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Abstract

Path integral molecular dynamics (PIMD) is becoming a routinely applied method

for the incorporation of the nuclear quantum effect in computer simulations. How-

ever, direct PIMD simulations at an ab initio level of theory are formidably expensive.

Using the protonated 1,8-bis(dimethylamino)naphthalene molecule as an example, we

show in this work that the computational expense for the intra-molecular proton trans-

fer between the two nitrogen atoms can be remarkably reduced by implementing the

idea of reference-potential methods. The simulation time can be easily extended to

a scale of nanosecond while maintaining the accuracy on an ab initio level of theory

for thermodynamic properties. In addition, the post-processing can be carried out in

parallel on massive computer nodes. A 545-fold reduction in the total CPU time can

be achieved in this way as compared to a direct PIMD simulation at the same ab initio

level of theory.
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Introduction

Hybrid QM/MM is now the method of choice for the studies of enzymatic reactions and

chemical reactions in the condensed phase.1–13 However, the application of QM/MM methods

is often plagued with extremely poor computational scaling of the ab initio QM methods,

as well as the long time scales of molecular dynamics propagation that are usually required

before any essential dynamic processes for the degrees-of-freedom (DoF) orthogonal to the

boosted one can be observed.14 Furthermore, exploring the nuclear quantum effect (NQE),

such as tunneling, nuclear delocalization phenomena, and zero-point energy of molecules,

gains in popularity over the years.15–22 One of the most appealing approaches to incorporating

NQE is path integral molecular dynamics (PIMD).23 PIMD is based on the isomorphism to

approximately transform the representation of quantum effect in single-particle systems into

a classical system with discrete finite number of pseudo-particles (or beads) along a cyclic

path.24 Being one of the most commonly used simulation methods, PIMD can be used to

obtain thermostatistical equilibrium properties and dynamic properties, with free energy

profiles of reactions and reaction rate coefficients as two representative examples.25–28

However, applications of PIMD simulations in the studies of chemical reactions of complex

systems are extremely demanding. On the one hand, PIMD requires P times more compu-

tational time than that of the classical molecular dynamics (MD), where P is the number of

beads, onto which each quantum particle is mapped. P determines the convergence of PIMD

simulations, and it needs to satisfy P > h̄ωmax/kBT , where ωmax is the maximal vibrational

frequency of the system. P surges as ωmax increases or T decreases. It is thus computational

expensive to use PIMD to study a reaction in a sufficiently long timescale at an acceptable

accuracy with convergence-ensured number of beads. To reduce the computational cost,

some progresses have been achieved. Tuckerman et al combined a noncanonical transforma-

tion on the quadratic part of the action with multiple time scale integration techniques, and

proposed a very efficient algorithm.29 Markland and Manolopoulos proposed an approach

to reduce the computational effort by separating the short-range interaction from the long-
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range one.30 Cheng et al proposed the multiple-timestep molecular dynamics (MTS-MD)

algorithm to accelerate the propagation by dividing the force into slowly oscillating part and

quickly varying component,31 but the former factor is still the efficiency bottleneck. Large

integration time step can also be made possible by applying proper transformations, so the

analytic integration over the high-frequency modes is allowed.32 After the transformation,

the number of the beads can be reduced via ring-polymer contraction, in which some highest

normal modes can be ignored.33–35 Marsalek and Markland proposed a ring polymer contrac-

tion approach that can dramatically reduce the computational cost of PIMD at an ab initio

level.36 On the other hand, the accessible simulation time is further limited when it is nec-

essary to use high-level electronic structure methods such as post-Hartree-Fock theories and

density functional theory (DFT). Approximated levels of theory, such as semi-empirical (SE)

methods, can improve computational efficiency and allow sufficient exploration in the phase

space for systems in condensed phase. However, these methods are crude in the treatment

of electronic structures, which may lead to inexact results for certain physical properties.

