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Abstract

Transferable high dimensional neural network potentials (HDNNP) have shown

great promise as an avenue to increase the accuracy and domain of applicability of

existing atomistic force fields for organic systems relevant to life science. We have

previously reported such a potential (Schrödinger-ANI) that has broad coverage of

druglike molecules. We extend that work here to cover ionic and zwitterionic druglike

molecules expected to be relevant to drug discovery research activities. We report a

novel HDNNP architechture, which we call QRNN, that predicts atomic charges and

uses these charges as descriptors in an energy model which delivers conformational

energies within chemical accuracy when measured against the reference theory it is

trained to. Further, we find that delta learning based on a semi-empirical level of

theory approximately halves the errors. We test the models on torsion energy profiles,

relative conformational energies, geometric parameters and relative tautomer errors.
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1 Introduction

Over the last decade, techniques borrowed from the field of machine learning (ML) have

greatly impacted many fields within computational chemistry. No field seems to be safe from

the intrusion, even the historically empiricism-averse field of ab initio quantum chemistry.

Techniques have emerged at nearly every level, between solving the electronic Schrödinger

equation using a Neural Network (NN) based ansatz of the many-electron wave function,1,2

machine learned density functionals,3,4 empirical corrections of semi-empirical, density func-

tional, or Hartree-Fock energies to higher level theories,5–7 machine learned force fields,8–11

and property prediction as complex as chemical reactivity.12 Of particular interest to this

work is what we might refer to as a NN potential energy surface (NN-PES). The goal of a

NN-PES is to compute the potential energy of a chemical system, given the atomic posi-

tions. These models are typically trained to reproduce a particular model chemistry and are

expected to reproduce the total electronic energy to chemical accuracy.13 A NN-PES can

be considered a type of atomistic force field: it maps atomic coordinates to energies, it is

comparatively efficient to compute, and its parameters are empirically determined. However,

a NN-PES differs from traditional biomolecular force fields14 in that the total electronic en-

ergy is reproduced, as opposed to the energy relative to an arbitrary reference conformation.

Additionally, the energy is purely a function of the chemical elements, coordinates, and net

charge (as in an ab initio method), not relying on additional discontinuous input data such

as atom types or assigned bonds. As such, NN-PES models promise both to increase the ac-

curacy of empirical force fields and to expand their application domain to include important

processes such as chemical reactions.

The most common approach to construct a NN-PES is to first transform the atomic

coordinates into local atomic descriptors, or “features”, which describe the local environment

of each atom.15–17 Alternatively some models allow the features to be “learnable” parameters,

typically referred to as an embedding.9,10 These features are transformed and reduced in

dimensionality by a machine learning method to produce an energy. The parameters of the
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model are determined by minimizing the error of predicted energies relative to a selected

reference level of theory, typically density functional theory (DFT). In one of the simplest

forms, and the form we focus on here, the feature vector describing each atom’s environments

is independently transformed by a neural network to output an atomic energy; these atomic

energies are then summed to produce a molecular energy. This approach is often termed

a high dimensional neural network potential (HDNNP).15,18 Many of the works that have

applied this algorithm have focused on applications in which the HDNNP is trained to the

same chemical system to which it is applied. In this application, a model is trained very

accurately within a small and well defined chemical space and then used to perform energy

sampling within this chemical space, on larger simulation cells or time scales than would

otherwise be possible. There is no expectation that the model could be applied to systems

for which it is not trained. Conversely, it is also possible to develop a transferable HDNNP

in which it is expected that the model will be applied to chemical systems for which it is not

trained. Smith et al. demonstrated that an HDNNP, trained only to a representative, but

still large, subset of the vast diversity of organic molecules, could produce accurate energies

for molecules not in the training set.8 A transferable HDNNP rests on two pillars: A model

with the capacity to reproduce energies to within chemical accuracy, and a dataset which

contains a representative sample of the space of relevant atomic environments.

Previously, some of the current authors have extended the work of the Roitberg lab to

increase element coverage19 (which was initially only four elements but has recently increased

to seven20) and increased the precision when tested on rotamer scans of a diverse set of

druglike organic molecules. The motivation for that work was to develop an HDNNP that

could be confidently used to generate training data for parameterization of intramolecular

terms in a biomolecular forcefield such as OPLS.14 We termed this model Schrödinger-ANI

(here abbreviated SANI) in homage to the ANI model from which it descends. There are

several shortcomings of that model, the most significant for parameterization of force fields

is that molecular ions were not in the domain of applicability. SANI and other models like it
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have no way to distinguish charged from uncharged species, nor did we have a dataset with

sufficient coverage for such training. Here we report our solutions to both of these problems.

In what follows, we will describe a model called QRNN (charge recursive NN), trained

directly to DFT, and QRNN-TB, trained to the difference between DFT and GFN2-xTB.

We will also compare to a version (QeqNN) with a charge equilibration method like that

of Ko et al,21 which has similar accuracy but less favorable computational scaling. We will

demonstrate the effectiveness of these models by testing conformational energies of a broad

set of neutral and ionic systems, as well as the Hutchison conformer test set22 and relative

energies of tautomers in the Tautobase dataset.23

2 Models

The main issue to be resolved is that the electronic energy is not uniquely defined by the

nuclear positions alone: one must also define the system’s net charge and spin multiplicity.

In a model such as SANI these two electronic inputs are implicitly defined to be zero and one

(neutral closed-shell), simply by having only neutral closed-shell examples in the training

set. It is tempting to add ionic examples without modifying the model and to hope that

the model can interpret which of these system are ionic and which not. Most chemists

could guess on sight that a deprotonated carboxylic acid will be negatively charged, or a

protonated amine will be positively charged. It is possible that one could proactively curate

a dataset of ions such that the charge state can be inferred from coordinates alone, but we

believe this approach is flawed and will eventually fail as the training set achieves broad

coverage of chemical space. A simple example of the problem is any tertiary carbocation,

which (for a given set of coordinates) would be indistinguishable from a tertiary carbanion.

