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ABSTRACT: A serendipitous one-step transformation of 5′-deoxy-5′-heteroarylsulfonylnucleosides 

into cyclopentene derivatives is reported. This unique transformation likely proceeds via a domino 

reaction initiated by α-deprotonation of the heteroaryl sulfone and subsequent elimination reaction to 

generate a nucleobase and an α,β-unsaturated sulfone that contains a formyl group. The Michael 

addition of the nucleobase to the α,β-unsaturated sulfone and subsequent intramolecular Julia–

Kocienski reaction eventually generate the cyclopentene ring. Heteroarylthio and acylthio groups can 

be incorporated into the cyclopentene core in place of the nucleobase by conducting this reaction in 

the presence of a heteroarylthiol and a thiocarboxylic acid, respectively. Cis,cis-trisubstituted 

cyclopentene derivatives are obtained as a single stereoisomer from ribonucleoside-derived Julia–

Kocienski sulfones. 

 

INTRODUCTION 

The Julia–Kocienski reaction is a powerful tool for the synthesis of alkenes,1 and is widely used 

for the synthesis of complex natural products and bioactive compounds.2 Because its application to 

the synthesis of nucleoside and nucleic acid derivatives has been rather limited,3 we aimed to study 

the Julia–Kocienski reaction using 5′-deoxy-5′-heteroarylsulfonylnucleosides, which had not been 

reported in the literature, for the synthesis of 5′-alkylidene-5′-deoxynucleosides.4 5′-Deoxy-5′-

heteroarylsulfonylthymidine derivative 1a was synthesized from 3′-O-TBS-thymidine via 5′-O-

mesylation, substitution with 5-mercapto-1-phenyl-1H-tetrazole, and oxidation.5 The resulting 

sulfone (1a) was then allowed to react with p-anisaldehyde in the presence of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU). However, it did not afford the expected 5′-alkylidene-5′-

deoxythymidine derivative I but cyclopentene nucleoside derivative 2a in 32% yield with a cis:trans 

ratio of 85:15 (Scheme 1A).6 Practically the same result was obtained in the absence of p-

anisaldehyde (35% yield, cis:trans = 84:16). These results stand in stark contrast with the olefination 

reactions using sugar-derived sulfones reported in the literature.7 For example, the Julia–Kocienski 

reaction using a ribose-derived sulfone and aldehydes gives the corresponding 5-alkylidene-5-
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deoxyribofuranosides, albeit with concomitant epimerization at the C4-position (Scheme 1B).7c 

 

Scheme 1. (A) Serendipitous Transformation of Thymidine-Derived Julia–Kocienski Sulfone 1a 

into Cyclopentene Nucleoside Derivative 2a,a,b and (B) Julia–Kocienski Reaction Using a 

Ribose-Derived Sulfone.c 

1a (0.1 M)

TBSO

Th

2a
32%

cis:trans = 85:15

DBU
p-AnCHOO

TBSO

Th

S
PT

O
O

THF

I
0%

O

TBSO

Th

p-An

+

A) Serendipitous formation of cyclopentene nucleoside 2a.

B) Julia-Kocienski reaction using a ribose-derived sulfone (ref. 7c)
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a Th: thymin-1-yl; PT: 1-phenyl-1H-tetrazol-5-yl. b Reaction conditions: DBU (2.8 equiv), p-AnCHO 

(1.5 equiv), 0 °C, 1.5 h. c BT: 2-benzothiazolyl. 

 

A plausible reaction mechanism for this unprecedented transformation is proposed in Scheme 2. α-

Deprotonation of heteroaryl sulfone 1a with DBU triggers an elimination reaction, generating an α,β-

unsaturated sulfone that contains a formyl group (II)8 and a thymine anion (III). The Michael addition 

of III to II generates a carbanion at the α-position of the sulfone, which then intramolecularly attacks 

the formyl group. This is followed by an intramolecular Julia–Kocienski olefination via IV, V, and 

VI to afford cyclopentene nucleoside 2a. The Michael addition of III preferentially occurs from the 

opposite side of the bulky 3′-TBS group of II. The thymine residue and the TBS group come to the 

same side of the cyclopentene ring when the intramolecular nucleophilic attack occurs to afford cis-

2a as the major isomer. α,β-Unsaturated sulfones are commonly used Michael acceptors9 and can 

react with both deprotonated nucleobases3b,10 and alcohols.10b,c,11 Therefore, the contrasting results in 

Schemes 1A and B can be attributed to the difference in the leaving groups at the anomeric positions. 