In addition, ergodicity in the configurational space is critical for the convergence of the

simulated macrostate properties. Enhanced sampling methods, such as umbrella sampling

(US),37 adaptively biased molecular dynamics (ABMD),38 and metadynamics,39,40 are now

frequently employed to boost one or two DoF and thereby accelerate the reaction. For the

orthogonal DoF, the exploration can still be hindered by hidden barriers, and a ns-timescale

simulation can be inevitable. Besides, length of the simulations determines the effective

number of samples, because independent and identically distributed (i.i.d.) samples are

required for the calculations of ensemble averages. For simulations in aqueous solutions, the

energy correlation time is on a scale around 1 ps. If the samples are saved too frequently,

sampling inefficiency must be considered.41 Affordable studies are limited to relatively simple

systems,42 low levels of theory,43 or with the aid of artificial intelligence.44

Therefore, it is desirable to develop a practical method for the study of thermodynamics

properties based on PIMD that can dramatically reduce the computational expense while
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maintain the accuracy. The multistate thermodynamic perturbation (MsTP) is the method

of choice, of which the efficiency and reliability has been examined by Li et al. in an early

study of some model reactions.45 MsTP is a variant of the reference-potential method, in

which the ensemble averages of any time-independent physical properties at a high level

of theory are obtained indirectly from simulations at a lower level of theory. With further

improvement,46–48 this method is becoming more robust for the studies of chemical processes

in the condensed phase.

In the current work, we combine PIMD with the reference potential method for the

first time and demonstrate its application in the study of the intramolecular proton transfer

in the protonated 1,8-bis(dimethylamino)naphthalene (DMANH) molecule. The free energy

profile at the PIMD/BLYP-D3/6-31G(d)/MM level of theory along the proton transfer path-

way was calculated leveraging a more efficient sampling at the PM6/MM level. A 545-fold

enhancement in the computational efficiency was achieved as compared to a direct PIMD

simulation at the same ab initio level of theory.

Theory

The partition function of a system with N distinguishable particles is defined as,49

ZP (β) = N
∫

dNP p
∫

dNP x e−βĤp(x,p), (1)

where β = 1/kBT , N is the total normalization function, x represents the position of par-

ticles, and p the momenta conjugate to x. The isomorphic primitive Hamiltonian operator

Ĥp(x, p) of this N -atom P -bead cyclic model is

Ĥp(x, p) =
P∑

i=1

{
N∑

n=1

[
pi2

n

2m̃i
n

+ 1
2mnω2

p(xi+1
n − xi

n)2
]

+ 1
P

U(xi
1, · · · , xi

N)
}

xi+1
n =xi

n

, (2)
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under the constraint xi+1
n = xi

n. This quantum Hamiltonian operator is made up of P group

of beads (also known as replicas or time-slices), and each forms a classical representation

of the original system. Beads of each atom are connected by harmonic potentials. In this

way, a P -membered classical “necklace” model is constructed, and the simulation of quantum

systems is transformed into an expanded classical calculation. mn is the mass of the particle,

U is the potential energy, m̃i
n and pi

n are the fictitious mass of the ith bead of the nth particle

and its corresponding momentum. This fictitious mass can be set to an arbitrary value,

because this term disappears in the thermodynamical statistical average. The ωp =
√

P/βh̄

is the harmonic constraint connecting the two most adjacent beads. For the ideal quantum

problem, the full quantum Hamiltonian Ĥ is established when P → ∞. The introduction of

this isomorphic relationship also means the quantum mechanical sampling can be mapped

onto classical simulations by either Monte Carlo (MC)50,51 or MD52 methods. The potential

of mean force with a collection of PIMD samples can thus be written as

F (ξP I) = − 1
β

ln
〈

1
P

P∑
i=1

δ(ξP I − ξ(xi))
〉

. (3)

To accelerate computation, we incorporate of the PIMD and the reference-potential

method (RPM) for the first time to calculate the statistical quantum mechanical proper-

ties at a level-of-interest Hamiltonian while simulating at a lower level Hamiltonian state.