Any model that has features only depending on nuclear positions would unavoidably fail to

distinguish these systems. Thus, one must specify the net charge to a model if the training

set has broad coverage of geometries of closed shell ions. Here we do not consider systems
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that are not closed-shell, and thus the spin multiplicity continues to be defined as 1 for all

inputs.

The crucial idea of the models we study in this report is to use a simple physical model24

to predict atomic charges, and then to use these charges as inputs to an energy model along

with the usual geometric features. Essentially we transform the global net charge into local

charges that can be used as part of description of the local atomic environment in a natural

way. The parameters entering a charge model can be predicted by a neural network, a

strategy first used by Ghasemi et al.25

Before describing the details of the models studied here we would like to highlight three

recent highly relevant works. The first is the work of Zubatyuk et al 26 which extends AIMNet

to charged systems. These authors have resolved the dilemma of adding a net charge in

a novel and interesting way: a network which predicts energies of multiple charge states

simultaneously. By definition, this scheme requires either the ionic state or the neutral state

to be a radical. This is a disadvantage for our desired use case (closed-shell systems), but it

could be useful in other contexts. Since this algorithm requires at least three energy labels

for each training point (charge states +1, 0, -1), it seems that extending the scheme to any

other charge states (+2, -2, etc) would require large increases in the size of the training set. A

second work from Ko et al 18,21 reports a “fourth generation” HDNNP (4G-HDNNP) which is

quite similar to one of the two models we present below. While our model was independently

developed, it was motivated by earlier work by some of the same authors,25 and so it is not

unexpected that both would develop in the same direction. One can therefore interpret

our work as an extension of Ko et al in which we demonstrate the ability to construct

a transferable charge-aware HDNNP with broad coverage of organic molecules, and with

improved computational scaling. Third is the work of Qiao et al who reports OrbNet,5,6 a

method which makes extensive use of features from the tight binding quantum mechanics

method GFN2-xTB.27 While the authors of that work have not explicitly demonstrated that

OrbNet accurately reproduces energies of ions, our work suggests that their model likely has
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the capacity to work for such systems. In fact, one could interpret the charge features we

use as coarse-grained approximations to the quantum mechanical charge density which is

used as a feature in OrbNet. Further, OrbNet relies on delta learning and is trained to the

difference between GFN2-xTB and their reference level of theory. We demonstrate here that

one can use this technique to boost the accuracy of our HDNNP models as well, at the cost

of having to perform a tight-binding calculation.

The geometric features for the neural networks are modified Behler-Parrinello symmetry

functions,15 as described by Smith et al.8 The Cartesian coordinates are transformed into a

set of element resolved radial,

g
(R)
i,Z,η,s =

Natoms∑
j 6=i

exp(−η(Rij −Rs)
2) δ(Z − Zj) fC(Rij), (1)

and angular symmetry functions,

g
(A)
i,Z,Z′,η,s = 21−ζ

Natoms∑
j,k 6=i

(1 + cos(θikl − θs))ζ exp(−η(
Rij +Rik

2
−Rs)

2) δ(Z−Zj)δ(Z ′−Zk) fC(Rij)fC(Rik).

(2)

Here Rij is the distance between atoms i and j, fC(R) is a switching function8 which decays

to zero at a radial cutoff, Z is the atomic number defining an element type and θijk is the

angle formed by atoms i, j and k, centered on atom i. Rs, θs, η and ζ are hyper-parameters

which direct these symmetry functions to probe different regions in distance and angle space.

Together, the radial and angular symmetry functions for atom i form a fixed length vector

(G
AEV)
i ), referred to as the atomic environment vector (AEV)8 which describe the local

environment of that atom. By construction of the BP symmetry functions, the AEV is

invariant to overall translation, rotation, and permutation of atom indices.

Next let us define an atomic neural network (ANN) which transforms the atomic AEV

6



of dimension f into an output dimension o, i.e.

NNZ : Rf → Ro. (3)

A commonly used algorithm to calculate atomic charges (qi) is the QEq method.24 This

algorithm defines the charges as minimizing a simple energy expression,

q = argmin

[
Natoms∑

i

χiqi +
1

2

Natoms∑
ij

qiJijqj − λ(
∑
i

qi −Qtot)

]
. (4)

Here λ is a Lagrange multiplier, Qtot is the total charge of the system, χ is the electronegativ-

ity of atom i and Jij is the Coulomb interaction matrix. Following others25,28 we parameterize

the Coulomb interaction by assuming atom centered, spherical Gaussian charge distributions

with a standard deviation σi, yielding

Jij =


1√
πσi

i = j

erf
(

Rij√
2(σ2

i
+σ2

j
)

)
Rij

i 6= j .

(5)

To determine the atomic charges from eq. 4 one can set the derivative with respect to qi

and λ to zero and solve the resulting linear equations.21,24,25,28 The atomic electronegativity,

χi, and width parameters, σi, are both allowed to be environmentally dependent and are

predicted from an ANN. More precisely, we compute

Xi, Si = NNQeq
Zi

(GAEV
i ) (6)

and then calculate the Qeq parameters as χi = X2
i and σi = σ0 + S2

i . This is done to

ensure χi > 0 (for physicality) and σi > σ0 (for numerical stability). We have found σ0 as

small as 0.05 Angstrom to be sufficient to avoid numerical issues. Once the charges have

been determined they can be used as features to a second ANN which defines the energy.
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For atomic features, in addition to atomic charge and the standard AEV, we also use a

charge-weighted radial AEV which describes the local charge environment:

GqR
i,η,s =

Natoms∑
j 6=i

qjexp(−η(Rij −Rs)
2) fC(Rij). (7)

Finally, we compute the total energy as

E =
Natoms∑

i

NNQeqNN
Zi

(qi, G
qR
i , GAEV

i ) + Edisp + Ecoul(q) , (8)

where Edisp is the empirical dispersion correction of the ωB97X-D functional29,30 and Ecoul

is a truncated Coulomb energy which decays smoothly to zero at short range.31 Eq. 8 along

with Eq. 4 can be seen to be a fairly straightforward extension of the recently reported 4G-

