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Abstract 
 

The strength of interaction between a metal and oxygen and/or carbon is a crucial factor 

for catalytic performance, materials stability, and other important applications. While these are 

fundamental properties in materials science, there is no general understanding of what makes a 

metal oxophilic or carbophilic, especially for main group metals. In this work, we elucidate the 

factors that control how oxophilic or carbophilic a metal is by creating a predictive model and 

applying it to a variety of data sets for transition metals and main group metals, including DFT-

calculated adsorption energies and experimental formation energies. Our model is easily 

interpretable and accurately describes oxophilic and carbophilic trends across different regions of 

the periodic table. This model captures the ionic contribution to bonding, the adsorbate-sp 

contribution to bonding, and the adsorbate-d contribution to bonding by using the reduction 

potential, matrix coupling elements, band centers, and band filling. For transition metals, the 

adsorbate-surface d coupling is the major factor that determines oxophilicity relative to 

carbophilicity. For metals that do not contain d electrons either in their core or valence shell (Li, 

Be, Na, Mg, Al, K, and Ca), the reduction potential and the adsorbate-surface s coupling are the 

major factors. As a simple application, we demonstrate the utility of oxophilicity and carbophilicity 

in rapidly screening metal dopants for improved selectivity for ethylene epoxidation on silver-

based catalysts. Using our model, we established a direct relationship between the electronic 



properties of the metal dopants and their selectivity for ethylene epoxidation. The results suggest 

that transition metals with high adsorbate-surface d coupling and main group metals with low 

adsorbate-surface s coupling are good silver-dopant candidates for this reaction. Overall, the 

improved linkage between a metal’s electronic structure and its interaction with carbon or oxygen 

will be broadly useful in design of functional materials for  a variety of applications.  

1 Introduction 
 

Improved understanding of the interaction between metals and carbon or oxygen is crucial 

in materials science, for both fundamental and technological reasons.1–9 For example, these 

interactions are important for catalytic processes, such as methane steam reforming8, acetylene 

hydrogenation,1 ethylene epoxidation,2–4 hydrogenation of unsaturated aldehydes,6,7 and CO2 

conversion reactions5. Hence, the strength of interaction between metal catalysts and oxygenates 

or carbonaceous species is widely used to screen catalysts or rationalize catalytic performance. 

In addition to affecting catalytic activity and selectivity, oxophilicity and carbophilicity 

have wide-ranging implications on materials stability. For example, these factors can explain why 

gold pieces of jewelry do not tarnish10 and why certain metals coke more easily than others11. More 

generally, an improved understanding of these properties could aid in designing surfaces that are 

stable under aqueous or oxidizing conditions12,13. Further, in minerology,14–16 oxophilic and 

carbophilic properties play a major role in the formation of fine oxides, carbonate minerals and 

carbide minerals. Therefore, understanding the inherent affinity of metals towards oxygen and 

carbon is of fundamental and broad-ranging importance.  

Although oxophilicity and carbophilicity have been studied within certain classes of 

metals,17–21 their overall trend across metals from different regions of the periodic table has not 

been elucidated. In particular, trends in main group metals have received very little attention, 



despite their importance in many technologies. Understanding these trends and the factors that 

control them would enable and improve the rational design of materials for a variety of 

applications. Further, having a consistent database of oxophilicity and carbophilicity values, as we 

provide here, allows fast, approximate screening of elements for a particular application without 

requiring further calculations. 

Many studies have explored factors that influence the oxophilicity and carbophilicity of 

metals, with the most attention given to transition metals. The widely known d-band model22–24 

suggests that the metal’s d-band center and the matrix coupling element between surface and 

adsorbate electronic states are the prime factors responsible for the adsorption strength of various 

species on metals. This has been corroborated by recent studies20,25,26, as the d-band center and the 

coupling matrix element have proven to be important descriptors when considering the adsorption 

of hydrocarbons and oxygenates. These properties are related to hybridization—which affects 

covalent bonding—and Pauli repulsion. In addition to these properties, some previous studies have 

proposed that properties related to charge transfer, such as the electronegativity17 or reduction 

potential,21 can affect adsorption energies. Electronegativity has been found to be particularly 

useful in explaining trends of bond dissociation energies between metal atoms and O or S.18 

However, these previous studies have not examined trends across both transition metals and main-

group metals, such that a broader understanding has not been achieved. 