Additionally, we adopt the US method for enhancing the sampling. From K simulations, we

can collect Nk configurations from the kth simulation. Each simulation is characterized by

its specific potential function Uk, for k ∈ 1 . . . , K. In the umbrella sampling method,

Uk(rn) = U0 (r) + Wk (η(r)) (4)

where U0(r) is the unbiased Hamiltonian and Wk(r) is the biasing potential acting on some

chosen collective variables (CV) η(r). The unnormalized weight of each configuration under
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another Hamiltonian Ut is

ωt (rn) = e−βUt(rn)

K∑
k=1

Nke−β[Uk(rn)−fk]
= e−β∆Ut(rn)

K∑
k=1

Nke−β[Wk(η(rn))−fk]
, (5)

in which fk is the free energy of state k and is calculated by iteratively solving the Multistate

Bennett Acceptance Ratio (MBAR)53 equations

fi = −β−1 ln
N∑

n=1

e−βUi(rn)

K∑
k=1

Nke−β[Uk(rn)−fk]
∀i = 1, . . . , K. (6)

Here, N = ∑K
k=1 Nk is total number of snapshots collected in all the simulations, and

∆Ut(r) = Ut(r) − U0(r). ωt (rn) can be understood as the weighting factor for each con-

figuration in a thermodynamic perturbation from the mixed reference potentials (Uk) to

the target Hamiltonian (Ut). Therefore, this method is referred to as the multistate ther-

modynamic perturbation (MsTP). Thermodynamic properties that depend only on atomic

coordinates under Ut can thus be obtained as

⟨Â⟩t =

N∑
n=1

ωt (rn) Â (rn)
N∑

n=1
ωt (rn)

. (7)

If A is an indication function δ of some chosen CV ξ(r)

δ(ξm − ξ(r)) =


1, if − ∆ξ/2 < ξm − ξ(r) < ∆ξ/2

0, otherwise
, (8)

the potential of mean force (PMF) under Ut(r) can be written as

Ft(ξm) = −β−1 ln
N∑

n=1
ωt(rn)δ(ξm − ξ(rn)) (9)
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defined up to an additive constant. Similarly, the PMF under U0(r) can be written as

F0(ξm) = −β−1 ln
N∑

n=1
ω0(rn)δ(ξm − ξ(rn)), (10)

where

ω0(rn) = e−βU0(rn)

K∑
k=1

Nke−β[Uk(rn)−fk]
= 1

K∑
k=1

Nke−β[Wk(η(rn))−fk]
(11)

is the unnormalized weight for configuration rn under U0(r). To ameliorate the numerical

instability originated from incomplete sampling, the weights ωt(rn) under the target Hamil-

tonian are scaled by Gaussian-smoothing on the density-of-states.47

In this work, we take U0 as the PM6/MM54 Hamiltonian, and Ut as the BLYP-D3/6-

31G(d)/MM55–57 level of theory. For simplicity, they will be labeled as the SQM and DFT

level of theories. Please also note that η is unnecessarily ξ, but we set them equal in this

work.

Simulations

One DMANH molecule, shown in Fig. 1,58,59 was solvated in a TIP3P water60 sphere with

a radius of 25 Å using the LEaP module in the AmberTools19 package.61 One chlorine ion

was added for neutralization. The QM region contained only the DMANH molecule, and

the MM region comprised all the solvent molecules and the counter ion. In the MM region,

the SHAKE algorithm62 was applied to constrain all the bonds involving hydrogen atoms.

The system was energy-minimized for 2000 steps and then heated up to 298 K in 100 ps.

Finally, a 100-ps classical MD simulation was conducted for further relaxation of the system.

