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Abstract

In this work, we present DBgen, a Python library that provides a framework
for defining extract-transform-load (ETL) pipelines to create and populate
SQL databases. DBgen is most useful when the underlying data has complex
relationships, requires multi-step analysis, is large-scale, and the type of data
being collected changes frequently. Scientific data often fits this description.
With current tooling, defining ETL pipelines for this particularly difficult-
to-manage data is so onerous that a great deal of it does not end up being
stored in a database and is opaque. DBgen is designed to fill the gap in the
current tooling and reduce the barrier to defining ETL pipelines such data.

Keywords: Database, ETL, Python, Data management

∗Correspondance to:
Email address: brian.rohr@modelyst.io (Brian A. Rohr)

1Modelyst LLC, Palo Alto, CA 94306, USA
2Toyota Research Institute, Los Altos, CA 94022, USA
3California Institute of Technology, Pasadena, CA, USA

Preprint submitted to SoftwareX July 27, 2021



Required Metadata

Current code version

Nr. Code metadata description Please fill in this column
C1 Current code version 1.0.0
C2 Permanent link to code/repository

used for this code version
https :
//github.com/modelyst/dbgen

C4 Legal Code License Apache 2.0
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Python 3 on Linux, OSX or Win-
dows. Dependencies listed in re-
quirements.txt in code repository.

C7 Compilation requirements, operat-
ing environments & dependencies

N/A

C8 Link to developer documenta-
tion/manual

https://www.dbgen.modelyst.com

C9 Support email for questions brian.rohr@modelyst.io

Table 1: Code metadata

1. Motivation and Significance1

DBgen is designed to reduce the barrier to creating databases for com-2

plicated data sources in accordance with the FAIR data principle[1]. The3

FAIR principle, which states that data should be Findable, Accessible, In-4

teroperable, and Reusable, is widely accepted and has shown utility in a5

variety of fields of scientific research including medicine[2, 3, 4], meteorol-6

ogy & oceanography[5, 6, 7, 8], oral speech studies[9], botany[10], mass7

spectrometry[11], and many others. Although many agree that it is im-8

portant to make data FAIR, a great deal of scientific data remains stored in9

a way that does not meet these principles. We contend that this is in part10

because defining extract-transform-load (ETL) pipelines to get scientific data11

into SQL databases is a particularly challenging task. Scientific data is com-12

plex, analysis-heavy, frequently-changing, large-scale, and the people who13

understand this particularly difficult-to-manage data best are rarely experts14

in SQL and data engineering. These challenges regarding making scientific15

data fair have been highlighted previously [12, 13, 14, 15, 16] as has the16

importance of directing resources toward solving these infrastructure prob-17

lems [17]. In order to handle this challenging case, scientific ETL pipelines18

need to be scalable, maintainable, accessible, reconfigurable, and transparent19
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(SMART). In section 1.1, we describe how the SMART principles address the20

challenges in defining scientific ETL pipelines. Then, in section 1.2, we iden-21

tify a gap in the current tooling which makes it difficult to define SMART22

ETL pipelines. In section 2, we describe what DBgen is and how it helps to23

fill this gap in the current tooling.24

1.1. SMART ETL Pipelines25

Scalable: As high-throughput experimentation becomes more widely used,26

the scale of scientific data continues to increase. This demands that any sci-27

entific ETL pipeline can handle large amounts of data efficiently.28

Maintainable: The fundamental relationships between the entities of in-29

terest in scientific data are very complex. There are many of types of entities30