Studies on bulk formation energies,27–29 another useful quantifier of oxophilicity and 

carbophilicity, have shown that the formation energies of binary metal compounds (oxides, 

carbides, nitrides, and sulfides) can be dependent on the metal’s properties. For instance, properties 

related to charge transfer such as electronegativity, ionization energies, electron affinity, and 

atomic electric polarizabilities have been shown to be related to the stability of some of these 



binary metallic compounds.27 Another study has shown that the reactivity of surface oxygen atoms 

in oxides is strongly correlated to the average 2p-state energy (𝜀#̅$).30 Also, many machine learning 

(ML) approaches have also been used to predict formation energies of these binary metallic 

compounds with good accuracy31–33. However, most of these models are focused on accuracy and 

are not interpretable enough to draw out conclusions about the underlying physics. 

Because previous studies focused on metals within certain regions of the periodic table 

(mostly transition metals), a more general understanding remains elusive. For instance, the 

correlation between oxophilicity and electronegativity only holds for transition metals (see Figure 

S1). Also, some of these studies only consider bulk metals. For catalysis, it is important to extend 

the scope to include metal surfaces. From our previous work on transition metals,19,20,34,35 we 

discovered that adsorption energies of many species on transition metals, including hydrocarbons 

and oxygenates, can be predicted from just a few electronic properties. These properties include 

the d-band center, d-band filling, number of p electrons, and the matrix coupling element.  

For this present work, we extend our scope of study to include metals from other regions 

of the periodic table. We quantify oxophilicity and carbophilicity using adsorption energies and 

experimental formation energies to capture surface and bulk perspectives respectively. We 

developed a general and interpretable model that accurately predicts and captures oxophilic and 

carbophilic trends within different regions of the periodic table, including transition metals and 

non-transition metals. We found the reduction potential to be a better representation of ionic 

contributions than electronegativity, especially when considering metals from different regions of 

the periodic table. As an application, we applied our model to understand selectivity trends and 

screen for dopants for ethylene epoxidation on silver-based catalysts. 

 



2 Methods 

All experimental formation energies used in this work were extracted from the Open Quantum 

Materials Database (OQMD).36 The reduction potentials 𝑅&, defined as the intrinsic tendency of a 

metal to lose or gain an electron, were compiled from Quantitative Chemical Analysis.37 This 

quantity is measured under standard conditions in an electrochemical cell containing a standard 

hydrogen electrode (SHE) and the metal to be investigated. The coupling element to the d and s 

band were computed as follows: 
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These equations and the d-orbital radii (𝑟))  used in Equation 1 were taken from previous work,38 

with values for metals in groups 12-15 calculated using linear extrapolation. The atom-atom 

distances (𝑑.0) were computed using the carbon-metal distance for CH3 on the top site, as shown 

in our previous work19,20,35. The values of all quantities used in our final model, including matrix 

coupling elements and the reduction potentials, are given in the Supporting Information. 

Calculations. We performed density functional theory (DFT) calculations using the Vienna ab 

initio Simulation Package (VASP).39,40 These calculations involved the use of the PW91 exchange-

correlation functional41 and the projector augmented-wave method.40,42 An energy cut-off of 396 

eV and a 7 x 7 x 1 Monkhorst-Pack43 k-point grid were also used. Each adsorbate (O, C, OH, CH3) 

was positioned in a 3 x 3 cell with four layers of metal with the lowest two layers fixed at their 

bulk positions. We utilized spin polarization for magnetic metals (V, Cr, Mn, Fe, Co, Ni). In 

addition, density of states calculations were carried out by performing a single-point calculation 



with tetrahedral smearing using a smearing width of 0.01 eV. For this calculation, the charge 

density was fixed, and the k-point mesh was increased to 19 x 19 x 1 with 324 total bands. The 

DOS was sampled over intervals on the order of 10-3 eV and the band centers were calculated by 

projecting the wave function on atom-centered spherical harmonics within a cut-off radius and 

taking the first moment of the entire band for a given atom. For metals containing no d electrons 

in core or valence, the d-band center was set to 0; for all others the calculated value was used. For 

metals with a very low d-band center (Zn, Cd and Hg), the d-band center was set to -4 eV, as states 

that are very low in energy should have only a small effect on chemical bonding. The DOS was 

calculated for materials in both the fcc structure and the ground-state structure, and there was little 

difference in the electronic structure properties; therefore, we used electronic structure properties 

from fcc(111) surfaces in all cases. 