HDNNP21 with the main difference being the charge-weighted radial AEV shown in Eq. 7

which we have found increases the capacity of the model by providing information about the

local distribution of charge around an atom. The truncated Coulomb expression we use is

given by

Ecoul =
1

2

Natoms∑
i 6=j

qiqj
Rij

1

1 + exp(b(a−Rij))
. (9)

In order to solve the Qeq equations and determine the charges one must first compute

the Coulomb matrix in eq. 5 and then solve a set of linear equations that has the dimension

of the number of atoms. This yields a method with the same asymptotic scaling as the linear

solver, approximately O(N3
atoms), a distinct disadvantage compared to standard force fields

which can be computed in quasi-linear time O(Natoms log(Natoms)).

The model we focus on in this report is an approximate form of the Qeq method with

reduced computational scaling. This model removes the need to solve a system of linear equa-

tions, by shifting the burden onto the neural networks to predict a more difficult parameter

χ̃i. We begin by separating the diagonal and off diagonal contributions to the Coulomb sum
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in Eq. 4, thus defining an “effective” electronegativity:

χ̃i = χi +
1

2

∑
j 6=i

Jijqj (10)

to yield

q = argmin

[∑
i

χ̃iqi +
1

2

∑
i

Jiiq
2
i − λ(

∑
i

qi −Qtot)

]
(11)

Without the explicit off-diagonal terms in Jij, this expression now has a simple analytic

solution in terms of the effective electronegativities χ̃i,

qi = − 1

Jii
(χ̃i − λ) (12a)

λ =
Qtot +

∑
i
χ̃i
Jii∑

i
1
Jii

. (12b)

We interpret the effective electronegativities, χ̃i, as environmentally-dependent learnable

atomic properties. From eq. 10 it is seen that these parameters have an implicit dependence

on all other atomic charges. To approximate this effect without using non-local interactions,

the charges are predicted iteratively, with each iteration using only local information for each

atom. On iteration I we predict effective electronegativities

χ̃
(I)
i = NNQR

Zi
(q

(I−1)
i , GqR

i , GAEV
i ). (13)

which then enter Eq. 12 to predict the atomic charges. Note that it is not necessary to

compute the full coulomb matrix for this method. Further, we fix the diagonal hardness

parameters and use those taken from Caldeweyher et al.28 The charge-weighted AEV, GqR
i ,

of each atom is computed at each iteration, allowing charge information to propagate locally

in a way reminiscent of message passing NNs,9,10,26 though with a pre-defined type of message

(atomic charges). Surprisingly, we have found that two iterations are sufficient for converging

results to accuracy equal to that of the Qeq method. The charges are then used in an energy
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model identical in form to Eq. 8. The resulting model, which calculates accurate system

properties but preserves the quasi-linear scaling of standard force fields, we call QRNN for

charge recursive neural network.

3 Dataset Construction

We have constructed a large dataset of ions of druglike molecules and their tautomers using

active learning32 which consists of approximately 18 million examples. We initialize the

process with a dataset of neutral molecules which has been previously described.19 A QeqNN

model trained on the previous data at each active learning step is used to perform geometry

optimization and normal model sampling (NMS).8 As such, we must begin by appending

to the neutral dataset an initial set of ionic data that roughly represents ionic species in

general.

Active learning cycles are initiated with a dataset of very small ionic fragments optimized

by DFT. This is done by fragmenting molecules appearing in ChEMBL33 and ZINC34 molec-

ular datasets with the BRICS35 implementation in the RDKit.36 The fragmentation points

are methyl-capped, unless they are carbon atoms already in which case they are hydrogen-

capped. We retain all fragments with five heavy atoms or fewer, and then generate tautomers

of charge states with a relative charge difference of -1, 0, and +1 electrons using Jaguar and

EPIK tautomer enumerators.37,38 All unique fragments (according to canonicalized SMILES

strings) are retained and for each fragment we generate a single starting conformer with our

in-house methodology, Fast3D. Each resulting conformer is then optimized with our refer-

ence level of DFT. For any optimization not resulting in a chemical reaction (see below),

we generate 30 examples with NMS based on the DFT Hessian. This procedure resulted

in 289,572 conformations which were added to our neutral dataset and used to provide an

initial model.

From this point forward we use the following workflow to generate new training exam-
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ples: select a new SMILES string from a molecular dataset, optimize the molecule with the

HDNNP, generate charge states and tautomers which differ in charge from the initial molecule

by -1, 0 and +1 electrons, optimize all tautomers with the HDNNP, perform sampling of

torsions following our previously described methodology,19 apply either NMS or an empirical

sampling (ES) scheme as previously described,19 and filter new examples by measuring the

uncertainty of the model, excluding points with low uncertainty. The uncertainty is given

by ρ = σ
Natoms

, where σ is the standard deviation of energies from an ensemble: A small set

of trained models whose only difference is the initial values of the weights at the start of

training. This uncertainty measure is required to be greater than 0.25 kcal/mol. Further,

we skip NMS or ES on examples which have uncertainty below this threshold. We sample

two SMILES strings at a time and pool all examples found with the above protocol, then

randomly select a maximum of 1000 examples in each cycle. We use Chembl, ZINC, GDB

and an internal proprietary dataset (CACDB) of druglike molecules to generate molecular

examples in the form of SMILES strings. NMS and ES are performed in equal proportions.