that need to be tracked, and the relations between these entities are often-31

times many-to-many. There is also a great deal of meta-data that needs to32

be stored and formally linked to the data. This makes the FAIR principles33

of rich meta-data and strong provenance challenging to achieve. A database34

architecture capable of capturing this complexity requires many tables and35

foreign keys. Accordingly, the ETL pipeline that populates such a database36

is a fairly complex piece of software. As with any complex piece of software,37

maintainability is crucial, and making the code modular and easy to debug38

is imperative for maintainability.39

Accessible: The number of scientific researchers who are comfortable with40

higher-level languages like Python far exceeds the number who are comfort-41

able with SQL, so in order to make ETL pipelines editable by scientists, it42

is important to abstract away the SQL code.43

Reconfigurable: Scientific ETL pipelines must be easily reconfigurable44

because scientific research is inherently frequently-changing. Scientists fre-45

quently decide to do new types of experiments and analyses as the very goal46

of doing the research is to learn information that changes their understanding47

of the subject of research. As they do new types of experiments, they start48

to track new types of information and carry out new analyses. Changing49

the entities, attributes, and relations that are tracked in a database is the50

definition of a schema change. Therefore, schema changes occur far more51

often in scientific research than in other fields, and the ETL pipeline needs52

to be easy to reconfigure when these inevitable changes occur.53

Transparent : In many cases, researchers are interested in a high-level54

analysis of the data, not just the raw data itself. The process of converting55

raw data to high-level results usually requires many small steps. Each data56

processing step yields an intermediate result, which may be of interest in its57

own right or may be useful in other analyses later. When the data pipeline58

is complete, there can be a large, complicated web of data processing steps59
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between the raw data and the final results. It is imperative that the full flow60

of data from the original, raw, file all the way through to the final analysis61

is transparent.62

1.2. Current Tooling63

There are many tools, including DBeaver, TablePlus, and MySQL Work-64

bench, that make it easy to define complex empty database schemas; how-65

ever, in the case of scientific data, defining the ETL pipeline is much more66

difficult than defining the empty database schema. There are several existing67

Python packages, including psycopg2, pymysql, and sqlalchemy that expose68

SQL functionality to a python user, but they do not provide any framework69

for defining SMART ETL pipelines. DBgen fills this gap in the current tool-70

ing. If one were to implement 50 complex, SMART ETL pipelines, each for a71

different use case, yes, some of the code would specific to each use case, but a72

large amount of the code would be common to all of the use cases. DBgen is73

that code that is common code. In other words, DBgen is a Python package74

that provides a framework for the definition of SMART ETL pipelines, just75

as pytorch [18] and tensorflow [19] provide a framework for the definition of76

GPU-accelerated, complex deep learning models.77

2. Software Description78

2.1. Software Architecture79

Each DBgen Model defines a complete build procedure for a database:80

both instantiating the empty database and populating it with data. The81

DBgen Model consists of two graphs, one for each of those steps. The schema82

graph defines the empty database architecture, and the ETL graph defines83

the ETL process, which populates the database with data.84

In DBgen, there are three key classes associated with defining the schema85

graph (Entities, Attributes, and Relations), and four key classes associated86

with defining the ETL graph (Generators, Queries, PyBlocks, and Loads).87

Both pieces are put together in one, large object, called a Model, which88

defines the entire database build procedure, both instantiating the database89

and populating it.90
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Figure 1: A depiction of the relationships between the key classes in DBgen. (A) shows
how the classes that comprise the schema graph relate to each other. (B) shows how the
classes that comprise the ETL graph relate to each other. (C) shows how many instances
of these classes can be composed to create a DBgen Model.

2.2. The Schema Graph: Defining the Empty Database Schema91

Entity : In DBgen, each Entity fully defines an empty database table. It92

consists of a name and any number of Attributes and Relations, which are93

described next. Each entity is a node in the schema graph.94

Attributes : Attributes, define the columns of each database table. They95

have a name, a description, and a data type. Attributes in DBgen can96

be either ”identifying” or ”non-identifying.” The information stored in the97

identifying columns are necessary and sufficient to identify exactly one row98

in a given table. DBgen disallows the existence of two rows in the same99

table with the same identifying data. For example, in a table of movies, one100

could decide to make the title and release date Attributes identifying. In101

DBgen, this would guarantee that a query for a specific title and release date102

would return no more than one row, and DBgen would also require a title103

and a release date to create a row in the table. There may be many other104

non-identifying Attributes, like duration and average critic rating. Although105

the back-end details are different, this concept is analogous to a composite106

primary key.107

Relations : Relations define the relationships between the tables and there-108

fore the edges of the schema graph. For those who are familiar with database109

terminology, a Relation defines a foreign key.110

2.3. Populating the Database111

The ETL graph consists of Generators, which are the nodes in the ETL112

graph. The information specified in the Query and Loads objects, also de-113

scribed below, allow DBgen to automatically compute the appropriate edges114

for the ETL graph.115
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Generators : Each Generator, defines a single extract-transform-load (ETL)116