 

3 Results & Discussion 
 
3.1. Data. 
 

For solid-state metals, there are two broad ways to measure oxophilicity and carbophilicity. 

When considering surface oxidation, catalysis, and interface reactivity, oxophilicity and 

carbophilicity are often measured by the strength of the interaction between the material’s surface 

and oxygen-containing or carbon-containing species, i.e., adsorption energies. When considering 

bulk oxidation, synthesis of bulk materials, and materials stability in harsh environments, it is more 

useful to consider oxophilicity and carbophilicity as the tendency of materials to form oxides or 

carbides. This can be quantified by formation energies. In this work, we examined both 

perspectives by using O, OH, C, and CH3 adsorption energies as well as oxide and carbide 

formation energies. We calculated O, OH, C, and CH3 adsorption energies on all pure metals 



except lanthanides and actinides (46 total metals). For OH and CH3, we used the fcc(111) surface 

configuration for the metals, with OH and CH3 adsorbed on the top site. This gives an intrinsic 

measure of C-M and O-M bond strengths without any variation due to changes in adsorption site 

or surface geometry. Hence, these quantities may be particularly useful when understanding 

intrinsic properties of metals or when considering alloying a metal into a given structure. 

Meanwhile, for O and C, we used the metals’ ground-state crystal structures, with O and C 

adsorbed on the lowest energy site. This includes changes in adsorption site and crystal structure 

and may be more useful for considering the reactivity of the pure metal surfaces towards atoms.  

The OH and CH3 adsorption energies show a few similarities in their trends across the 

periodic table (Figure 1). For example, adsorption is generally strongest towards the middle-left 

of the periodic table. Also, adsorption generally decreases down the group for alkali metals while 

it increases down the group for alkaline-earth metals. However, there are also clear differences in 

behavior between OH and CH3. For example, OH adsorbs most weakly to Au while CH3 adsorbs 

most weakly to Ag. Further, CH3 adsorption strengthens when moving down the platinum-group 

metals Ni, Pd, Pt, while OH adsorption weakens. These trends are very similar to that of O and C 

across the periodic table (Figure S2). This comes as no surprise as OH and CH3 correlate strongly 

with O and C respectively (Figure S9).44 A notable difference, however, is that adsorption is 

weakest on Hg for O and C, but weakest on Au and Ag for OH and CH3, respectively.  

The quantitative difference between the OH and CH3 adsorption energies represents a 

simple measure of the oxophilicity relative to carbophilicity (Figure 1c). This difference can be 

important in catalytic performance.19 For example, Pt is very carbophilic relative to its 

oxophilicity, which can explain its susceptibility to CO poisoning.45 Metals towards the left of the 

periodic table are highly oxophilic relative to their carbophilicity, and to the right less oxophilic 



than carbophilic. Metals further down in a group are typically less oxophilic relative to their 

carbophilicity, with a few exceptions.  

         
Figure 1 Periodic tables of the DFT-calculated, top-site CH3 and OH adsorption energies and 

their quantitative difference for all metals considered in this work. 
 
 

To compare the two perspectives of oxophilicity and carbophilicity stated above, we 

examined the relationship between the adsorption energies and formation energies of various 

transition metal compounds (see Figure 2). We may expect a strong correlation between adsorption 

energies and formation energies of the same species. This correlation indeed holds in some cases; 

for example, the oxygen adsorption energy and oxide formation energy are strongly correlated (R2 

= 0.80 ± 0.09). However, in other cases, like that of the carbon adsorption energy and the carbide 



formation energy, the correlation is weak (R2 = 0.47 ± 0.36). Therefore, these two definitions can 

indeed be quite distinct in some cases.  

The oxygen adsorption energy has the strongest correlation with all the formation energies, 

especially with the oxide and carbide formation energies (see Figure 2). Because of the strong 

correlation the oxygen adsorption energy has with the oxide formation energy (R2 = 0.80 ± 0.09) 

and carbide formation energy (R2 = 0.83 ± 0.25), we can infer that the surface properties that 

control the adsorption energy of oxygen on metal surfaces would likely also control the formation 

energy of oxides and carbides of the corresponding bulk metals. This suggests it may be possible 

to predict both formation energies and adsorption energies using a single set of properties.  

