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Abstract 

We present the active learning configuration interaction (ALCI) method for multiconfigurational 

calculations based on large active spaces. ALCI leverages the use of an active learning procedure to find 

important electronic configurations among the full configuration space generated within an active space. 

We tested it for the calculation of singlet-singlet excited states of acenes and pyrene, by using different 

machine learning algorithms. The ALCI method yields excitation energies within 0.2–0.3 eV from those 

obtained by traditional complete active space configuration interaction (CASCI) calculations (affordable 

for active spaces up to 16 electrons in 16 orbitals), by including only a small fraction of the CASCI 

configuration space in the calculations. For larger active spaces (up to 26 electrons in 26 orbitals), not 

affordable with traditional CI methods, ALCI captures the trends of experimental excitation energies. 
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Overall ALCI provides satisfactory approximations to large active-space wave functions with up to ten 

orders of magnitude fewer configurations. These ALCI wave functions are promising and affordable 

starting points for subsequent second order perturbation theory or pair-density functional theory 

calculations. 

 

1. Introduction  

Electronic excited states of organic materials play a key role in many applications, such as photovoltaics,1–

3 light emitting diodes4,5 and photochemistry.6–8 The computational analysis of excited states of organic 

materials such as hydrocarbon molecules (e.g., aromatic molecules and polyenes)9 and porous organic 

polymers (e.g., conjugated organic polymers, hyper-crosslinked polymers and covalent organic 

frameworks)10,11 is important to rationalize experimental spectroscopic results and make predictions. In this 

regard, the most widely used methods for ab initio computations are density functional theory (DFT) and 

time-dependent DFT (TDDFT).12–15 However, a major limitation of DFT is that it may provide inaccurate 

results for phenomena where strong correlation plays an important role,16 such as bond-breaking 

processes,17,18 spin states energetics19–21 and excited states energetics.22,23 Strong electronic correlation, 

sometime referred as static correlation, arises when different electronic states are close in energy, whose 

wave functions can be correctly described as linear combinations of several Slater determinants (SDs) or 

configuration state functions (CSFs) with a non-negligible contribution.24,25 The complete active space self-

consistent field (CASSCF) method26 is widely used to generate reference wave functions for strongly 

correlated systems. In CASSCF, an active space consisting of a given number of orbitals and electrons is 

chosen, and a full configuration interaction (FCI) is performed within the active space, together with the 

orbital optimization. Usually, the spin and spatial symmetry of the wave function are specified. 

The number of CSFs scales exponentially with the size of the active space.27 The maximum number of 

electrons and orbitals that one can afford in modern computers is about 16 electronic and 16 orbitals for a 

singlet state calculations, which corresponds to 108 to 109 CSFs. Few examples of larger active spaces, like, 
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for example, 22 electrons in 22 orbitals, using massive parallelization have been reported.28 Some 

approximations to reduce the number of configurations have been developed, including the restricted active 

space SCF (RASSCF),29 the generalized active space SCF (GASSCF)30 and the localized active space SCF 

(LASSCF).31 In RASSCF and GASSCF subspaces of electrons and orbitals are chosen, and the maximum 

number of electronic excitations between subspaces is restricted to the number that the user decides. In 

LASSCF, the active space is partitioned in multiple active sub-spaces which are localized on spatially 

separated parts of the molecule. The FCI wave function within each sub-space is obtained independently 

from the other active sub-spaces, and the total wave function is expressed as a product of these unentangled 

wave functions. Although these approaches allow the choice of extremely flexible active spaces, they also 

require an expertise in the choice of subspaces and excitation levels between different subspaces. It is also 

possible to only optimize the configuration interaction coefficients and not the orbital coefficients, resulting 

in a complete active space configuration interaction (CASCI) calculation, and the analogous GASCI and 

LASCI. The CASCI method, however, still involves a FCI calculation within the chosen active space. 

     To reduce the number of CSFs one can perform a “selected CI (SCI)” calculation, in which many non-

important configurations are not included in the wave function. In this case the challenge is to identify the 

important configurations. Recently, SCI methods have been revisited for the computation of properties of 

strongly correlated systems.32–36 SCI methods aim to construct a compact wave function iteratively, 

including only a small number of determinants or configurations, to approximate the properties of the FCI 

wave function. One flavor of SCI is to use perturbation theory to select important configurations, like in 

the configuration interaction using an iterative perturbative selection (CIPSI).37 In the adaptive sampling 

CI approach38 the single and double excitations are generated only from configurations with the highest 

coefficients, and then they are selected using perturbation theory. This method has been recently employed 

in combination with very large active spaces, up to (52e, 52o).39 In the heat-bath CI (HCI) method, an 

approximation to the full expression of first-order perturbation is used to select configurations.40 In Monte 

Carlo configuration interaction (MCCI),41–43 configurations are stochastically chosen and only those with a 

coefficient higher than a certain threshold are retained in the wave function.  
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      In recent years, machine learning (ML) has been increasingly used in quantum chemistry,44–49  to 

accelerate coupled cluster calculations,50,51 excited state computations52 and predict quantum mechanical 

wave functions,53 to only mention a few. In particular, an active learning (AL) approach54 has been used to 

minimize the amount of training data, thus reducing the overall training cost. In AL the performance of a 

supervised ML model can be maximized with fewer labeled data if the ML model can choose data for the 

next training step from those learned in previous training steps. AL schemes have been successfully 

integrated in quantum chemistry, in combination with molecular dynamics55–57 and for materials 

discovery,58 especially when unlabeled data (e.g., new atomic configurations or new crystal structures) can 

be easily generated, while labeling of the data is difficult and time-consuming (e.g., obtaining quantum-

mechanical (QM) properties via ab initio calculations).  