step. It consists of a Query, a PyBlock, and Loads, which represent the ex-117

tract, transform, and load steps, respectively. A common pattern in DBgen118

data pipelines is to query the database, use that information as inputs to a119

function, and insert the result back into the database. This allows for com-120

plicated, multi-step data analyses to be carried out in a flexible, modular,121

maintainable, and transparent manner.122

Query : The Query object in DBgen defines a SQL query. By using a123

Query object rather than a raw SQL string, the Generator knows which124

database columns need to be queried in order for that ETL step to run.125

DBgen will later use this information to compute dependencies among the126

ETL steps and automatically run them in the correct order.127

PyBlock : The PyBlock object represents the transform portion of the128

ETL step. It is any arbitrary python function, which enables sophisticated129

analyses, including predictions from machine learning models, to be run. The130

inputs to the function come from the Query object, and the outputs from131

the function are inserted back into the database in the load step, which is132

described next. Pyblocks can also read data in from the file system, which133

is commonly used for the early ETL steps in the data pipeline.134

Loads : As the name suggests, Loads represent the load portion of a given135

ETL step, which is the step in which data is inserted into the database. In136

an instance of the Loads object, the user specifies which outputs from the137

PyBlock are inserted into which columns in the database. Now, each Gen138

knows which database columns must be populated before it is run (from the139

Query object) and also which database columns are populated by that Gen140

(from the Loads object). DBgen needs this information to determine the141

correct order to run the ETL steps.142

Model : Finally, the Model object defines the entire database build pro-143

cedure. It is comprised of a set of Entities and a set of Generators. When144

a Model is run, it uses the information in the Entities to create the schema145

graph and to instantiate the empty database tables. Then, it uses the infor-146

mation from each Generator’s Query and Load objects to compute the order147

in which the Gens need to be run, thereby creating the ETL graph. Finally,148

it executes each Generator’s Query, Pyblock, and Loads steps to actually149

populate the database.150

2.4. Software Functionalities151

Automatic Ordering : Complicated data pipelines are comprised of a large152

number of small, simple processing steps. Without DBgen, the user must153

make sure that the ETL steps are run in the correct order. If one ETL step154

needs to query a given column in the database, the ETL step that populates155
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that column needs to be run first. This process is laborious, especially in156

the case of scientific research, where frequent changes to the data pipeline157

are expected. DBgen automatically determines the correct order to run the158

ETL steps by using the structured information in each Generator object to159

create a directed acyclic graph (DAG). This feature is significant because it160

allows the user to not think about the whole data pipeline when adding or161

editing an ETL step, even if the change completely disrupts the dependencies162

among the ETL steps. This feature contributes to the reconfigurability and163

maintainability of DBgen ETL pipelines. Furthermore, this computational164

graph can be visualized to show the full flow of data from its source, through165

all processing steps, to the final destination in the database. This adds166

transparency to all DBgen ETL pipelines.167

Primary Key and Foreign Key Handling : In large, complex database168

schemas with many foreign keys, querying tables to populate these foreign169

keys properly is both computationally expensive and laborious for the user to170

write. DBgen obviates the need for this altogether. The technical details of171

how DBgen accomplishes this are described in the supplemental information.172

Automatic Detection of Changing Inputs and Functions : Every time a173

DBgen ETL step is run, DBgen stores a hash of the inputs it received and174

the function that processed the data. Then, when a pipeline is re-run, DBgen175

automatically knows which steps need to be re-run. This avoids the compu-176

tational expense of re-running functions, and perhaps more importantly, it177

allows the user to add data and make edits to the pipeline without thinking178

about the execution of the pipeline at all. If the user wants to change a179

function, they just change the function and re-run the DBgen model. DBgen180

will automatically detect that only that function was changed, and that ETL181

step and all of its dependents will be re-run, and the rest of the steps will be182

skipped, as their results are unchanged. This is a recurring theme in DBgen:183

separate the definition of the pipeline from the execution of the pipeline, and184

abstract away the execution portion, thereby enabling the user to zoom in185

and make edits on any small portion of the pipeline without needing to think186

at all about how that may impact the broader data pipeline. This contributes187

to the reconfigurability and scalability of DBgen ETL pipelines.188

DBgen Log Database - A Dashboard for the ETL Process : The log database189

is a separate, small database that is designed to be a dashboard for the data190

pipeline that helps the user debug complicated data pipelines with ease. The191

log database has one row per ETL step per attempt at running the data192

pipeline. The most common use case is to query this table for the most193

recent run attempt. For each row, it contains the following information:194

• The status of the ETL step (not started, failed, completed, etc.)195
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• The runtime for the ETL step196