In addition to the relatively strong correlation between the O adsorption energies and all 

formation energies, formation energies and adsorption energies are more likely to correlate if they 

involve the same or similar species. For example, methyl and carbon adsorption energies have 

almost no correlation with the sulfide, nitride, or oxide formation energies, but have some 

correlation with the carbide formation energy. Similarly, the hydroxyl adsorption energy correlates 

more strongly with the oxide formation energy than the other formation energies. Broadly, 

knowledge of formation energies can give some insight into adsorption energies (and vice versa), 

if care is taken to make the proper comparison.  

We also examined the correlations among adsorption energies and among formation 

energies (Figure S9). Adsorption energies involving the same species, like hydroxyl and oxygen 

or methyl and carbon, correlate strongly with one another. However, those involving different 

species have weak correlations. For example, hydroxyl and carbon; oxygen and methyl; and 

hydroxyl and methyl all have weak correlations. These trends are expected based on previous work 

on transition metals.20,46 Among formation energies, we observe the strongest correlation between 



oxides and nitrides. Sulfides also correlate well with oxide and carbides, while the sulfide-nitride 

and carbide-oxide correlations are weak. 

 
 

Figure 2 Correlations between calculated adsorption energies on metal surfaces and experimental 
formation energy of bulk metal compounds for various chemical species. The oxygen adsorption 
energy has the strongest correlation with all of the formation energies shown. 
 
3.2. Model development.  

To understand what properties control oxophilicity and carbophilicity, we developed a 

general and interpretable predictive model. Because our focus is on generality and interpretability, 

we chose a high-bias and low variance model, the linear model. Linear models are less prone to 

overfitting and have been used to produce interpretable models with relatively small data sets, as 

in our case here. In creating our model, we used data-driven techniques to identify more accurate 

models, and physical intuition to choose between models with similar accuracy. This has been 

successful in creating general models in previous work,19,20,35 and is particularly useful when 

considering multiple adsorbates that can have different adsorption energy ranges and hence 

different error magnitudes. This combined approach helps to mitigate the researcher bias that 

physically generated models alone can bring and also ensures that data-driven models have 



physical justifications. The result is a model that is accurate from a data perspective and highly 

interpretable from a physical perspective. 

 For the feature selection, we examined a total of 40 features (Table S1) for their predictive 

abilities. We first used a brute-force, best-subset approach to select potential feature sets for our 

final model. The brute-force approach for each adsorbate (O, C, OH, CH3) simply involved fitting 

linear models using every possible feature combination up to 6 features within our feature space 

and ranking them from most to least accurate. The most accurate model was somewhat different 

for each adsorbate. To solve this challenge, we considered the physical motivation for each 

potential set of features as well as their predictive capability across the various adsorbates. Hence, 

we selected the most important feature set for our final model from a physical perspective, while 

preserving accuracy. The final feature set included simple combinations of the d-band center 𝜀), 

the adsorbate-surface s coupling 𝑉(8# , the idealized band filling 𝑓, the adsorbate-surface d coupling 

𝑉()# , and the metal’s reduction potential 𝑅$. The model inputs and their physical justification are 

shown in Table S2. Many of the properties in this equation are well-known from previous work in 

solid-state physics and adsorption,23,24,47 which again suggests that the model captures important 

physics. Therefore, a good compromise between accuracy, complexity, generality, and 

interpretability for oxophilicity and carbophilicity is given by 

 
𝐸()8/>?@A = 	𝛼C +	𝛼#𝜀) +	𝛼2𝑉(8# + 𝛼9𝑉(8#𝑓 + 	𝛼E𝑉()# + 𝛼F𝑉()# 𝑓 + 𝛼4𝑅$𝑓     (3) 

 
Qualitatively, we can divide the formation of a chemical bond into contributions from 

hybridization, Pauli repulsion, and charge transfer. The Rpf term accounts for charge transfer (i.e., 

the ionic contribution to bonding), while the other terms capture the covalent contributions to 

bonding. Increasing the coupling between the adsorbate’s electronic states and the metal’s states 



increases the amount of attraction by hybridization, as well as the amount of Pauli repulsion. 

