants except for the folded → unfolded, unfolded → folded, and folded

→ intermediate I rate constants. These results indicate that GaMD-WE’s performance in

obtaining kinetics is significantly better than the conventional WE method for more complex

systems than alanine dipeptide.

3.3 Bovine pancreatic trypsin inhibitor

As a final test, we ran a GaMD simulation and a WE method simulation of bovine pancreatic

trypsin inhibitor (BPTI), an 892-atom system with 58 residues (PDB: 5PTI). This was to

test whether GaMD will be more effective than the WE method at covering the free energy

landscape of a bigger protein system than alanine dipeptide or chignolin. TIP4P-Ew water

model93 was used to solvate the system explicitly. Both simulations were run for 500 ns.

Simulation time, τ for the WE method was set to 40 ps, and points were sampled every

17



(a)
0 0.5 1 1.5 2 2.5 3 3.5 4

aggregate simulation time [ns] 10
4

0.8

1

1.2

1.4

1.6

1.8

2

ra
te

 e
v
o
lu

ti
o
n
 [
n
s

-1
]

rate evolution Folded to Unfolded

WE

GaMD-WE

brute force

(b)
0 0.5 1 1.5 2 2.5 3 3.5 4

aggregate simulation time [ns] 10
4

0

0.05

0.1

0.15

0.2

0.25

ra
te

 e
v
o
lu

ti
o
n
 [
n
s

-1
]

rate evolution Unfolded to Folded

WE

GaMD-WE

brute force

Figure 4: Evolution of rate constants over aggregate simulation time for the WE method (in
red) and GaMD-WE (in blue). The reference brute force values are in black. (a) and (b)
show the rate constants between the folded region and the unfolded region.

Table 2: Chignolin rate constants after 40 µs of simulation time. In the brute force simula-
tion column, the first value indicates the average rate constant value, and the second value
indicates the 95% confidence interval calculated from Bayesian bootstrapping. For the WE
method and GaMD-WE, the error bars represent 95% confidence intervals calculated from
the standard deviation of three independent runs.

Brute force [ns−1] WE method [ns−1] GaMD-WE [ns−1]
Folded → Unfolded 1.25, [1.17, 1.33] 1.16 ± 0.056 1.26 ± 0.067
Unfolded → Folded 0.026, [0.024, 0.028] 0.037 ± 0.0049 0.027 ± 0.0049

Folded → Intermediate I 1.41, [1.32, 1.50] 1.26 ± 0.046 1.46 ± 0.089
Intermediate I → Folded 0.028, [0.026, 0.031] 0.041 ± 0.0056 0.029 ± 0.0045
Folded → Intermediate II 0.42, [0.40, 0.45] 0.44 ± 0.040 0.40 ± 0.020
Intermediate II → Folded 0.020, [0.019, 0.022] 0.024 ± 0.0039 0.021 ± 0.0019

Intermediate I → Intermediate II 1.15, [1.13, 1.17] 1.19 ± 0.037 1.20 ± 0.024
Intermediate II → Intermediate I 4.52, [4.46, 4.58] 4.67 ± 0.19 4.52 ± 0.17
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Figure 5: Evolution of rate constants over aggregate simulation time for the WE method (in
red) and GaMD-WE (in blue). The reference brute force values are in black. (a) and (b)
show the rate constants between the folded region and the intermediate I region. (c) and
(d) show the rate constants between the folded region and the intermediate II region. (e)
and (f) show the rate constants between the intermediate I region and the intermediate II
region.
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2 ps to match GaMD’s sampling frequency. Target number of walkers per macrostate nw

was set to 4. CVs were set to be the dihedral angles χ1−C14 and χ1−C38 associated with

the disulfide bond formed between cysteine 14 and cysteine 38.94,95 Macrostates were evenly

spaced in intervals of 10◦ for both (ranging from -180◦ to 180◦).

Figures 6a and 6b show the free energy landscape (−kBT lnP , where P denotes proba-

bility) of BPTI after one 500 ns run of GaMD and WE method, respectively. The lowest

energy state was set to be zero for each of the free energy landscapes. In particular, the

GaMD run with the upper bound of the dual boost potential yielded the maximum number

of initial structures on average as compared to the other five GaMD potential settings (see

Supplementary Information). Maclaurin expansion to the tenth order was used for GaMD

reweighting since using cumulant expansion to the second order is limited for small proteins

with 40 residues or less.1 Figure 6a shows a free energy landscape similar to the one obtained

from accelerated molecular dynamics (aMD), which was also obtained using a dual boost

potential and Maclaurin expansion to the tenth order for reweighting.95 Slight differences

between the two free energy landscapes may be from using different force field parameters:

aMD used the modified Amber ff99SB-ILDN force field,96,97 which removed modifications to

leucine, aspartic acid, and asparagine to mimic the Anton simulation of BPTI,98 and GaMD

used the Amber ff14SB force field.90

Metastable states of interest, including the major state M and two minor or excited states

mC14 and mC38,99 are marked in Figure 6a. M region was defined to be −120◦ < χ1−C14 <