     Recently, an active ML approach has been used to identify important configurations in SCI ground state 

calculations of small molecules. In the method called machine learning configuration interaction (MLCI),59 

an artificial neural network (ANN) regression model has been used to learn on the fly to choose important 

configurations in an iterative SCI scheme. This method significantly reduces the number of iterations to 

converge the selection of configurations and requires less time compared to other approaches such as CIPSI 

and MCCI. MLCI recovered up to 98% of the FCI correlation energy for some multireference problems, 

like the computation of the dissociation of CO and H2O. In a following paper, MLCI was used to compute 

potential energy curves for N2, CO and H2O, and the results were of FCI quality.60 Another example is an 

ML-based SCI method called Chembot, which utilizes a support vector machine (SVM) with a Gaussian 

radial basis function (RBF) kernel.61 Unlike the MLCI approach, the Chembot method adopted a SVM 

model to directly classify important and not important configurations to iteratively construct the wave 

function. By developing features using charge density matrix and configuration energy, and inclusion of 

heuristics for better training data selection, Chembot can reach chemical accuracy and near exactness in 

total energy calculations for H4, H2C, and H2O. Both MLCI and Chembot have focused on the ground state 

of small molecules. In different approaches, ANNs have been employed to determine the relative weights 
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of configurations for computing the ground state of one- and two-dimensional Heisenberg spin chains 

without repeated SCI calculations,62 and reinforcement learning techniques have been tested to calculate 

the ground state energies for dissociation curves of CO, N2 and an H8 chain, and larger hydrogen rings up 

to H14.63 

     Inspired by the MLCI approach, we developed an active ML protocol to find important configurations 

to perform CASCI calculations with large active spaces. We apply the method to compute the lowest 

singlet-singlet excitation of several polycyclic aromatic hydrocarbons (PAH) as shown in Figure 1. We 

focus on linear PAH, going from naphthalene to hexacene, and on pyrene, as an example of a non-linear 

PAH. These molecules are chosen because it is known that their first singlet excited state acquires 

significant multireference character as the size increases, resulting in interesting electronic structure and 

properties as promising organic optoelectronic materials.64–66  

     The paper is structured as follows: in section 2 we describe the active learning CI (ALCI) protocol, the 

protocol of the quantum mechanical calculations and the machine learning methodologies. In section 3 we 

describe the ALCI results; in section 4 we offer our conclusions and a perspective about the use of the ALCI 

method.   

 

Figure 1. Molecular structure of polyacenes and pyrene. n is the number of fused benzene rings. (n,N) is 
the active space size where n is the number of active electrons (herein, the number of 𝜋 electrons) and N 
is the number of active orbitals (i.e., the number of 𝜋 bonding and 𝜋* antibonding orbitals). 
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2. Active Learning Configuration Interaction Protocol 

In order to find important configurations within the full configuration space spanned by the active space, 

we devised an active learning CI protocol, which uses an iterative workflow controlled via an in-house 

Python code integrated with an external general CI program, the GENCI program67 in the general atomic 

and molecular electronic structure system (GAMESS) package,68,69 as shown in Figure 2. The GENCI 

program performs multiconfigurational calculations with arbitrary user-specified configurations (i.e., SCI 

calculations). A pool-based active learning scheme was adopted to separate configurations into a labeled 

and unlabeled data pool. An oracle (i.e., the labeler which is the GAMESS software) is used to label 

configurations into unimportant (label “0”) and important (label “1”), and then the configurations and their 

labels are saved in a labeled data pool. During the iterative procedure, a label for a configuration in the 

labeled data pool can be changed depending on the outcome of the SCI calculation. Unlabeled data are 

produced by generating excited configurations from only important configurations, which is the same 

approach as used in the adaptive sampling CI method,38 and then added to the unlabeled data pool after 

removing any duplicates of the original important configurations. A subset of data from the labeled data 

pool is utilized for training an ML model, and then the trained ML model is used to predict if the generated 

excited configurations in the unlabeled data pool are important or not. Queries (i.e., unlabeled 

configurations to be labeled by the oracle) are selected from the unlabeled data pool based on ML 

predictions. The selected queries are labeled with the use of GAMESS, i.e., we verify whether the ML 

predictions are accurate or not with the use of the oracle. We repeat this cycle to update data pools and 

generate excited configurations iteratively, until the excitation energy is converged within a user-defined 

energy difference (0.01 eV is used in this work). 
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Figure 2. Active learning scheme for finding important configurations in iterative selected CI calculations. 