In the initial stages tautomers were not filtered and we retained all found tautomers. As

the complexity of molecules grows the number of tautomers also grows combinatorially; to

avoid an explosion of the number of high energy tautomers we filter them using a probability

distribution given by

Pt(εt) =


1 εt < µt

exp

(
−
(
εt−µt
σt

)2)
εt ≥ µt

(14)

where εt is the tautomer energy relative to the lowest known tautomer and the mean and

standard deviation are 10.0 and 20.0 kcal/mol respectively. In the final rounds of active

learning we narrow our focus further by only using ionic examples directly from the molecular

datasets, we expect that these examples are low lying tautomers as judged by some expert

or software program that constructed the dataset or SMILES string. The rounds of active

learning are summarized in Table 1. After each round DFT labels are generated and an

ensemble of five members is trained.
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Table 1: Summary of active learning cycles. Round 0 refers to the dataset built at the start
of active learning by fragmentation, as described in the text.

round max heavy atoms new training points tautomer filtration conformation search
(thousands)

0 5 289 None No
1 6 158 None No
2 6 328 None No
3 8 357 None No
4 8 302 None No
5 10 391 No No
6 10 1500 Eq. 14 No
7 12 2191 Eq. 14 No
8 12 1088 dataset tautomer only No
9 14 1000 dataset tautomer only Yes
10 14 846 dataset tautomer only Yes

Total 14 8450 mixed mixed

When generating tautomers by our enumeration protocol, potentially with very high

energies, it is not uncommon that a geometry optimization will produce a chemical reaction.

This reactivity may be enhanced because we do not use a solvent model, which could stabilize

some tautomeric forms. As a general rule, we have found that the approximate model

must be provided with some data about unfavorable, high-energy configurations, or else

it may predict them to be favorable. If spurious chemical reactions take place, sampling

these reactive pathways is a good way to correct the errors of the model; by labeling the

erroneous points and re-training. Here we are focused on the description of conformational

and tautomer energies, not the description of arbitrary chemical reactivity, and thus we do

not necessarily wish to concentrate sampling on all such processes. There are two main

types of reactions we have observed and we handle the two types differently: fragmentation

and proton transfer. If an intramolecular proton transfer reaction occurs we retain examples

along the entire optimization path, conversely, if fragmentation occurs we retain samples

only up to the point of fragmentation. The latter allows us to potentially correct spurious

fragmentation events while avoiding concentrating samples of molecular complexes which we
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will focus on in future work. The fragmentation point or chemical reaction is detected by

re-assigning bonds using distance thresholds based on covalent radii.

4 Details

We train models directly to DFT energies (see below) as well as to the difference between

GFN2-xTB and DFT energies. We refer to these as direct and delta learning. For direct

learning we train models of the form of eq. 8 to the atomization energy, that is, we subtract

per-element atomic energy offsets from the DFT energies and train to the (much smaller and

more tractable) residuals. For delta learning, we first generate delta energy labels

δE = EDFT − EGFN2−xTB , (15)

then fit per-element atomic energy offsets to this difference (as for DFT energies) and

again train to the residual of the labels and the per-element atomic energy offsets. When

performing delta learning we omit the long-range terms Edisp and Ecoul(q) from Eq. 8 since

we expect GFN2-xTB to reproduce the reference DFT reasonably well at long range.

All models are trained using a multitask loss function,31,39 where the two tasks are charge

prediction and energy prediction,

Lmtl =
LE
2σ2

E

+
Lq
2σ2

q

+ log(σEσq) . (16)

LE and Lq are the loss functions for the energy task and charge task, respectively. The

inverse weights, σE and σq are trainable parameters. This approach obviates the need to

hand tune the weights of the tasks in the overall loss function and we have found that

models trained with this method outperform models trained sequentially. The energy loss

function is taken to be the squared error between the predicted energies and energy labels.

For delta learning we use the squared error between the predicted charges and GFN2-xTB

13



charges. For direct learning we train to the squared error of predicted dipole moments to

those predicted by DFT. The dipole moment is a physical observable which avoids the well-

known arbitrary nature of atomic partial charge schemes. More importantly, training to

dipole moments ensures correct long range electrostatic interactions, which is not true for

charge decomposition schemes in general. This is less important for the delta learned models

where we rely on GFN2-xTB to provide a good description of the long range interactions.

To minimize the loss function we use the AdamaxW optimizer (Adamax with decoupled

weight decay) with a weight decay of 1.0e-4. We utilize early stopping with a patience of zero

and a maximum of 100 epochs. Each ensemble member is trained to a 90/10 random split of

the training data which is performed independently at run time (as such there is some degree

of overlap between the training sets of the ensemble members). We use exponential moving

averaged weights and biases to evaluate validation and test errors, the model parameters are

updated every 10 batches with a mixing fraction of 0.999. As described in previous work,19

we weight training examples with a Boltzmann-inspired weighting function which focuses the

training on low-energy examples. The parameters of the weighting function are dependent

on the net charge - for example, the distribution of atomization energies of cations is shifted

relative to that of neutrals by the mean ionization energy. Each charge state is weighted

separately so as to remove this energy shift. This shift is less important for delta learning

where the distributions have much greater overlap. All network dimensions and Behler-

Parinello type symmetry function hyperparameters are taken from the work of Smith8 the

only difference being that we use GELU activation function40 for all neural networks, which

have a continuous second derivative. All models are implemented and trained in a locally

modified copy of the torchani open source software package,41 which is an implementation of

HDNNP type models utilizing PyTorch. Each neural network is trained on a single GPU with

single-precision floating point, and all results are computed with double-precision inference.

All DFT calculations were computed with the Jaguar molecular electronic structure pack-

age42 and utilize the pseudo-spectral approximation to accelerate computation of J and K
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matrices. The reference functional is ωB97X-D29 and we utilize the 6-31G* basis set. All

calculations are run with default accuracy settings. All minima optimized with DFT are

verified as such by checking that the number of imaginary vibrational frequencies is zero.