The thyminyl group of 1a is a better leaving group compared to the methoxy group and thus is cleaved 

by the DBU-mediated elimination and acts as a Michael donor. 
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Scheme 2. Plausible Reaction Mechanism. 
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Domino reactions, which are sets of sequential reactions in which each reaction generates new 

functional group(s) for the next without changes in the reaction conditions or the addition of reagents 

or catalysts, simplify the synthesis of complex molecules.12 They have also attracted great attention 

from a green chemistry viewpoint, as work-up and purification procedures for the intermediates can 

be avoided and the time, energy, and materials required for the overall process are reduced.13 There 

have been many reports of domino reactions consisting of the ring-opening of sugars and subsequent 

carbocyclization.14–21 However, to the best of our knowledge, there are no reports on domino reactions 

that consist of the tetrahydrofuran ring-opening of a nucleoside and carbocyclization to produce a 

carbocyclic nucleoside. We envisioned that such a domino reaction could be a novel efficient route 

to carbocyclic nucleosides. Carbocyclic nucleosides have been widely studied for therapeutic 

applications, and some are used clinically as anti-HIV and anti-HBV drugs.22 Great attention has also 

been paid to the antiviral activity of these compounds against SARS-CoV-2 due to the current 

COVID-19 pandemic.23 The chemical synthesis of carbocyclic nucleosides is generally accomplished 

by coupling the corresponding nucleobases with chiral carbocyclic units, but the synthesis of the latter 

is often laborious.24 
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RESULTS AND DISCUSSION 

Thymidine-derived heteroaryl sulfones with different heteroaryl groups and 3′-protecting groups 

(1a–d, Table 1) were synthesized and applied to the DBU-promoted domino reaction. As mentioned 

above, 1-phenyl-1H-tetrazol-5-yl (PT)1 sulfone 1a afforded cyclopentene nucleoside 2a in 35% yield 

with a cis:trans ratio of 84:16 (entry 1). 1-Methyl-1H-tetrazol-5-yl (MT)25 sulfone 1a′ and 2-

benzothiazolyl (BT)26 sulfone 1a″ also afforded cyclopentene nucleoside 2a (entries 2, 3). Among 

these, PT sulfone 1a was the best in terms of the reaction rate and diastereoselectivity; accordingly, 

1a was subsequently used for further investigations. The yield of 2a was improved from 35% to 55% 

by increasing the concentration of 1a from 0.1 M to 0.6 M (entry 4). Lowering the reaction 

temperature from 0 °C to −20 °C slowed the reaction without improving the diastereoselectivity (entry 

5); the yield of 2a was not improved by changing the number of molar equivalents of DBU (entries 

6, 7). 3′-tert-Butyldiphenylsilyl-protected sulfone 1b afforded 2b with a cis:trans ratio similar to that 

of 1a (entry 8). Triisopropylsilyl- and benzoyl-protected sulfones 1c and 1d gave lower cis:trans 

ratios (entries 9, 10). As a result, the conditions in entry 4 were chosen as optimal and used for further 

investigations. 

 

Table 1. Synthesis of Cyclopentene Nucleosides 2 Using Thymidine-Derived Sulfones 1. 

 

entry sulfone (conc.) DBU (equiv) time (h) yield (%) cis:transa 

1 1a (0.1 M) 2.8 1 35 84:16 

2 1a′ (0.1 M) 2.8 21 37 61:39 

3 1a″ (0.1 M) 2.8 5 30 82:18 

4 1a (0.6 M) 2.8 1 55 84:16 

5b 1a (0.6 M) 2.8 3 43 84:16 

6 1a (0.6 M) 1.4 1 34 84:16 

7 1a (0.6 M) 5 1 39 82:18 

8 1b (0.6 M) 2.8 1 49 83:17 

9 1c (0.6 M) 2.8 1 51 76:24 

10 1d (0.6 M) 2.8 1 19 59:41 
a Determined by 1H NMR spectroscopy.  
b −20 °C. 