 

     The detailed workflow of the active learning CI protocol is shown in Figure 3. The protocol is divided 

into three steps: initialization, iteration, and termination. In the initialization step one obtains the initial data 

to start the iterative process. For a given molecule, the geometry optimization is performed using the 

Gaussian09 software,70 employing the M06-L71 density functional and the def2-TZVP basis set.72,73 An 

ultrafine grid is used for numerical integration. We then start the ALCI protocol using the GAMESS (US) 

software68,69 with the cc-pVDZ basis set74 and an active space that contains the 𝜋 and 𝜋* orbitals.  The 

procedure is set up to use Hartree-Fock (HF) guess orbitals, but different guesses can in principle be used.  

A restricted active space CI calculation including only single and double excitations from HF (referred to 

as RASCI (n=2)) is performed.   

     The second step consists of the iterative scheme to identify only important configurations within the FCI 

space corresponding to a given active space. Important and unimportant configurations from the SCI 

calculation at the previous iteration (or the RASCI (n=2) for the first iteration cycle) are identified based 

on a coefficient threshold (herein, 0.01 or 0.005). If the configuration coefficient is higher than or equal to 
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the threshold, then the configuration is labeled as important. The labeled configurations are used to update 

the labeled data pool. To find further important configurations, excited configurations are generated up to 

a user-specified maximum level of excitations only from the important configurations previously identified, 

and then added to the unlabeled data pool. Next, training and test data sets are constructed from the labeled 

and unlabeled data pools, respectively. Since the majority of the configurations will be unimportant, the 

training data set will most likely be highly imbalanced if naïve random sampling is adopted. To prevent 

this, an undersampling scheme is adopted to sample the same number of unimportant configurations 

randomly compared to the important configurations. 
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Figure 3. Workflow of the active learning configuration interaction (ALCI) protocol. 

 

     A binary classification machine learning model is adopted to predict whether a given configuration is 

important or not. For featurization of a configuration, an array that contains the active orbitals occupation 

numbers (either 2, 1 or 0) divided by 2 is used (see Supporting Information, section S1). The length of the 

array is therefore equal to the number of orbitals in the active space. Noteworthy, we do not have to consider 

the electron spin in the featurization scheme, as the SCI calculation input requires only the specification of 

the occupation numbers (without spin) for each configuration, and the GAMESS program then generates 

all possible spin combinations arising from the specified configurations. Furthermore, no symmetry of the 

wave function is currently used in the calculations. However, in principle symmetry could be included. Six 
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different ML algorithms are employed to develop a binary classifier: Kernel ridge regression-based 

classifier (KRC),75 k-nearest neighbors (KNN),76 Gaussian processes (GP),77 random forest (RF),78 gradient 

boosting decision tree (eXtreme Gradient Boosting, XGBoost)79 and artificial neural networks (ANNs).80 

KNN, GP, and RF classifiers are used as implemented in the scikit-learn package81 while KRC is adopted 

by modifying the kernel ridge regressor in the scikit-learn no classifier model uses the kernel ridge 

regression in the package. The open source gradient boosting Python library XGboost79 is used for the 

gradient boosting decision tree algorithm. ANN models with three hidden layers are adopted using the 

skorch library82 with PyTorch83 as the backend. For each iteration, hyperparameter tuning is newly 

performed to maximize the ML model performance (herein, the F1 score is used as a scoring method) using 

the HyperOpt,84 a Bayesian optimization Python library, with 10-fold cross-validation (CV) except for 

ANNs where 5-CV is used considering expensive training cost. Further details regarding the ML model 

training and hyperparameter tuning are available in the Supporting Information. 

     The trained ML model is then employed to classify provisional important configurations from the test 

set that should be labeled using the GENCI program in the GAMESS package. An SCI calculation including 

all the important configurations plus some (or all) important configurations predicted by the ML model (i.e., 

queries) is performed to update important configurations and compute the excitation energy. To reduce the 

computational cost, the number of the ML-predicted important configurations added for the SCI calculation 

is limited by a user-specified number. If the specified number is smaller than the number of training data 

in the previous step, the number of added ML predicted configurations is set to the specified value, 

otherwise it is set to the number of training data. If the computed excitation energy is not converged, the 

second step is repeated until the excitation energy is converged. The calculation is converged when the 

excitation energy changes by less than 0.01 eV for three consecutive iterations. In the termination step, one 

additional SCI calculation is performed to obtain the final excitation energy value with all the important 

configurations previously identified. 
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3. Results and Discussion 

   3.1. Sensitivity to Iteration Parameters 

The following iteration parameters were tested to check the convergence of the ALCI calculations (in 

parenthesis the baseline values for each parameter are reported): i) maximum number of iterations for each 

SCI calculation (3, details are available in the Supporting Information (SI), section S3.1), ii) maximum 

sampling number of queries (2000, see SI, section S3.2), iii) maximum level of excitations for each iteration 

(1), iv) query sampling method (using class probability for sampling priority), v) CI coefficient threshold 

for important configurations (0.01). Three independent calculations following the above protocol were 

conducted considering the stochastic nature of the ML model. For this reason, in the following, we will 

report the average number of iterations and average time of these three independent calculations. 