Repulsion is also expected to increase as bands become more full, as predicted by molecular orbital 

theory. The balance between these factors manifests in the fitting parameters, as discussed below. 

While most previous work on transition metals focuses heavily on the d-band, we found in previous 

work that the s and p electrons can affect adsorption on transition metals.19,48 Indeed, the d-band 

model envisions adsorbate states first coupling to surface s and p states, followed by interaction 

with the d states. When considering main-group metals in addition to transition metals, it is 

expected that the sp band will contribute even more significantly to the variations in adsorption 

energies, as shown in the model terms that include Vas2. 

We applied this model to the adsorption energies of O, OH, C, and CH3 (Figure 3). The 

model parameters for the fits can be found in Table 1. The mean absolute error (MAE) and root 

mean squared percent error (RMSPE) are: for O, 0.43 eV and 8.7%; for OH, 0.23 eV and 8.5%, 

for C, 0.37 eV and 8.2%; and for CH3: 0.17 eV and 14.9%. Adsorbates that bind more strongly to 

the surface—like C and O—have adsorption energies with larger magnitudes and larger variation, 

and hence they have a higher MAE. However, the RMSPE is much more constant, suggesting the 

model is roughly equally accurate over the various adsorbates. The overall MAE and RMSPE were 

0.30 eV and 10.6%. We compared this current model with our previously developed model for 

transition metals20 and found our current model to be an improvement. For all species only on 

transition metals, the MAE/RMSPE are 0.16 eV and 7.34% for our current model and 0.22 eV and 

10.05% for the previous model. We attribute this improvement largely to the inclusion of the ionic 

term Rpƒ. Our model is also comparable in accuracy with other ML models for transition metals 

even though we consider a wider array of metals.49 



 
Figure 3 Parity plot between DFT-calculated adsorption energies and model-predicted adsorption 
energies for O, OH, C, CH3 using Equation 3. MAEs and RMSPEs are given for each species.  
 

To ensure our model is not overfitting, we varied the model complexity from one to six terms and 

performed 25%-75% test-train splits. For each number of terms, we chose the subset of terms from 

Equation 3 that gave the least error, performed one hundred test-train splits, and then averaged the 

results (Figure 4). We used the RMSPE because it is less biased towards imbalance in dataset 

ranges. The results show that the full six-term model (Equation 3) is not overfitting, as the test and 

train errors are similar, and the test error is still lower than that of a five-term model.  

 
Figure 4 Train and test errors for models with 1 to 6 terms, applied to C, O, CH3, and OH, 

averaged over a hundred test-train splits. The six-term model (Equation 3) is not overfitting on 
the data. 

 



We also applied our model to experimental metal-oxide formation energies. As shown in Figure 

5, with an MAE of 0.38 and an R2 of 0.82, our model does well in predicting and capturing trends 

in oxide formation energies. The model weights are shown in Table 1. While Figure 5 shows some 

slight non-linearity, suggesting that slightly higher accuracy is possible using a simple nonlinear 

model, we use the linear model to preserve high interpretability and easy comparison to the 

adsorption energy models. 

 
Figure 5 Parity plot between experimental oxide formation energies and model predicted oxide 
formation energies (Equation 3). 
 
The model weights for O, OH, and the oxide all have the same sign (see Table 1). This suggests 

that oxophilicity quantified using adsorption energies and oxophilicity quantified using formation 

energies are qualitatively similar, as suggested by the correlation between these quantities in 

Figure 2. We did apply our model to experimental carbide formation energies and found that the 

model weights had the same signs as O and OH, as also suggested in Figure 2. However, very few 

metal carbides have been synthesized experimentally, and this very small dataset makes it difficult 

to be sure the model is reliable in this case. 

 
Table 1: Model weights for Equation 3 for predicting adsorption energies and 

formation energies. 