 

Next, we synthesized PT sulfone 4 from 2′,3′-bis-O-TBS-uridine 3 and subjected it to the domino 
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reaction (Scheme 3). To our delight, the corresponding cyclopentene nucleoside (5) was produced in 

80% yield with complete cis-selectivity. The structure of cis,cis-5 was confirmed by a single-crystal 

X-ray diffraction analysis. The TBS groups were removed using TBAF to afford the fully deprotected 

cyclopentene nucleoside derivative 6 in 72% yield.  

 

Scheme 3. Synthesis of Uridine-Derived Cyclopentene Nucleoside 6. 
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  To study the effect of the sugar configuration, an arabino-configured PT sulfone (ara-4) was 

synthesized from commercially available arabinofuranosyluracil in a similar manner.5 The reaction 

of ara-4 with DBU also afforded the corresponding cyclopentene nucleoside 7 (Scheme 4). The 1,5-

cis to 1,5-trans ratio was 84:16, which is identical to that obtained with 2′-deoxyribose-derived PT 

sulfone 1a (Table 1, entry 4). The results shown in Scheme 4 and Table 1 indicate that the bulky TBS 

group at the 3′-position induces a cis-selectivity of up to >80%, which is further enhanced by the 

presence of another 2′-TBS group on the same side of the sugar ring in the case of ribo-configured 

PT sulfone 4.  

 

Scheme 4. Synthesis of Cyclopentene Nucleoside 7 from ara-4. 
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The reaction was also attempted with adenosine-derived PT sulfone 8 in order to investigate the 

applicability of this reaction to purine nucleosides (Scheme 5). Bulky dibenzoyl protection at the N6-

position was employed to cover the N1- and N7-positions of adenine so that undesired addition of the 

liberated adenine would not occur at these positions. The desired cyclopentene adenosine derivative 

9 was obtained in 59% yield as a single cis,cis-isomer. It was then fully deprotected by treatment with 

[X-ray] 
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TBAF and methanolic ammonia to afford 10 in 93% yield. Thus, the nucleoside-derived Julia–

Kocienski reagents 1, 4, ara-4, and 8 afforded cyclopentene nucleoside derivatives 2, 5, 7, and 9 in 

one step. Such ‘truncated’ carbocyclic nucleosides lacking the 4′-hydroxymethyl group have been 

intensively studied as potential antiviral agents.27 The resulting cyclopentene nucleosides should also 

be useful as intermediates for the synthesis of carbocyclic nucleosides. In particular, the cis,cis-

trisubstituted cyclopentene nucleosides derived from ribonucleosides should be applicable to the 

synthesis of lyxo-configured bioactive carbocyclic nucleosides.28  

 

Scheme 5. Synthesis of Adenosine-Derived Cyclopentene Nucleoside 10. 

 

 

To obtain insight into the reaction mechanism, we conducted the domino reaction using a 1:1 

mixture of thymidine-derived and uridine-derived PT sulfones 1b and 4 (Scheme 6). In addition to 

cyclopentene nucleosides 2b and 5, nucleobase-exchange products 11 and 12 were isolated. This 

result clearly demonstrates that the nucleobases are cleaved from the sulfones and then reincorporated 

during the reaction.  

 

  



7 
 

Scheme 6. Nucleobase Exchange During the Domino Reaction. 

 
 

The nucleobase exchange shown in Scheme 6 suggests that the nucleobase of the substrate can be 

replaced by another nucleophile during the domino reaction. As shown in Scheme 7, we hypothesized 

that if the external nucleophile attacks the α,β-unsaturated sulfone VIII, cyclopentene X would be 

obtained. If various nucleophiles are applicable, this domino reaction could be a useful route to a 

variety of optically active trisubstituted cyclopentenes. 

 

Scheme 7. Working Hypothesis.a 

 
a B = nucleobase. Nu–H = nucleophile. 