Naphthalene, anthracene, and tetracene were used as test systems, and a classifier based on the kernel ridge 

regression was employed to speed up the sensitivity test. 

     As mentioned in the Section 2, unlabeled data are created as excited configurations from the important 

configurations identified via an SCI calculation. In this step one has to specify the maximum level of 

excitation (e.g., singles, doubles, triples, or a higher excitations) from the reference configurations like in 

multireference CI (MRCI) methods.85 Generating higher excitations (for example quadruple and quintuple 

excitations) from a large number of reference configurations  is time and memory intensive,  as in the MRCI 

methods.86  Therefore, we have tested two ways: Generate (1) only single excitations, and (2) single and 

double excitations. Note that our configuration generation method does not limit the CI expansion by 

truncating it to a specific excitation level like truncated CI methods, so one automatically generates higher 

level excitations, as products of lower-level excitations, like in coupled cluster theory. As shown in Figure 

4, generating both single and double excitations has no noticeable advantages over generating only single 

excitations. For naphthalene, including up to double excitations converges faster than including only single 

excitations (i.e., average 7.3 vs. 9.0 iterations). However, for larger systems such as anthracene and 

tetracene, the higher excitations resulted in a similar or slower convergence (on average, 13.3 and 16.3 
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iterations, using single and double excitations, and 11.3 and 15.0 iterations using only excitations for 

anthracene and tetracene, respectively) though the converged excitation energies are similar. This suggests 

that single excitations from important configurations are sufficient to generate unlabeled configurations in 

the ALCI protocol. 

 

 

Figure 4. ALCI protocol convergences in terms of excitation energy depending on the maximum level of 
excitations for naphthalene, anthracene and tetracene: single excitations only vs. single/double 
excitations. Three independent protocol calculations (as indicated with different marker types) were 
performed for different maximum level of excitations. Iteration zero corresponds to the RASCI (n=2) 
calculation. 

 

     We implemented a unique strategy to efficiently identify important configurations, which uses class 

probability (i.e., the probability of each class) of an ML classifier to decide which ML-predicted 

configurations should be labeled first. In general, an ML classifier predicts not only a class label (in our 

problem, important or unimportant) but also a probability for each class, namely a real number from 0 to 1, 

with the sum of the probabilities being 1. For a binary classification problem, a class is predicted to be 

positive or negative, respectively, if the class probability is larger or smaller, respectively, than a decision 

threshold, which we set to 0.5, unless otherwise specified. For example, if a class probability for a given 

input (e.g., an unlabeled configuration) is predicted to be larger than 0.5, then this class will be positive 

(e.g., important in our problem). Configurations with a high-class probability will most likely be important. 
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Figure 5 shows the comparisons of protocol calculations based on using and not using class probabilities. 

For naphthalene, both cases show similar convergence of the protocol calculations, resulting in the same 

excitation energy (4.48 eV). However, as the system size increases, sampling queries based on the class 

probabilities outperform random query sampling, requiring a smaller number of iterations (from 14.3 to 

11.3 iterations for anthracene, and from 28 to 15 iterations for tetracene on average) and producing slightly 

smaller excitation energies (from 4.10 to 4.07 eV for anthracene, and from 3.90 to 3.86 eV for tetracene on 

average). 

 

 

 

Figure 5. ALCI protocol convergences in terms of excitation energy depending on the use of class 
probability for query priority sampling for naphthalene, anthracene and tetracene. Three independent 
protocol calculations (as indicated with different marker types) were performed for each case. Iteration 
zero corresponds to the RASCI (n=2) calculation. 
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   3.2. Comparison of Different ML Algorithms 

Different ML algorithms including KRC, KNN, GP, RF, XGBoost and ANN were tested for the ALCI 

protocol. Interestingly, the convergence of the excitation energy in the ALCI protocol is highly dependent 

on both system size and type of the ML algorithm. For the smallest system, naphthalene, all the ML 

algorithms predicted a similar excitation energy (4.48–4.50 eV). The KRC, KNN, GP and RF classifiers 

took about 8–9 ALCI iterations to converge, while XGBoost and ANN required about 11 and 13 iterations, 

respectively (Detailed ALCI results are available in the SI, section S6.1). This difference arises since there 

are not enough data to train the boosting algorithm and ANN many model-parameters and hyper-parameters, 

as demonstrated by low ML-model performance at early iterations for ANN and large fluctuations in the 

ML model performance for ANN and XGBoost (Variations of the ML model performance, F1, can be found 

in SI, Figure S8). 

     As the acene size increases, the performance of the different ML algorithms changes, affecting the 

ranking of the algorithms as far as the number of iterations is concerned (see SI, Figure S6 and Table S6). 