Optimizations using the HDNNP models and GFN2-xTB were performed inside Jaguar with

a local modification that allows specification of an external program which returns energy and

gradient data. All PM7 calculations are performed with MOPAC201643 and all GFN2-xTB

energy evaluations are computed with the xtb python API.44

5 Results and Discussion

We have trained both QRNN and QeqNN to a large dataset of organic molecules containing

the elements H, C, N, O, P, S, Cl and F. This training set consists of roughly 18 million

examples of conformations of neutral, ionic and zwitterionic organic species, see Sec. 3 for

details. The molecules in the training set are representative of druglike molecules, ions and

their tautomers. We have trained both models directly to DFT energies at the ωB97X-

D/6-31G* level which we will refer to as direct learning as well as the difference between

DFT and GFN2-xTB, which we will refer to as delta learning and denote by appending

-TB to the name of the model, as in QRNN-TB. We evaluate the performance of these

four models on test datasets which probe the accuracy of predicted torsional energy profiles,

relative conformational energies, optimized geometries and relative tautomer energies. We

focus on testing the models against our chosen reference level of theory, not against the

highest possible level of theory. We expect that our chosen reference will have (potentially

significant) basis set incompleteness errors for some systems, and this will be addressed in

future work. Nonetheless we expect that if our model accurately reproduces the chosen

reference it will still be generally useful for many applications and that we can have success

in recapitulating higher levels of theory after some subset of the data is recomputed at that

higher level.45 All test sets that were generated in this work are reported in the supporting
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information with DFT, GFN2-xTB and model energies labeled to facilitate reproduction of

this work and comparison to other works. We hope the addition of test sets of ionic molecules

contributes to the growing body of test sets available for machine-learned force fields.

5.1 Delta learning on the QM9 dataset

Table 2: Test errors for delta learning to the QM9 dataset, energies are given in meV. OrbNet
results are taken from Qiao et al.5

Direct Learning Delta Learning
size of training set HDNNP SchNet HDNNP SchNet OrbNet

25,000 43 32 30 15 12
50,000 24 21 15 11 8
110,000 14 13 9 7 5

We start by evaluating the effectiveness of delta learning on a standard dataset, QM9.46

We were inspired by recently reported results of OrbNet,5,6 a model which uses quantum

mechanically derived features. It was reported that OrbNet can achieve higher accuracy

results with fewer training data points as compared to other methods. Besides its unique

featurization, OrbNet also differs from other methods in its use of delta learning between

GFN2-xTB and DFT, rather than learning DFT directly. We were interested in how much

of the reported impressive performance could be replicated in a much more simple HDNNP,

simply by using delta learning. To this end we trained an HDNNP to the ground state

energy labels of QM9 using train/test splits reported by Qiao et al.5 Details of the training

procedure for this section are available in the supporting information. QM9 is a popular

dataset used to test the “capacity” of a model, or it’s ability to accurately train to complex

data. In this section we also train a message passing model, SchNet,47 as its design more

closely resembles OrbNet and can be thought of as a more modern design.

Table 2 shows that the capacity of a message passing model such as SchNet is generally

higher than that of an HDNNP as evidenced by the lower test errors. Also shown is that the

use of delta learning reduces the test errors by nearly a factor of two for both HDNNP and
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SchNet and improves test errors on the smallest training set to be competitive with direct

learning on the largest training set. Still, the errors reported for OrbNet are lower than those

we see for the other models. We cannot speculate that delta learning is the only advantage of

OrbNet (which has other favorable attributes), but our results show that delta learning can

increase the effective model capacity of other model types, not only OrbNet. In general, we

can infer that learning the difference between a semi-empirical quantum method and DFT

is more accurate than learning DFT energies directly. While a message passing model is

expected to have higher capacity, training to such a model is much more expensive than an

HDNNP and likely would be prohibitive for our full dataset. For that reason, the remainder

of the article will focus on training charge-aware HDNNP models that were described in

Sec. 2.

5.2 Torsion energies

We next turn to testing models trained on the full training set described in Sec. 3. Here

our intent is to validate the models for describing geometries and energetics of conformers

of organic molecules and their ions. We are primarily concerned with transferability and

therefore test on molecules outside of the training set. One of our target applications is

the use of HDNNP energies as reference data for fitting torsion parameters of traditional

force fields.14 As such, we test the accuracy of torsion scans of druglike molecules. We have

generated relaxed torsion scans (optimized at the reference level of DFT) by fragmenting

1000 ionic or zwitterionic druglike molecules randomly selected from an internal dataset of

such species (CACDB). This fragmentation results in 388 unique torsion scans of species

containing at least one non-zero formal charge, which we will refer to as “charged” species,

and 112 unique “neutral” molecules which contain no formal charges.

Using each method, we compute single-point energies for the DFT-optimized geometries

in this test set. The errors are listed in Table 3 and shown graphically in Fig. 3 which can

be found in the supporting information. The errors reported here are computed as root
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mean squared error (RMSE) in relative energy (relative to the DFT minimum geometry)

over each torsion scan, which consists of 12 equally spaced points. From these data it is

clear that QRNN and QeqNN behave quite similarly and that delta learning improves the

errors by nearly a factor of two. The direct learning models perform much worse on charged

systems (∼1.0 kcal/mol) than does a model trained only to neutrals and evaluated on neutrals

(0.56 kcal/mol). This situation recovers when applying delta learning and we are able to

achieve a mean error of only ∼0.5 kcal/mol. All of the charge-aware models dramatically

outperform the tested semi-empirical theories, which for charged systems perform similarly

to our previous HDNNP trained solely to neutral systems.19 These results are displayed

as a box and whisker plot in the supporting information which shows that remarkably, the

largest outliers with the delta learned models are only slightly higher than the upper quartile

of errors for the semi-empirical theories. As a general rule we find that QRNN and QeqNN

models perform very similarly, with the QRNN version slightly outperforming regardless of

whether or not we use direct or delta learning. For this reason and the fact that QRNN has

superior formal computational scaling we will focus on this model for the remainder of this

article. Tables which include results for the QeqNN models can be found in the supporting

information.

Figure 1 shows the largest outlier for each of three methods: QRNN, QRNN-TB and

GFN2-xTB. It is clear from these figures that the delta learned model is not a simple linear

combination of GFN-xTB and QRNN; In panel (a) the curves for GFN2-xTB and QRNN-

TB are quite similar whereas in panel (c) the QRNN and QRNN-TB curves nearly overlap.