• The full traceback for any errors that were encountered when trying to197

run the ETL step198

• Which columns the ETL step queries199

• Which columns the ETL step populates200

So, if there is an error in one of the functions, and a user tries to run201

the data pipeline, the user can go to the dashboard and immediately see:202

these steps finished, this step encountered an error, all of its dependencies203

did not run as a result, and here is the error message. This makes even the204

most complicated ETL pipelines easy to debug and maintain. Even when205

there are no errors, the user can query the runtime of each step to identify206

bottlenecks in the process. The DBgen log database makes207

Efficient, Cloud-Optimized Insertion Methods : DBgen copies data from208

the machine that is executing the ETL pipeline to the machine that is host-209

ing the database in large batches, which is more computationally efficient210

than traditional methods. Additionally, DBgen makes it easy to run each211

individual ETL step on a separate compute instance, so if one ETL step is212

particularly compute-intensive, it can be run on a more powerful compute213

instance. Together, these features ensure that all DBgen ETL pipelines are214

scalable. The details are described in the supplemental information.215

Abstraction: With DBgen, a user can implement an entire database and216

ETL pipeline without writing one line of SQL code. This provides accessibil-217

ity to ETL pipelines defined using DBgen. With the SQL abstracted away,218

a much broader user base is able to define or at least understand and edit219

existing ETL pipelines.220

3. Illustrative Example221

The example we will discuss is a database of materials science research222

data created and populated using DBgen called ESAMP, which stands for223

”Event-Sourced Architecture for Materials Provenance.” To give a sense of224

the inherent complexity of the problem, in materials science research, a ma-225

terial sample of interest is usually derived from one or many other samples226

through a series of procedures. Each procedure may produce one or many227

data files, which may be used in one or many analyses to yield results that228

are of interest to the researcher. Some analyses depend on other analyses229

having already been carried out. A query against the database should be230

able to answer complicated questions like, ”show the top 10 best-performing231
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batteries as determined by a specific lifetime test that were derived from232

anodes that are at least 10% cobalt as determined by X-ray photo-electron233

spectroscopy (XPS), and exclude any batteries that have the solvent that234

arrived on May 18th anywhere in their processing history.”235

ESAMP models this complexity completely without making any simplify-236

ing assumptions. This is significant because it adds transparency, flexibility,237

and provenance to the curation of datasets for machine learning (ML) or238

other data analysis techniques. When the underlying data is modeled with-239

out assumptions, the user is able to write a SQL query with a certain set240

of constraints and assumptions to generate a dataset. If the researcher finds241

that the data is imbalanced or comes across another problem with their first242

dataset, they can easily edit the query to generate a new, improved dataset.243

Importantly, any future researcher who looks at that dataset and wants244

to know exactly where the data came from and what assumptions and con-245

straints were applied can simply look at the SQL query that was used to246

generate it. This provides much-needed transparency in materials science247

ML projects.248

The underlying data that is now in the ESAMP database was originally249

stored in a large zip archive containing additional zip archives containing250

tens of thousands of automatically-generated, custom-structured text files.251

The data pipeline that extracts the data from that structure and populates252

the ESAMP database requires over 50 ETL steps with a complicated tree253

of dependencies. The process of designing the ESAMP architecture required254

a great deal of iteration, so the ETL pipeline had to be adjusted and rede-255

fined dozens of times. Accomplishing this without DBgen would have been256

prohibitively laborious.257
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3.0.1. Generator Example258