To clearly show this, the performance of the different ML algorithms for tetracene was evaluated, in terms 

of both number of iterations and computation time as listed in Table 1. For the evaluation of the 

computational time, five cores (3.00 GHz Intel i9-10980XE) were used if the ML model development tools 

(i.e., scikit-learn and XGBoost) support parallelization of the model training and prediction (i.e., for KNN, 

RF, and XGBoost), otherwise, one CPU (3.00 GHz Intel i9-10980XE) core is used (for GP and KRC). For 

ANN, a NVIDIA Quadro RTX 8000 graphics processing unit (GPU) was used. The ANN, GP, XGBoost 

and KRC algorithms require about 15 iterations, while the RF and KNN algorithms take 21 and 26 iterations, 

respectively. Although XGBoost and ANN require a similar number of iterations, as shown in Table 1, 

XGBoost is the fastest algorithm (about 3 hours on average for running an ALCI full cycle) while ANN is 

the slowest one (about 8 hours and a half on average) considering the overall computational time due to the 

time-consuming training procedure of ANN models even using the GPU. The KRC algorithm, which is 
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using only one CPU core, exhibited a reasonably good performance, showing the second lowest 

computational cost (i.e., about 4 hours and a half). Although KRC showed different convergence trends in 

the excitation energy calculations, most of the calculations converged to very similar excitation energies 

(Figure S7). Compared to the KRC, GP employed ca. 20% more time and converged to a slightly higher 

excitation energy. Like XGBoost, RF and KNN can also use multiple cores for parallel processing in ML 

model training, and these algorithms show faster convergence than XGBoost for naphthalene. However, 

for tetracene, RF and KNN took more iterations (i.e, 16 iterations for XGBoost vs. 21 and 26 iterations for 

RF and KNN, respectively) and more computational time (about 3 hours for XGBoost vs. 4 hours 40 

minutes and 6 hours 20 minutes for RF and KNN, respectively) than XGBoost. For the subsequent 

investigations, considering both the number of iterations and the computational time of the tested ML 

algorithms, we selected three ML algorithms, namely ANN (smallest numbers of iterations), XGBoost 

(fastest algorithm for tetracene), and KRC (it uses only one CPU core but shows good performance). 

 

Table 1. ALCI protocol results for tetracene with different ML algorithmsa 

ML algorithm average number of 
iterations 

number of important  
CSFs excitation energy (eV) wall time (hh:mm:ss)b 

ANN 14.8 1625 3.88 08:28:34 

GP 15.4 1642 3.96 05:30:10 

XGBoost 15.6 1753 3.87 03:01:12 

KRC 15.6 1749 3.90 04:31:11 

RF 21.2 1781 3.88 04:41:09 

KNN 25.7 1724 3.91 06:19:01 
aResults are average values of 10 independent calculations for each model that are performed to obtain better statistics.bWall 
timings measure average elapsed time for both the iteration and termination steps of the ALCI protocol, not including the 
initialization step (i.e., DFT optimization, HF and RASCI (n=2) calculations). To compare computational cost, the number of 
CPU cores for the calculations were limited to 5 cores (Intel i9-10980XE 3.00 GHz) if ML model training/predictions can be 
parallelized (i.e., for KNN, RF and XGBoost). For ANN, a GPU (NVIDIA Quadro RTX 8000) was used. GP and KRC models 
were trained and used with one CPU core (Intel i9-10980XE 3.00 GHz) due to the limitation of the software. 
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   3.3. ALCI Results for Acenes and Pyrene 

   3.3.1. Active spaces up to (16e, 16o) 

We applied the workflow presented in Figure 3 to compute the excitation energy of naphthalene. For this 

molecule, the 𝜋 and 𝜋* active space consists of 10 electrons in 10 orbitals. The CASCI (10e, 10o) result is 

compared with the ALCI results (Table 2). The CASCI (10e, 10o) corresponds to 19,404 CSFs (63,504 

SDs) and predicts an excitation energy of 4.46 eV. In Figure 6 the ALCI convergence (using ANN, KRC, 

and XGBoost) using a CI coefficient threshold of 0.01 is shown. At iteration 0 (i.e., RASCI (n=2) 

calculation), the excitation energy is 5.57 eV, with about a hundred of important configurations. The 

excitation energy decreases in subsequent iterations, converging after 9–14 iterations. The converged 

excitation energies are between 4.48 to 4.50 eV. The number of important CSFs in the last iteration cycle 

is about 360 (about 4,000 SDs). It is impressive that the excitation energies are similar to the CASCI (10e, 

10o) one, but with two orders of magnitude fewer CSFs. The excitation energy decreases upon iterating, 

which suggests that the newly included configurations improve the excited-state wave function more 

significantly than the ground-state wave function. This is not surprising, since the excited state is more 

multiconfigurational than the ground state, and therefore the former requires the inclusion of higher 

excitations for a more accurate description.  

     Anthracene has a 𝜋-𝜋* active space active space of 14 electrons in 14 orbitals. The (14e, 14o) CASCI 

(2.76×106 CSFs and 1.12×107 SDs) excitation energy is 3.89 eV. The excitation energies computed with 

ALCI are reported in Table 2 and Figure 6. The RASCI (n=2) excitation energy (at iteration = 0) is 5.72 

eV, and then it decreases during the iterative procedure, reaching the value of 4.10 eV after 10–12 iterations. 