0◦, 0◦ < χ1 − C38 < 120◦, 0◦ < χ3 < 180◦, mC14 was defined to be 0◦ < χ1 − C14 < 120◦,

0◦ < χ1−C38 < 120◦, −180◦ < χ3 < 0◦, and mC38 was defined to be −120◦ < χ1−C14 < 0◦,

−120◦ < χ1−C38 < 0◦, −180◦ < χ3 < 0◦ as in the BPTI aMD reference.94,95 Dihedral angle

χ3 is associated with the disulfide bond formed between cysteine 14 and cysteine 38. It

is clear that GaMD is more effective at exploring other metastable states present in BPTI

including mC14 as compared to the WE method. Even after extending the WE method

simulation for 2 µs (total simulation time: 2.5 µs), WE method is still not able to sample
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mC14 as seen in Figure 6c. This highlights the power of GaMD being able to sample more

of the configuration space than the WE method. GaMD can sample orthogonal modes to

the chosen CVs χ1−C14 and χ1−C38 since it is a CV free enhanced sampling method. In

contrast, WE method mainly samples along the chosen CVs and can encounter difficulties in

sampling regions when there are orthogonal modes present to the chosen CVs. Although rate

constants between these metastable states were not measured, it is expected that GaMD-WE

will sample them significantly faster than the conventional WE method.
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Figure 6: Free energy landscape (−kBT lnP , where P denotes probability) of BPTI after
(a) one 500 ns run of GaMD (with upper bound of dual boost potential) with metastable
states of interest M, mC14, and mC38 marked, (b) one 500 ns run of the WE method, and
(c) extending the WE method run for 2 µs (total simulation time: 2.5 µs), respectively. The
lowest energy state was set to be zero for each of the free energy landscapes.
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4 Discussion

Three examples mentioned in the previous sections highlight how GaMD-WE can be more

powerful than either GaMD or the WE method by itself. On the other hand, this hybrid

method also reveals both methods’ advantages and disadvantages. GaMD is more effective

at sampling the configuration space than the WE method by being a CV-free method. By

adding boost potentials to “fill” the energy wells in a CV-free manner, GaMD can sample the

configuration space more evenly across different modes in the system. On the other hand,

WE method is mainly limited to efficiently sampling along the chosen CVs. This is not

problematic if the chosen CVs sufficiently describe the dynamics of the system, but in most

cases, it is difficult to know the best CVs a priori. In such cases, WE method can be slow at

sampling the configuration space with the orthogonal modes present. For alanine dipeptide

and chignolin, chosen CVs have been commonly used in existing literatures.1,51,87 They are

small enough systems for both GaMD and the WE method to sufficiently sample well. But

for BPTI, the dihedral angles χ1−C14 and χ1−C38 are not commonly used CVs and have

shown to be insufficient for the WE method to sample as effectively as GaMD. BPTI is also

a much bigger system than alanine dipeptide or chignolin. In this case, principal component

analysis (PCA) vectors have been commonly used instead as CVs for BPTI.95,98,100

Another limitation of the WE method is that it cannot have CVs such as PCA vectors,

which can only reliably be obtained from a long simulation. GaMD, Markov state mod-

els (MSMs), and other methods that are post-processed, constructed, and analyzed after

a long simulation is run can have PCA vectors, time-structure based independent compo-

nent analysis (tICA) vectors, and other dimensionality reduction vectors to describe the

system.60,101 Nonetheless, the WE method can have non-differentiable CVs such as the num-

ber of hydrogen bonds, which can be helpful for many systems. In contrast, other methods

such as metadynamics and adaptive biasing force (ABF) need differentiable CVs. Moreover,

the WE method does not add any statistical bias to the system and is exact regardless of

the parameters,102 so it can reliably obtain the actual kinetics of the system. Since a long
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simulation is typically needed to get reasonable estimates of the kinetics, researchers have re-

cently developed methods for the WE method to estimate the actual kinetics faster.52,103,104

If GaMD-WE is combined with these current methods, more improvements will be seen in

obtaining thermodynamic and kinetic properties.

5 Conclusion

We have combined two well-established enhanced sampling methods, GaMD and WE, into

a hybrid method GaMD-WE to create a more powerful enhanced sampling method for MD

simulations. GaMD is used to sample the free energy landscape initially, and WE method

is used to further sample the free energy landscape and ascertain rate constants between

two states of interest in the system of interest. We have shown how the hybrid method

performs better than the conventional WE method in sampling thermodynamic and kinetic

properties for three systems, and its performance significantly improves as the system size

grows. For future directions, we plan to fully integrate the hybrid method with the WE

method simulation toolkit such as WESTPA and possibly combine it with other WE method

enhancing algorithms to create state-of-the-art enhanced sampling methods. The GaMD-WE

package is available at https://github.com/anandojha/gamd_we and the documentation

is available at https://gamd-we.readthedocs.io/en/latest/.
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