Finally, it is interesting to speculate that panel (a) represents a type of non-local resonance

that the QRNN has difficulty recognizing (a resonance form for this molecule exists which

indicates the bond being rotated has double bond character), whereas GFN-xTB and QRNN-

TB seem to perform quite well. It is unclear if this is a general observation or simply a

statistical outlier and warrants further investigation.
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Table 3: Comparison of ML and semi-empirical methods against ωB97X-D/6-31G* for tor-
sion scans. Energies are given in kcal/mol. There are 388 ionic or zwitterionic torsion scans
and 112 torsion scans with no formal charges, each with 12 samples. The systems range from
10 to 46 heavy atoms, cover net charge states from -2 to +3 and have up to three atoms
bearing a formal charge.

method neutral subset ionic subset full set
QeqNN 0.58 1.04 0.94
QRNN 0.56 0.92 0.84

QeqNN-TB 0.35 0.54 0.50
QRNN-TB 0.33 0.51 0.47

SANI 0.56 2.05 1.71
PM7 1.72 2.18 2.07

GFN2-xTB 1.33 1.84 1.72

Figure 1: The worst performing torsion scan for the (a) QRNN, (b) QRNN-TB and (c)
GFN2-xTB methods. The relative energy RMSE for each method is given in kcal/mol.

5.3 Relative Conformational Energies

We now turn our attention from torsional profiles to relative conformational energies of flex-

ible molecules. Torsion scans probe energies which include torsion barrier heights, whereas

relative conformational energies probe minima on the potential energy surface. To evaluate

the conformational performance of our models we will use a test set reported by Folmsbee

and Hutchison.22 This test set is constructed from 622 neutral molecules and 86 charged sys-

tems, all of which are expected to show some degree of conformational freedom. Hutchison

and co-workers performed a conformational search on each of these molecules and reported

up to ten low-lying conformers of each species (see Ref22 for details). The test molecules
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contain up to 50 heavy atoms and 23 rotatable bonds, representing a strong test of trans-

ferability for our models, since our training molecules are substantially smaller. We have

re-computed DFT energy labels at our reference level of theory and filtered any geometries

that had unconverged self-consistent-field equations or contained chemical elements not sup-

ported by our model. This filtration left us with 576 neutral and 81 charged systems to

study.

We follow the analysis performed in the original work on this dataset and compute the

Mean Absolute Relative Error (MARE) and the square of the Pearson correlation coefficient

(R2) for each set of conformers. The median of these two metrics over all conformer sets

are used to assess the quality of reproducing the reference energies and rank ordering of

conformations. Hutchison showed that when comparing against a DLPNO-CCSD(T)/cc-

pVTZ reference, DFT methods typically have median R2 values of greater than 0.8 and

MARE of less than 0.3 kcal/mol whereas the best empirical methods (GFN2-xTB, ANI)

have R2 less than 0.65 and MARE greater than 0.4 kcal/mol. We would consider results for

our models (versus our reference level of theory) that are similar to those reported for DFT

versus DLPNO-CCSD(T) to be a very encouraging sign. Tables 5 and 4 show our results for

the neutral and charged subsets, respectively. Indeed, comparing the delta learned models

to our reference level of theory, we see that we can achieve MARE less than 0.2 kcal/mol

and R2 values greater than 0.9 for both subsets. Again, we see that delta learning provides

an impressive gain in accuracy over direct learning and that both methods show improved

error statistics relative to the semi-empirical QM methods PM7 and GFN2-xTB alone. When

comparing to the DLPNO-CCSD(T) references the delta learned models perform only slightly

worse than when comparing to our reference level of theory, ωB97X-D/6-31G*. We are also

encouraged by the observation that the difference between ωB97X-D/6-31G* and DLPNO-

CCSD(T)/cc-pVTZ is similar to that between our delta learned models and ωB97X-D/6-

31G*. Further, when comparing directly to DLPNO-CCSD(T), the delta learned models

perform nearly as well as ωB97X-D/6-31G*.
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Table 4: Results of relative conformational energies on the charged subset of the Hutchison
test set.

reference ωB97X-D/6-31G∗ DLPNO-CCSD(T)
method Median MARE (kcal/mol) Median R2 Median MARE (kcal/mol) Median R2

QRNN 0.25 0.87 0.28 0.67
QRNN-TB 0.14 0.94 0.18 0.84

SANI 0.50 0.72 0.39 0.73
PM7 0.48 0.28 0.40 0.39

GFN2-xTB 0.36 0.62 0.44 0.55
ωB97X-D/6-31G∗ – – 0.17 0.88

Table 5: Results on relative conformational energies on the neutral subset of the Hutchison
test set.

reference ωB97X-D/6-31G∗ DLPNO-CCSD(T)
method Median MARE (kcal/mol) Median R2 Median MARE (kcal/mol) Median R2

QRNN 0.27 0.87 0.34 0.74
QRNN-TB 0.16 0.94 0.27 0.84

SANI 0.28 0.84 0.35 0.75
PM7 0.54 0.36 0.61 0.31

GFN2-xTB 0.35 0.74 0.41 0.65
ωB97X-D/6-31G∗ – – 0.19 0.91
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5.4 Accuracy of optimized geometries

In order to assess the accuracy of optimized geometries we have constructed a dataset of

ionic conformers of druglike molecules. Two hundred molecules were drawn at random from

the ZINC dataset.34 The first hundred of these molecules were required to have sixteen

heavy atoms or fewer, and the second hundred examples were required to have thirty-two

heavy atoms or fewer. For each molecule we perform a mixed-mode conformational search

with MacroModel utilizing the OPLS3e force field.14 For each molecule, a maximum of 200

conformations is returned, with a maximum energy range of 12.0 kcal/mol.