With the CI coefficient threshold of 0.01, the ALCI excitation energy is about 0.2 eV higher than the CASCI 

value, but it corresponds to only about 103 CSFs (about 2–4×104 SDs) in the last SCI calculation. So overall 

these calculations us three orders of magnitude fewer CSFs/SDs than the CASCI one. 
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     The pyrene molecule is a non-linear PAH and its active space includes 16 electrons in 16 orbitals. The 

CASCI (16e, 16o) corresponding to 3.48×107 CSFs (1.66×108 SDs) predicts and excitation energy of 3.79 

eV. In Figure 6 the excitation energies obtained with ALCI are shown. The RASCI (n=2) excitation energy 

is 5.98 eV, and the iterative protocol converges to about 4.0–4.15 eV in 13–20 iterations. By using the 0.01 

threshold, the ALCI method provides an excitation energy within 0.3 eV from CASCI, with the inclusion 

of only 1.2–1.4×103 CSFs, (4–4.5×104 SDs), so four orders of magnitudes fewer than CASCI. Using a 

smaller threshold for the CI coefficients, 0.005, the predicted excitation energies are about 3.9 eV (i.e., a 

decrease of 0.1–0.16 eV compared to using the threshold of 0.01), which are closer to the CASCI result. 

However, in return for accuracy, a larger number of iterations and important configurations is needed in the 

ALCI calculations, resulting in the increased computational cost (2.2–4.7 times depending on ML 

algorithms. See S6.3 for more details). It is observed that all the tested ML algorithms such as KRC, 

XGboost and ANN yield similar excitation energies.  

     Regarding timings, ALCI can be performed in about 22 minutes (using XGBoost with five Intel i9-

10980XE @3.00 GHz) with respect to about 3 hours (using one Intel i9-10980XE @3.00 GHz) required 

for CASCI (14e, 14o) for anthracene. For pyrene, ALCI (using KRC and the CI coefficient threshold of 

0.01) requires only about 46 minutes (using XGBoost with five Intel i9-10980XE @3.00 GHz), while 

CASCI requires more than 91 hours (using one Intel i9-10980XE @3.00 GHz). For larger active spaces, 

CASCI calculations become infeasible, while ALCI calculations are affordable. From the above ALCI 

results for naphthalene, anthracene, and pyrene, it is shown that the ALCI method is able to identify the 

important configurations needed to be included in the SCI calculations in few iteration cycles. 

 

Table 2. ALCI protocol results with the optimized input parameters for naphthalene, anthracene, and 
pyrenea  

system ML algorithm threshold for 
CI coeff. 

average 
number of 
iterations 

number of important 
CSFs 

number of important 
SDs 

excitation 
energy (eV) 

naphthalene KRC 0.01 9.0 369 4,104 4.48 
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system ML algorithm threshold for 
CI coeff. 

average 
number of 
iterations 

number of important 
CSFs 

number of important 
SDs 

excitation 
energy (eV) 

(10e, 10o) 0.005 8.0 722 8,379 4.45 

ANN 
0.01 13.3 356 3,828 4.50 

0.005 10.3 698 7,942 4.46 

XGBoost 
0.01 10.7 362 4,072 4.48 

0.005 9.7 662 7,701 4.47 

     CASCI (10e, 10o) 19,404b 63,504b 4.46 
anthracene 
(14e, 14o) KRC 

0.01 11.3 1,062 37,971 4.07 

0.005 11.7 2,474 100,328 3.97 

ANN 
0.01 11.7 923 23,462 4.10 

0.005 10.3 2,353 78,577 3.98 

XGBoost 
0.01 9.7 1,041 37,278 4.07 

0.005 12.3 2,328 97,536 4.01 

    CASCI (14e, 14o) 2,760,615b 11,778,624b 3.89 
pyrene 

(16e, 16o) KRC 
0.01 13.7 1,444 41,961 4.13 

0.005 16.7 3,660 225,039 3.98 

ANN 
0.01 14.7 1,243 45,457 4.15 

0.005 15.7 3,424 151,508 3.99 

XGBoost 
0.01 12.7 1,407 40,522 4.14 

0.005 20.0 3,505 155,884 4.00 

     CASCI (16e, 16o) 34,763,300b 165,636,900b 3.79 
aResults are average values of 3 separate calculations for each model that are performed to obtain better statistics. 
bTotal number of configurations or determinants in the active space. 
 

 

Figure 6. The ALCI protocol convergence in terms of excitation energy for naphthalene, anthracene, and 
pyrene. Three independent calculations (as indicated with different marker types) are performed for each 
model. CI coefficient threshold for important configuration is 0.01. Iteration zero corresponds to the 
RASCI (n=2) calculation. 
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     The ground and excited state wave functions for anthracene and pyrene have then been analyzed by 

comparing the active orbitals occupation numbers obtained with ALCI and CASCI. These values are 

reported in Section S6. The differences in occupation numbers between ALCI and CASCI are within 0.03, 

pointing to accurate ALCI wave functions.   

   3.3.2. Active spaces beyond (16e, 16o) 

We used the ALCI method to compute excitation energies for larger active spaces, for which the respective 

CASCI calculation are not affordable, and the results are reported in Table 3 and Figure 7. Tetracene, 

pentacene and hexacene have been investigated, with active spaces of (18e, 18o), (22e, 22o) and (26e, 26o), 

respectively. While CASCI calculations are not feasible, experimental data are available, and therefore they 

have been used as benchmarks for the ALCI results.  