Temperature was regulated using the Langevin thermostat with a collision frequency of 2.0

ps−1.63

The CV was defined as the difference in the N–H bond lengths, i.e. dNaH − dNdH, where

dNaH is the distance between the proton
⊕
H and the acceptor nitrogen atom Na, and dNdH
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Figure 1: Molecular structure of DMANH

the distance between the proton
⊕
H and the donor nitrogen atom Nd . The CV, ranged

from -0.15 Å to 1.10 Å, was discretized into 26 windows in total. Harmonic potentials

Wk(x) = 1
2kξ(ξ−ξk)2 were used with kξ = 100 kcal · mol−1 · Å−2 for all the windows. We first

performed the primitive approximation PIMD (PRIMPIMD)50 with 16 beads for each QM

atom for 1-ns per window, and then an additional 1-ns simulation was performed for each of

the first 16 windows (with RC between -0.15 Å and 0.60 Å) to improve the convergence in this

region. The temperature was regulated using the “middle scheme” Langevin thermostat.64,65

The step size was set to 0.5 fs. Configurations were saved every 1000 steps (500 fs) for single

point energy calculations at the DFT level, as well as the SQM level. Due to the symmetry of

the molecule, we only calculated the PMF along the CV with positive values. The potential

of mean force at the SQM level was generated via the MBAR analysis, and that at the

DFT level was calculated with the MsTP and was smoothed using the Gaussian process

regression.66

Results and Discussion

Reweighting entropy (RE), is a measure of the reliability of the RPM. We have previously

shown that when RE is greater than 0.3 in the MsTP calculations, the extrapolation process

is reliable.45 When it is below 0.3, large biases may reside in the free energy profile. As shown
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in Fig. 2, the free energy profile under the DFT level is reliable when the CV is smaller than

0.8 Å. When the CV is greater than 0.8 Å, RE plunges. This is the consequence of the large

difference in the preferred structures under these two Hamiltonians, i.e. SQM and DFT.

Shown in Fig. 3 are the means and fluctuations of the local structures for the proton transfer

reaction. With the CV increases from 0.00 Å to 0.80 Å, dNdH decreases from around 1.34 Å

to about 1.05 Å, and dNaH increases from 1.34 Å to 1.85 Å. These distance variations are

very similar to those under the SQM Hamiltonian as shown in Fig. S1. However, dNdH shows

a sudden drop when the CV is greater than 0.8 Å, and deviates from the mean bond length

under the SQM Hamiltonian, indicating an insufficient overlap in the sub-phase space under

these two Hamiltonians. The difference is more obvious for the Nd−H−Na angle. Therefore,

thermodynamic properties with CV greater than 0.8 Å have not reached convergence, and

more samples are required in this region. For the PMF analysis at the DFT level in the

following, we can only trust the results for the region with CV below 0.8 Å.

0.0 0.2 0.4 0.6 0.8 1.0
RC (Å)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

RE

Figure 2: Reweighting entropy

The free energy profiles under the SQM and DFT levels are shown in Fig. 4. Under the

SQM level, the uncertainties are much smaller than their counterparts under the extrapolated

DFT level. The large magnitude in the uncertainties under the DFT level is the consequence
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Figure 3: Structural alternations during the proton transfer process at the DFT/MM level from
MsTP. (A) Distance between the proton (H) and the Nd atom. (B) Distance between the proton
(H) and the Na. (C) Distance between the Nd and the Na atoms. (D) Angle of Nd–H–Na. The
shaded areas are the standard error.
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of the sampling inefficiency when the MBAR weights are assigned to the samples. As shown

in Eq. 5, the weight decays exponentially as the energy difference between the two Hamiltoni-

ans increases. Precisely, ∆Ut is the difference in the deviations of the potential energies from

their respective means, since the difference in the means can be canceled in normalization.

Under the SQM level, the minimum in the free energy profile locates at CV ≈ 0.6 Å, which

is about 0.1 Å larger than the minimum under the DFT level. This indicates that in the

optimal structure under the SQM level, the proton prefers to be closer to one of the nitrogen

atoms, while under the DFT level the proton is more diffusive. This can be explained by the

difference in the basis sets used in the SQM and DFT calculations. PM6 used the minimum

basis set, while a larger basis set 6-31G(d) was used in the DFT calculations. Both of the

profiles show a reaction free energy barrier of about 1.2 kcal/mol. This picture is different

from the results in a recent study by Zhou and Wang, in which the reaction is barrierless.67