In an effort to increase the diversity of our test set, we choose not to select only low-

energy conformers for each molecule, since these are often similar to one another. Instead, we

take the minimum-energy conformer and then up to nine other conformers drawn uniformly

at random from the remainder. Each of the conformers is then geometry-optimized at the

ωB97X-D/6-31G* level and then re-optimized, starting with the DFT geometry, with each

model tested. After removing saddle point geometries we were left with 190 conformer sets

that contained more than one conformer. We do not filter duplicate conformers after the

DFT optimization and thus some similar minima will remain. However, conformational

diversity of our conformer set is much greater than that of the Hutchison test set, with a

mean relative energy range per molecule of 10.9 kcal/mol for our test versus only 2.9 kcal/mol

for the Hutchison set.

To assess the accuracy of the optimized geometries, relative to ωB97X-D/6-31G* we

compute errors in bond distances, angles, torsions and RMSD over all cartesian coordinates.

We also report errors in relative energies and the median R2 value, as in Sec. 5.3. The

Cartesian RMSD is computed by first maximally aligning the geometries by minimizing the

RMSD over translations and rotations of one of the pairs of molecules. Further, in order

to test the geometries near charged groups, we compute errors over bond lengths, angles,

and torsions for which at least one atom bears a formal charge differing from zero. Finally,

we exclude from Table 6, any test geometry that undergoes a reaction during optimization
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Table 6: Comparison of model optimized geometries to ωB97X-D/6-31G* optimized geome-
tries. The errors in bond lengths, angles, and torsion are only computed for groups of atoms
for which at least one atom bears a formal charge. In addition, geometries for which a
reaction occurs during geometry optimization are excluded from the analysis, see text for
details.

Mean Energy Median Bond Distance Angle Torsion Cartesian
method RMSD R2 RMSD RMSD RMSD RMSD

(kcal/mol) (Å) (degrees) (degrees) (Å)
QRNN 0.51 0.96 0.006 0.72 6.99 0.26

QRNN-TB 0.42 0.98 0.004 0.52 6.62 0.24
SANI 1.27 0.77 0.020 1.88 10.18 0.34
PM7 1.27 0.72 0.019 2.08 11.74 0.33

GFN2-xTB 1.23 0.79 0.022 1.49 11.81 0.42

with the model PES. These reactions exclusively involve proton transfer and ring closure. We

have found that GFN2-xTB exhibits this behavior to a much greater extent than any other

method, reacting on 155 inputs, compared to 19, 1, 5 and 3 inputs for PM7, SANI, QRNN

and QRNN-TB respectively. This may indicate that GFN2-xTB tends to underestimate

proton transfer barriers, a subject which warrants further investigation.

The results of the geometry optimizations are shown in Table 6. We see that errors

in bond lengths, angles, torsion angles as well as overall Cartesian RMSDs improve from

semi-empirical to QRNN and improve further for the delta learned model, QRNN-TB. The

difference between direct and delta learned models for geometries is small. Our best models

achieve errors of 0.004 Å, 0.52◦, 6.62◦ and 0.24 Å for bond distances, angles, torsion angles

and cartesian RMSDs respectively We also compute relative energy errors and R2 values for

this dataset and again find very good correlation with the reference. We believe the linear

correlations and energy errors are higher than for the Hutchison dataset due to the larger

range of energies in our test set, as discussed above. Overall the geometries produced by

the delta learned models are in excellent agreement with DFT references and warrant future

work related to energy ranking of conformers with these methods.

23



5.5 Relative Tautomer Energies

Table 7: Mean absolute relative errors for the tautomer pairs in Tautobase in kcal/mol

SANI QRNN QRNN-TB GFN2-xTB PM7
1.62 1.14 0.57 5.29 4.89

Finally, we evaluate our models’ ability to reproduce relative tautomer energies. Our

primary interest in this task is in the impact it may have upon workflows which compute the

pKa of organic molecules, as in drug design. In order to compute pKa it is often necessary to

rank-order a large number of tautomers of a certain charge state.38 It is very difficult to rank

these tautomers using a purely rules-based scheme, and computationally expensive to do so

with DFT or other ab initio methods. Generally, this type of bond-changing energy difference

is outside of the range of applicability of classical force fields, so this is an example of an

area where an HDNNP could have a large impact in computational life science. Currently in

common workflows, tautomers are ranked with semi-empirical methods, but the low accuracy

of these methods for this task (see below) means that a wide energy window must be used

for selecting samples for re-ranking with DFT, increasing the DFT workload.

Tautomerization free energies have been recently studied with an ML/MM model based

on ANI.48 In addition Vazquez-Salazar et al.49 have recently explored the impact of the

diversity of training set on the ability to compute relative tautomer energies in a public

dataset, Tautobase,23 and we use the same dataset here. Tautobase consists of 1673 tautomer

pairs stored as SMIRKS strings. Here we neglect solvent effects and focus on reproduction of

relative tautomer energies in the gas phase. (Solvent effects would need to be accounted for in

order to make contact with the experimentally observed populations, which are also available

in Tautobase.) We convert each tautomer to a single (arbitrary) three-dimensional starting

conformation and optimize with ωB97X-D/6-31G*. Relative energies are then computed

using each of the tested models. After filtering unsupported elements, failed SCF or geometry

optimization jobs, and optimizations that landed on saddle-points, we are left with 1552
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Figure 2: Correlation of ωB97X-D/6-31G* to QRNN-TB relative tautomer energies in Tau-
tobase (a), the DFT minimum is chosen as the reference energy geometry. (b) displays the
distribution of errors in the predicted relative tautomer energies for QRNN, QRNN-TB and
GFN2-xTB.
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tautomer pairs to analyze.

The mean error over the tautomer pairs are listed in Table 7; again we see a dramatic

improvement in going from GFN2-xTB to direct learned, charge-aware HDNNP and finally

to a delta learned model. For the best model the overall mean error is only 0.57 kcal/mol and

only a very few tautomers are mis-ranked as shown in Fig. 2, where qualitative misrankings

appear as negative values on the vertical axis. These results suggest that it is possible to

replace semi-empirical ranking of relative tautomer energies with a charge-aware HDNNP,

and with this replacement utilize a significantly smaller energy window to re-rank tautomers

with an ab initio method, greatly reducing costs. This motivates further work to incorporate

solvation effects into such a model.