     For tetracene, ALCI with a CI coefficient threshold of 0.01 yields an excitation energy of about 3.9 eV 

in 10–15 cycles, including about 1.5–1.7×103 CSFs (3–5×104 SDs). A decrease of about 0.1–0.2 eV in the 

predicted excitation energy is achievable by decreasing the CI coefficient threshold to 0.005 at the expense 

of computation cost (i.e., 6–9.4 times). For pentacene, ALCI converges to an excitation energy of about 

3.4–3.5 eV in 11–17 iterations, including about 1.7–2×103 configurations (2–3×104 determinants) in the 

wave function when the 0.01 threshold is chosen. Lastly, in the case of hexacene, ALCI converges to an 

excitation energy of about 2.9 eV in 12–24 iterations, including only about 2.4–2.7×103 CSFs (2.5–5.1×104 

SDs) in the wave function. Considering that the number of determinants for a CASCI (26e, 26o) calculation 

is about 1.08×1014, ALCI can reduce this number by ten orders of magnitude, making this calculation 

feasible with a reasonable computational time (about 19 hours using KRC and ANN, 50 hours with 

XGBoost. See SI, section S6.6). Unexpectedly, we see that excitation energies using ALCI with the lower 

threshold of 0.005 showed almost no improvement for pentacene, and even deterioration for hexacene. This 

could happen if less relevant configurations (i.e, configurations that only marginally contribute to the 

overall energy) from the vast CASCI configuration space are included in the training set for each iteration 
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by lowering the CI coefficient threshold for such a large system. To overcome this issue for larger systems, 

different featurization methods and advanced ranking strategies for choosing queries need to be developed 

and integrated with our ALCI protocol in future work.  

 

Table 3. ALCI protocol results with the optimized input parameters for tetracene, pentacene, and 
hexacenea. 

system ML 
algorithm 

threshold for 
CI coeff. 

average 
number of 
iterations 

number of important 
CSFs 

number of important  
SDs 

excitation 
energy (eV) 

tetracene 
(18e, 18o) KRC 

0.01 15.0 1,759 53,213 3.86 

0.005 22.7 4,788 251,320 3.74 

ANN 
0.01 10.3 1,491 32,663 3.91 

0.005 18.0 3,944 179,952 3.73 

XGBoost 
0.01 15.0 1,741 53,125 3.88 

0.005 24.3 4,642 234,622 3.75 

     CASCI (18e, 18o) 449,141,836b 2,363,904,400b N/A 
pentacene 
(22e, 22o) KRC 

0.01 12.7 1,793 31,491 3.50 

0.005 25.0 4,780 216,678 3.46 

ANN 
0.01 10.7 1,713 22,622 3.44 

0.005 16.0 4,195 175,336 3.48 

XGBoost 
0.01 17.0 1,979 47,645 3.47 

0.005 25.0 4,941 231,838 3.46 

     CASCI (22e, 22o) 79,483,257,308b 497,634,306,624b N/A 
hexacene 
(26e, 26o) KRC 

0.01 17.3 2,430 27,468 2.89 

0.005 18.7 4,061 58,237 3.02 

ANN 
0.01 12.3 2,366 24,760 2.89 

0.005 15.0 4,574 101,015 3.03 

XGBoost 
0.01 24.0 2,670 51,247 2.93 

0.005 36.3 5,952 245,534 3.03 

     CASCI (26e, 26o) 14,901,311,070,000b 108,172,480,360,000b N/A 
aResults are average values of 3 separate calculations for each model that are performed to obtain better statistics. 
bTotal number of configurations or determinants in the active space. 

 



21 
 

 

Figure 7. The ALCI protocol convergence in terms of excitation energy for tetracene, pentacene, and 
hexacene. Three separate calculations (as indicated with different marker types) are performed for each 
model. CI coefficient threshold for important configuration is 0.01. The iteration zero corresponds to the 
RASCI (n=2) calculation. 

 

     With increasing acene size, the computational time for the ML model training/predictions becomes 

negligibly small while the computational cost for the SCI calculations grows especially when using KRC 

or XGBoost (detailed timings data for arbitrary selected ALCI calculations are reported SI, section S6.7). 

For example, the relative computational costs for the ML model training/predictions and SCI calculations 

for hexacene are 3.2% and 96.6%, respectively, when using KRC, and 0.8% and 99.0%, respectively, when 

using XGBoost. In the case of ANN, although the time of the SCI calculations increases with the acene 

size, for hexacene about half of the time is spent in the ANN model training (i.e., 48.7%). Regarding the 

overall computational cost for the ALCI protocol, XGBoost, which is the fastest algorithm for tetracene, 

becomes the slowest one among the three ML algorithms tested for hexacene (about 50 hours on average 

using five Intel i9-10980XE @3.00 GHz). Figure 7 shows that XGBoost cannot identify important 

configurations effectively as the iterations proceed compared to the KRC and ANN algorithms, resulting in 

larger (average) numbers of important configurations (i.e., 2670 for XGBoost vs. ca. 2400 for KRC and 

ANN) and iterations (about 24, 17, and 12 iterations for XGBoost, KRC and ANN, respectively) than other 

ML algorithms. On the other hand, ANN performs better as the acene size increases, leading to a similar 

computational cost of about19 hours compared to the fastest ML algorithm, KRC (See Supporting 
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Information, Table S13). This trend indicates that ANN would be the best performing ML algorithm in the 

ALCI method for systems with active spaces larger than (26e, 26o). 