The disagreement comes from the difference in the Hamiltonians. In their studies, all the

atoms were quantum particles, while in the current study only the DMANH molecule was

treated quantum mechanically. Quantum-mechanically described water molecules can stabi-

lize the delocalized proton, and thereby lowers the reaction barrier. In the current work, we

are not aiming at reproducing the results of a full-QM PIMD model. However, the central

idea developed in the current work can be applied to a full-QM PIMD model, if a proper

reference Hamiltonian can be found. This is beyond the interest of the current work. For the

CV to the right side of the minimum, the potential of mean force increases very fast w.r.t

the CV under the DFT level than under the SQM level, which indicates a higher probability

of a shared proton between the nitrogen atoms under the DFT level.

The estimated CPU times of obtaining PMF at the BLYP-D3 level with direct QM/MM

and RPM are shown in Table 1. The CPU time of the RPM includes two parts, i.e. the CPU

time for collecting the trajectories at the PM6/MM level and the CPU time for the single

point energy calculations at both the PM6/MM and BYLP-D3/MM level. While the direct

QM/MM method at the BLYP-D3/MM level only requires the time for the simulations.
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Figure 4: Free energy profiles of the proton transfer under different levels of theory

Since the PM6/MM level is several orders of magnitude more efficient than BLYP-D3/MM

level and the configurations were saved once every 1000 steps of MD propagation for the

single point energy calculations at the DFT level of theory, a 545-fold enhancement in the

efficiency was observed for the RPM method as compared to a direct PIMD simulations at

the same level of theory.

Table 1: Estimated CPU Time in a unit of Days. Assuming one node with 28
cores of Intel Xeon Gold 6132 CPU 2.60 GHz was used.

RP method
Sampling Energy Evaluation Total Direct DFT a

1.04 K 1.25 K 2.29 K 1250 K
a Estimated CPU time assuming the number of windows and simulation length for each window
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Conclusion

The calculations of thermodynamic properties from computer simulations require indepen-

dent and identically distributed samples. The long correlation time of chemical processes in

condensed phases plagues the simulations with slow convergence in thermodynamic proper-

ties and poses a challenge for the computational studies at ab initio levels of theory. This

difficulty is more severe for PIMD, in which the representation of quantum effect in single-

particle systems is transformed into a classical problem of discrete cyclic model systems with

a number of beads for each atom. The reference-potential methods can be a remedy for

ameliorating the large expense by leveraging an inexpensive sampling method and a post-

processing process on the harvested samples. In this work, the proton transfer within a

protonated 1,8-bis(dimethylamino)naphthalene molecule was studied, and the free energy

profile at the BLYP-D3/6-31G(d)/MM level of theory was calculated using a more efficient

sampling at the PM6/MM level. With a finite number of samples, the reliability of this

reference-potential method heavily depends on the overlap in the phase space between the

target (BLYP-D3/6-31G(d)/MM) Hamiltonian and the reference (PM6/MM) Hamiltonian.

The results show that when the CV, which is defined as the difference in the distances from

the proton to the acceptor and to the donor, is below 0.8 Å, the potential of mean force

and the structural properties can be reliably produced with a 545-fold enhancement in the

efficiency.
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Figure S1: Structural alternations during the reaction at the PM6/MM level. A) Distance between
the transferred proton (H) and the donor nitrogen (Nd) atom. B) Distance between the transferred
proton (H) and the acceptor nitrogen atom (Na). C) Distance between the donor (Nd) and the
acceptor nitrogen (Na) atoms. D) Angle of Nd–H–Na.

2



0.0 0.2 0.4 0.6 0.8 1.0
RC (Å)

2

1

0

1

2

3

4

PM
F 

(k
ca

l/m
ol

)

10% snapshots
50% snapshots
100% snapshots

Figure S2: Free energy profiles with Gaussian process regression at the BLYP-D3 level using
200 snapshots, 1000 snapshots and 2000 snapshots from each window simulation.
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