 α1 α2 α3 α4 α5 α6 α7 
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O Adsorption energy -4.33 -0.41 -0.13 0.07 -0.92 0.62 1.01 
OH Adsorption energy -2.27 -0.15 -0.06 0.05 -0.52 0.25 0.5 
C Adsorption energy -2.86 -0.55 -0.17 0.12 -0.18 -1.94 0.72 
CH3 Adsorption energy -0.46 -0.08 -0.06 0.03 -0.14 -0.18 0.02 
Oxide formation energy -0.06 -0.03 -0.08 0.04 -0.64 0.69 0.75 
metal-dopant selectivity 58.11 2.97 -1.52 0.90 -18.66 32.37 -12.64 

 

3.3. Insights from our model.  

Our model gives simple, clear insight into how surface properties affect adsorption. For 

instance, the higher the Rpƒ (which accounts for the net ionic contributions between the metal and 

the adsorbate), the weaker the 𝐸()8/>?@A. This makes sense conceptually as metals with higher 

reduction potentials have a stronger affinity for electrons, hindering charge transfer from the metal 

to the adsorbate. This is similar to the effect of variations in electronegativity,17,18,28 as metals that 

are highly electronegative tend to have weaker 𝐸()8/>?@A. The reduction potential typically 

increases from left to right across the periodic table (Figure S8), consistent with the generally 

weaker adsorption on the right side of the periodic table. Based on single-term models and the 

fitting parameters, Vad2 is generally the most important term for energetic trends.  The behavior of 

𝜀) is very consistent with the d-band model22–24 and previous work19,20: A higher 𝜀) leads to 

stronger 𝐸()8/>?@A, as fewer adsorbate-surface antibonding states are occupied. For example, this 

explains why Pt adsorbs OH more strongly than Pd and more readily forms an oxide, as Pt has a 

higher 𝜀). Generally, 𝜀) increases from right to left across the periodic table, which explains the 

relatively stronger adsorption towards the left side of the periodic table.  

While the above terms all have the same sign in all of the models (Table 1), the Vad2ƒ term 

is attractive (negative) for C-containing species but repulsive (positive) for O-containing species. 



We attribute this to the deeper valence states of the O atom, or equivalently to its lone pair, which 

will contribute more Pauli repulsion, especially for metals with a more full band.20 The Vad2 term 

is negative for all models, suggesting that this term captures attractive covalent interactions 

between metal and adsorbate. Hence, the major distinction between oxophilicity and carbophilicity 

in the d-block is the dependence on Vad2ƒ, such that an increase in the d coupling yields relatively 

less oxophilicity and more carbophilicity. This helps to explain why Cu is more carbophilic than 

Zn, but Zn more oxophilic than Cu. It also explains why Ag is more oxophilic than Au, but Au 

more carbophilic than Ag. In each pair, Cu and Au have a larger Vad2ƒ which is attractive for 

carbon-containing species but repulsive for oxygen-containing species. 

  For metals without any d electrons at all (Li, Be, Na, Mg, Al, K, Ca), the terms involving 

d electrons go to 0, and Equation 3 reduces to Equation 4. Therefore, adsorption on these metals 

is characterized by the metal’s ionic properties and the coupling strength between the adsorbate 

and the metal’s s states.  

 
𝐸()8/>?@A = 	𝛼C +	𝛼2𝑉(8# + 𝛼9𝑉(8#𝑓 + 𝛼4𝑅$𝑓																	     (4) 

 
Equation 4 explains why Li is more oxophilic than Al, but less carbophilic. Li has a significantly 

lower Rpƒ value than Al, leading to higher oxophilicity due to the large value of α7 for 

O/OH/oxides. However, in the case of carbophilicity, the value of α7 is quite small, making the 

Vas2ƒ a more dominant term. A higher Vas2ƒ leads to weaker bonding. Hence, Al is more 

carbophilic than Li because Al has a lower Vas2ƒ. 

Both oxophilicity and carbophilicity decrease down the group for alkali metals but increase 

down the group for alkaline-earth metals. This trend can be seen in Figure 1, and it can be directly 

explained by Vas2 (Figure S10).  Generally, unlike Vad2, Vas2 increases from left to right within the 



row of each block and decreases down the groups (Figure S4). The value of Vas2f also has different 

implications depending on how filled the valence orbital of the metal is. For instance, we expect 

significant repulsion between a filled band and the adsorbate states. Hence, as Vas2f increases, 

attractive hybridization dominates for the alkali metals, but Pauli repulsion becomes important for 

the alkaline-earth metals. Additionally, the Rpƒ term also captures the adsorption trends of 

alkaline-earth metals (Rpƒ decreases down the group translating into stronger adsorption) but fails 

to capture the adsorption trends of the alkali metals. 