   3.3.3. Comparison with experimental data 

Finally, the excitation energies using ALCI (with KRC, XGBoost and ANN as ML algorithms) and CASCI, 

are compared to experimental values in Figure 8.87 For all the acenes analyzed in this work, there are two 

possible lowest singlet excited states depending on the orbitals that take part in the excitation process. One 

of them is labeled La, corresponding to a HOMO to LUMO excitation, while the other (Lb) arises from a 

mixture of the HOMO-1 to LUMO and the HOMO to LUMO+1 excitations.66,87,88 The computed lowest 

excited states with different methods (along with the experimental ones) are shown in Table 4. Note that 

ALCI method yields almost the same excitation energy using the three different ML algorithms. The ALCI 

and CASCI lowest excited state is Lb for both naphthalene and anthracene. The CASCI method recovers 

only part of electron correlation, and therefore a subsequent calculation on top of the CASCI wave function 

is required to compute accurate energies. This is usually done using perturbation theory (PT2)89,90 or the 

more recent pair-density functional theory (PDFT)91 starting from a multiconfigurational wave function. 

We thus performed a PT2 calculation on top of CASCI, CASCI+PT2, to compute excitation energies using 

the computational procedure reported in Section S8. The lowest excited state for anthracene is now La, as 

experimentally found. Moreover, we notice that the PT2 correction does not change sizably the Lb excitation 

energy, but it lowers the La energy by about 1 eV, with respect to CASCI. ALCI and CASCI predict the 

same excitation energy for naphthalene, while ALCI yields a higher excitation energy than CASCI (by 

about 0.2 eV) for anthracene. For larger acenes, CASCI calculations are not affordable, and therefore we 

compare ALCI results only with experiments. For the series of acenes analyzed, the computed excitation 

energy decreases with the acene length, reproducing the experimental trend. The ALCI excitation energies 

overestimate the experimental ones by about 0.3 eV when Lb is the lowest excited state. The ALCI and 

experimental values discrepancy is higher (about 0.8 eV) when La is the lowest excited state. We notice that 

the ALCI excitation energies of La states are higher with respect to the experimental ones, but the PT2 
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correction would lower them, based on the naphthalene and anthracene CASCI+PT2 results, and therefore 

this correction will be needed to achieve higher accuracy. The important finding is that the ALCI results 

can reproduce the experimental trend and, since the ALCI wave functions are similar to the CASCI ones, 

but they are considerably less expensive, (Section S7), they can be used as starting points for subsequent 

PT2 or PDFT calculations. 

 

Figure 8. Excitation energy for different acene lengths computed with ALCI (using KRC, XGBoost and 

ANN as ML algorithms) and CASCI. Experimental results from Ref. 84 are also reported. 

 

Table 4. First singlet vertical excited states for acenes determined by different methods 

 naphthalene anthracene tetracene pentacene hexacene 

exp. data Lb La La La La 

CASCI Lb Lb N/A N/A N/A 

CASCI + PT2 Lb La N/A N/A N/A 

ALCI Lb Lb Lb La La 

 

4. Conclusions 
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We developed an iterative active machine learning method, called the active learning configuration 

interaction (ALCI) method, that can be used to efficiently identify important configurations in large active 

spaces calculations. We tested the ALCI method to compute the first singlet excited state of naphthalene, 

anthracene, tetracene, pentacene, hexacene, and pyrene. ALCI can identify the most important 

configurations within 10–20 iterations, yielding excitation energies that differ at most by 0.3 eV from the 

CASCI ones, but with orders of magnitude fewer configurations. We employed ALCI to calculate excitation 

energies for active spaces up to (26e, 26o), for which CASCI is unfeasible. In the cases where we could not 

perform the CASCI calculation, we compared ALCI excitation energies to the experimental ones and found 

that ALCI is able to reproduce the experimental trend, namely the lowering of the excitation energy with 

the increasing acene length. For hexacene, ALCI converges with only about 2,400 configuration state 

functions (25,000 Slater determinants) in the wave function, with a reduction of the number of determinants 

of about 10 orders of magnitude with respect to the corresponding CASCI (26e, 26o). This study shows 

that, among the various ML algorithms tested, namely KRC, KNN, GP, RF, XGBoost, and ANN, the ANN 

model exhibits the best ALCI performance in terms of both fewer iterations and lowest computational cost 

of about 19 hr for the largest system, hexacene. Integrating ALCI protocol with recently developed efficient 

CI solving algorithms39,92–94 could enable us to investigate even larger active spaces. Lastly the ALCI wave 

functions can be used as starting point for PT2 or PDFT subsequent calculations to achieve higher accuracy 

in predicting excitation energies.  
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