 

As the first step toward this goal, we studied the applicability of thiols and thiocarboxylic acids29 

(RSH a–f, Table 2). 2-Mercaptopyridine (a) was chosen as a model nucleophile to optimize the 

reaction conditions given that it has been reported to act as a good Michael donor toward α,β-
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unsaturated sulfones.11d PT sulfone 4 was treated with 2.8 equiv of DBU under the same conditions 

as above in the presence of 1 equiv of 2-mercaptopyridine a (Table 2, entry 1). As expected, a 2-

pyridylthio group was incorporated into the cyclopentene in the place of uracil, and trisubstituted 

cyclopentene 16a was isolated in 40% yield. It was obtained as a single cis,cis-isomer, and its 

configuration was confirmed using NOESY experiments.5 The modest yield of 16a was partly 

ascribed to the generation of two kinds of byproducts, i.e., cyclopentene nucleoside 5 and 17a30 were 

isolated in 4% and 20%, respectively. 17a was generated by the nucleophilic attack of thiol a at the 

ipso-carbon of the phenyltetrazolyl group. The formation of 5 was completely suppressed by reducing 

the quantity of DBU (entries 2–4). The yield of 16a was also improved up to 59%, but the formation 

of 17a was still observed at similar levels. Increasing the quantity of a from 1.0 to 1.5 equiv did not 

improve the 16a/17a ratio (entry 5). BT, 1-(3,4-dichlorophenyl)-1H-tetrazol-5-yl (CPT),25b and 1-

(2,6-dimethylphenyl)-1H-tetrazol-5-yl (MPT)25b sulfones 13–15 were also prepared from uridine via 

similar procedures5 and applied to the reaction to investigate the effect of the heteroaryl group. 

However, the ipso-attack was not prevented, and the 16a/17a ratios decreased (entries 6–8). Screening 

of the base (entries 9–13) and solvent (entries 14–19) resulted in comparable or lower yields of 16a 

relative to that obtained using DBU and THF (entry 3). Only 1,5-diazabicyclo[4.3.0]-5-nonene 

(DBN) slightly improved the yield of 16a (entry 9). The stronger base potassium 

bis(trimethylsilyl)amide (KHMDS) greatly increased the ipso-attack (entry 13). Finally, we studied 

the applicability of other thiols and thiocarboxylic acids (entries 20–24). 5-Nitro-2-mercaptopyridine 

(b) and 2-mercaptobenzothiazole (c) afforded the desired cyclopentenes 16b and 16c, albeit that the 

yields were lower than those obtained from a (entries 20, 21). p-Toluenethiol d afforded only the 

byproduct 17d because of its high nucleophilicity. Gratifyingly, we found that the use of thioacetic 

acid (e) completely suppressed the generation of byproducts 5 and 17, and the desired 16e was 

obtained in 75% yield (entry 23). Thiobenzoic acid (f) also did not generate 17, although the yield of 

16f was lower. This is attributed to the low nucleophilicity of f, which allows the competitive Michael 

addition of uracil (entry 24). 
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Table 2. Synthesis of Cyclopentenes 16a–f Using Uridine-Derived Sulfones 4, 13–15 and 

Thiols/Thiocarboxylic Acids a–f.a 

 

entry Het RSH base (equiv) solvent 16 (%) 5 (%) 17 (%) 

1 PT a DBU (2.8) THF 40 4 20 

2 PT a DBU (2.0) THF 59 2 19 

3 PT a DBU (1.5) THF 59 3 24 

4 PT a DBU (1.0) THF 54 0 20 

5 PT ab DBU (1.5) THF 57 0 28 

6 BT a DBU (1.5) THF 16 0 20 

7 CPT a DBU (1.5) THF 46 0 32 

8 MPT a DBU (1.5) THF 41 13 35 

9 PT a DBN (1.5) THF 61 0 17 

10 PT a MTBD (1.5) THF 58 0 19 

11 PT a TMG (1.5) THF 57 2 18 

12 PT a TBD (1.5) THF 48 0 24 

13 PT a KHMDS (1.5) THF 9 0 69 

14 PT a DBU (1.5) CH2Cl2 52 0 25 

15 PT a DBU (1.5) 1,4-dioxane 41 4 35 

16 PT a DBU (1.5) MeCN 58 0 20 

17 PT a DBU (1.5) DMF 59 0 16 

18 PT a DBU (1.5) NMP 42 0 16 

19 PT a DBU (1.5) DMSO 43 4 14 

20 PT b DBU (1.5) THF 53 6 10 

21 PT c DBU (1.5) THF 19 37 0 

22 PT d DBU (1.5) THF 0 0 78 

23 PT e DBU (1.5) THF 75 0 0 

24 PT f DBU (1.5) THF 45 14 0 
a Ur = uracil-1-yl; MTBD = 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene; TMG = 1,1,3,3-