6 Conclusions

In this work we have reported on the construction of a transferable, charge-aware, HDNNP

with broad applicability to organic molecules, including their conformational energies, ions,

and tautomers. We have presented the results of two models, QRNN and QeqNN, when

these models are trained directly to DFT based energy labels and to the difference between

GFN2-xTB and DFT. While a model almost identical to QeqNN has recently been reported21

this is, to our knowledge, the first report of a transferable HDNNP applied to a broad range

of closed shell ionic systems and their tautomers. We also report a novel charge model,

QRNN, which performs at least as well as Qeq methods like the previously reported 4th

generation HDNNP21 and has superior scaling properties. We find that all models are able

to achieve errors below 1 kcal/mol on relative energies of conformations on a broad range

of ionic systems outside of the training set. Further, we find that delta-learning based on

GFN2-xTB can nearly halve this error. We believe this technique could make a large impact

in workflows involving conformational energy analysis and ranking, by providing geometries

and energies that are highly accurate relative to the level of theory they are trained to.
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Finally, we show that our models are able to rank relative tautomers to less than 1

kcal/mol accuracy, a large advance for efficient energy ranking of tautomers. These results

neglect solvent effects, which are important in both conformation and tautomer energy rank-

ings, and this will be addressed in future work. In addition, we do not expect inter-molecular

interactions to be well described by any model trained to the current data set due to the fact

that the training examples are all single molecules. This will be extended in future work.
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Supporting Information Available

6.1 QM9 training details

The results shown in Sec. 5.1 utilize the QM9 dataset46,50 and use the train/test splits given

in the supporting information of Ref.5 We train to the electronic energy as this is consistent

with the training tasks we are most interested in. Because the dataset is so small, rather

than using early stopping the HDNNP results are trained using a fixed number (200) of

epochs. The SchNet results utilized the exact number of examples listed in Table 2 whereas

the HDNNP models were trained to 24,999, 49,995 and 110,000 examples because we specify

the percentage of the dataset to use as training instead of the exact number of examples;

we expect this discrepancy to have minimal impact on the results. The SchNet results were

trained using the SchNetPack open source package with hyperparameters recommended in

SchNetPack tutorials and given in the supporting information.47 The models reported in

Sec. 5.1 do not use dispersion corrections, long range coulomb energies or charge features,

they are simply short range models.
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6.2 Addition figures and tables with all models results

Tables 8, 9, 10 and 11 show the error statistics on the full set of models. Figure 3 shows

graphically the error distributions and outliers for the rotamer energy tests presented in 5.2

in the main text.

Table 8: Results on relative conformational energies on the charged subset of the Hutchison
test set.

reference ωB97X-D/6-31G∗ DLPNO-CCSD(T)
method Median MARE (kcal/mol) Median R2 Median MARE (kcal/mol) Median R2

QeqNN 0.29 0.78 0.27 0.67
QRNN 0.25 0.87 0.28 0.67

QeqNN-TB 0.16 0.94 0.18 0.87
QRNN-TB 0.14 0.94 0.18 0.84

SANI 0.50 0.72 0.39 0.73
PM7 0.48 0.28 0.40 0.39

GFN2-xTB 0.36 0.62 0.44 0.55
ωB97X-D/6-31G∗ – – 0.17 0.88

Table 9: Results on relative conformational energies on the neutral subset of the Hutchison
test set

reference ωB97X-D/6-31G∗ DLPNO-CCSD(T)
method Median MARE (kcal/mol) Median R2 Median MARE (kcal/mol) Median R2

QeqNN 0.28 0.84 0.35 0.76
QRNN 0.27 0.87 0.34 0.74

QeqNN-TB 0.16 0.94 0.27 0.83
QRNN-TB 0.16 0.94 0.27 0.84

SANI 0.28 0.84 0.35 0.75
PM7 0.54 0.36 0.61 0.31

GFN2-xTB 0.35 0.74 0.41 0.65
ωB97X-D/6-31G∗ – – 0.19 0.91

6.3 Supplementary data files

All geometries used to analyze errors statistics in the main text with energy labels for QeqNN,

QeqNN-TB, QRNN, QRNN-TB, GFN2-xTB, PM7 and ωB97X-D/6-31G* are available for
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Table 10: Comparison of optimized geometries to ωB97X-D/6-31G* optimized geometries.
The errors in bond lengths, angles, and torsion are only computed for groups of atoms for
which at least one atom bears a formal charge. In addition, geometries for which a reaction
occurs during geometry optimization are excluded from the analysis, see main text for details.

Mean Energy Median Bond Distance Angle Torsion Cartesian
method RMSD R2 RMSD RMSD RMSD RMSD

(kcal/mol) (Å) (degrees) (degrees) (Å)
QeqNN 0.61 0.96 0.007 0.75 7.27 0.26
QRNN 0.51 0.96 0.006 0.72 6.99 0.26

QeqNN-TB 0.44 0.98 0.004 0.53 6.83 0.23
QRNN-TB 0.42 0.98 0.004 0.52 6.62 0.24

SANI 1.27 0.77 0.020 1.88 10.18 0.34
PM7 1.27 0.72 0.019 2.08 11.74 0.33

GFN2-xTB 1.23 0.79 0.022 1.49 11.81 0.42

Table 11: Mean absolute relative energies for the tautomer pairs in Tautobase in kcal/mol

SANI QeqNN QRNN QeqNN-TB QRNN-TB GFN2-xTB PM7
1.62 1.28 1.14 0.59 0.57 5.29 4.89

download in the file supplementary data files.tar.gz. Each test set is stored in a separate

directory and each set of conformers, rotamers or tautomers is stored in a separate json file.

The format for the files is given in a README.format file in each directory.
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