Figure 2: An example of the flow of information within a Generator

Figure 2 illustrates the flow of information within an example Generator.259

In this example, process data has been stored within the process data Entity260

using its file name and the goal of this Generator is to extract each file and261

find the locations and widths of the peaks within the underlying data. As262

this generator queries the file name from the process data Entity and loads263

the resulting peaks into the peaks entity, DBgen automatically places this264

Generator after any Generator that populates the process data entity and265

before any Generator that depends on the peaks Entity being populated.266

Therefore, the author of this Generator can narrow their field of vision to267

just the data flowing from the data extraction to the loading. As discussed268

above, DBgen is specifically designed to allow for the authors of the pipeline269

to easily and effectively change their mind. The three common types of270

changes made to a pipeline are:271

1. New data entering the pipeline272

2. New functions to process the data273

3. New schema for storing the inputs and outputs274

The severity of these changes typically increases from 1 to 3, with an275

updated schema being the most extreme. However, DBgen helps to greatly276

reduce the complexity of implementing each type of change.277

Firstly, detecting whether a file entering the pipeline has been seen before278

is critical to reducing the computational strain on the overall pipeline. To279

avoid reprocessing of duplicate data, this generator will store a hash of the280
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generator and each input in the DBgen Log Database discussed above. This281

enables DBgen to automatically detect whether it has seen an extracted282

input before and, if so, it can skip reprocessing the duplicate row. While this283

may seem trivial for a path to a file, this duplicate detection generalizes to284

complex inputs that are aggregated and processed from many entities within285

the schema.286

Secondly, scientists regularly update and improve the functions they use287

to transform data. This could be a change to the FindPeaks transform or the288

addition of a pre-processing step to remove the outliers in the data before289

the FindPeaks transform processes the data (as shown in Figure 3). In either290

case, DBgen makes these changes easy to make by automatically ordering the291

functions within a generator. This means that FindPeaks need only request292

an output from the RemoveOutlier for DBgen to know that RemoveOutlier293

needs to be run prior to FindPeaks. Additionally, the generator’s hash will294

change with the addition of a transform or the modification of any transforms295

underlying code. This signals to DBgen that each input must be reprocessed296

regardless of whether it had been processed by the previous version of the297

generator.298

Figure 3: A generator with two PyBlocks, or transform steps.

Finally, schema changes can be facilitated by DBgen by isolating the299

schema that stores the data from the generator that modifies it through300

the use clear, well-defined interfaces of Loads and Extracts. When schema301

changes are made, such as the modification of the relationship between pro-302

cess data and peaks from a one-to-many to a many-to-many relationship,303

each generator that depends upon or populates the modified entities in the304
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schema is clearly logged in the DBgen Log Database. Additionally, the ab-305

stractions of Query objects and Load objects allows for complex schema306

changes to be accommodated by only a few lines of code.307

4. Impact308

DBgen provides a framework that makes it easy to implement SMART309

ETL pipelines. We believe this will have the largest impact in the field of310

scientific research. Specifically, we believe that DBgen will result in more311

scientific data being stored in accordance with the FAIR principles of data312

management. Ultimately, this will accelerate innovation in computational313

methods applied to experimental scientific data. As a point of analogy, Ima-314

geNet [20] was published in 2009 and played a significant role in the develop-315

ment of new convolutional neural network architectures shortly thereafter, as316

evidenced by the publication of AlexNet in 2012[21], and Resnet in 2016[22].317

In many fields of scientific research, there is no analogous database that can318

be used to advance the development of computational methods in each field.319

This is not because it wouldn’t be useful, but rather because it is difficult320

to achieve for the reasons mentioned in section 1. We believe that these321

databases do not exist today because the software tools needed to generate322

these complicated databases and corresponding ETL pipelines does not exist.323

DBgen aims to fill that need.324

5. Conclusions325

In this work, we present DBgen, a python library that adds useful ab-326

stractions to the process of defining complex databases and ETL pipelines327

and thereby reduces the barrier to storing data in accordance with the FAIR328

principle. We also present a set of principles (SMART) that ETL pipelines329

should ideally abide by, analogous to the FAIR principles for data storage.330

We use materials science R&D data as an example of an inherently complex331

data source. We show that modeling the data without making assumptions332

demands a complicated database architecture, which would be difficult to333

create without DBgen. We show that modeling the data in this way adds334

transparency and flexibility to dataset curation. Altogether, we provide evi-335

dence that DBgen is a useful tool that greatly reduces the barrier to storing336

scientific data in accordance with the widely accepted FAIR principles.337

6. Conflict of Interest338
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