tetramethylguanidine; TBD = 1,5,7-triazabicyclo[4.4.0]dec-5-ene. b 1.5 equiv.  
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 Thus, our study has demonstrated that the ribonucleoside-derived Julia–Kocienski sulfones afford 

thio-substituted cyclopentenes in one step. Methods for the synthesis of optically pure 1-thio-4,5-

dioxycyclopentenes are very limited,31 and, to the best of our knowledge, there is no reported method 

for the stereocontrolled synthesis of cis,cis-isomers such as 16. Cyclopentenes 16 can be useful 

synthetic intermediates for the synthesis of polysubstituted cyclopentane derivatives via reactions at 

their C=C bond. For example, the dihydroxylation of 16e catalyzed by microencapsulated OsO4
32 

afforded pentasubstituted cyclopentane 19 (Scheme 8). The dihydroxylation occurred exclusively 

from the opposite side of the three substituents and 19 was obtained as a single diastereomer. The 

acetylthio group of 16e can be deprotected and S-alkylated to give 18. The methylthio group was 

oxidized under the dihydroxylation conditions and sulfonyl-substituted cyclopentane 20 was obtained 

as a single isomer. 

 

Scheme 8. Dihydroxylation of 16e and 18.  
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  Methylthio-substituted cyclopentene 18 could also be used for the synthesis of animo-substituted 

cyclopentenes as shown in Scheme 9. The treatment of 18 with chloramine T afforded N-methylthio-

p-toluenesulfonamide 21 in 80% yield via the [2,3] sigmatropic rearrangement of the intermediate S-

allylsulfilimine.33 p-Toluenesulfonamide 22 was isolated in 85% yield after aqueous workup with 

aqueous NaHSO3. Cyclopentylamine 23 was directly obtained in 56% yield when 18 was treated with 

hydroxylamine O-sulfonic acid.34 

  Polyhydroxylated thiocyclopentanes are the core structures of some bioactive natural products, 

such as mannostatins35 and tagetitoxin.36 A wide range of natural products and bioactive synthetic 

compounds have polyhydroxylated aminocyclopentane cores.37 The trisubstituted cis,cis-

cyclopentenes shown in this study should be useful as synthetic intermediates of such complex natural 

products and bioactive compounds. 

 

Scheme 9. Reaction of 18 with Chloramine T and Hydroxylamine-O-Sulfonic Acid.  

 
 

In conclusion, we have serendipitously discovered that 5′-deoxy-5′-heteroarylsulfonylnucleosides 

afford cyclopentene nucleoside derivatives in one step by treatment with a base. This transformation 

most likely proceeds via a domino reaction initiated by a base-promoted elimination reaction of the 

heteroaryl sulfone, followed by the Michael addition of the resulting nucleobase and α,β-unsaturated 

sulfone, and an intramolecular Julia–Kocienski reaction. The proposed reaction mechanism is 

supported by the experimentally observed nucleobase exchange during the reaction. This novel 

domino reaction can be expected to be useful for the synthesis of bioactive carbocyclic nucleosides, 

especially those that contain truncated or lyxo-carbasugars. It has also been demonstrated that the 

nucleobases of the substrates can be replaced by more reactive Michael donors, such as 

heteroarylthiols and thiocarboxylic acids, to afford 1-thio-4,5-dioxycyclopentenes in one step with 

complete cis-selectivity. The acetylthio-substituted cyclopentene was stereospecifically transformed 

into amino-substituted cyclopentenes. α,β-Unsaturated sulfones are well-known Michael acceptors 

that react with many types of Michael donors in addition to thiols and thiocarbocylic acids. We 

envision that the scope of products can be expanded by further studying the applicability of other 

Michael donors to this reaction. 
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