3.4. Application 
  
  Previous work2–4 has shown that the selectivity of metal catalysts towards ethylene oxide 

(the desired product) in ethylene epoxidation can be improved by adding metal dopants. To 

promote selectivity, it has been suggested that the metal dopant should bind strongly to oxygen 

relative to carbon but should not readily form an oxide.2,19 To test this as a design principle, we 

subtracted the methyl adsorption energy from the hydroxyl adsorption energy, and also examined 

the oxide formation energy. These factors can indeed explain previously calculated selectivities 

for various dopants added to Ag(100) (Figure 6a). In particular, metals with weak oxide formation 

energies but strong hydroxyl adsorption (relative to methyl) tend to give higher selectivity. Next, 

we applied this rationale to screen other metal dopants for ethylene epoxidation, as shown in Figure 

6b. We observe some potential candidates such as alkali metals, Tl, Pb, and Bi. Some of these 

candidates are consistent with literature,50–52 as alkali metals have been shown to improve the 

selectivity of Ag for this reaction. This fast screening shows the utility of having a pre-computed 

database of different measures of oxophilicity and carbophilicity, as given in this work, for quickly 

identifying promising candidates for a given application. 



We have thus established the interconnected relationship between the metal dopant’s 

electronic properties, its oxophilic/carbophilic tendencies, and the calculated selectivity for 

ethylene epoxidation as shown in Figure 6c (blue arrow). However, understanding the direct 

relationship between the dopant’s electronic properties and its selectivity could be very useful 

(Figure 6c, red arrow). This relationship may allow for further improvements of these doped-metal 

catalysts based on rational design. To find this relationship, we fit our model (Equation 3) directly 

to the silver-dopant selectivities as shown in Figure 6d. With an R2 value of 0.70, we see that our 

model is effective in predicting selectivity. After careful investigation of the model weights (Table 

1), we found that Vad2ƒ was the dominant term for metals that contain d electrons (either in their 

core or valence shell) and thus is primarily responsible for trends in the dopant’s selectivity. This 

is consistent with the finding that Vad2ƒ is the major term that controls oxophilicity relative to 

carbophilicity. For s block metals, Vas2ƒ controls trends in selectivity. Hence, transition metals 

with high Vad2ƒ and s block metals with low Vas2ƒ are good dopant candidates for this reaction. 



 
Figure 6. (a) Calculated selectivities2 for ethylene epoxidation on Ag(100) doped with various 
metals as a function of the difference in methyl and hydroxyl binding strengths and oxide 
formation energies. The metals for which we have data are shown, with selectivities interpolated 
and shown as a contour plot. Dopants that are more oxophilic than carbophilic but do not readily 
form oxides have higher selectivities. (b) Screening additional metal dopants using the contour 
plot from Figure 6a. Some promising candidates were identified, such as alkali metals, Tl, Pb, and 
Bi. (c) The interconnected relationship between the metal dopant’s electronic properties, its 
oxophilic/carbophilic tendencies, and its selectivity for ethylene epoxidation has been established 
(blue arrow). To improve catalytic design, it might be useful to establish the direct relationship 
between the dopant’s electronic properties and its selectivity (red arrow). (d) Parity plot between 
the actual selectivities and the model-predicted selectivities. 
 
 
Conclusion 
 

We developed a general, interpretable model that accurately explains and predicts 

oxophilicity and carbophilicity of transition metals and main group metals all together. The model 

is accurate for methyl, carbon, oxygen, and hydroxyl adsorption energies, as well as oxide 

formation energies, and explains periodic trends for these quantities. The model has an ionic term 

(Rpf), as well as attractive covalent terms (Vas2, Vad2), a repulsive term (Vas2f), and a term that is 



attractive for species without a lone pair and repulsive for species with a lone pair (Vad2f). Hence, 

in all cases, a lower Rpf, higher Vas2, lower Vas2f, and higher Vad2 lead to stronger bonding, while 

a high Vad2ƒ leads to higher carbophilicity but weaker oxophilicity. The model has good accuracy 

and explains trends across the periodic table. We showed the utility of our model by first 

establishing the inter-connected relationship between a metal dopant’s electronic properties, its 

oxophilic/carbophilic tendencies, and its selectivity for ethylene epoxidation. Next, with our 

model, we established a direct relationship between the metal dopant’s electronic properties and 

its selectivity for ethylene epoxidation. We found that transition metals with high Vad2ƒ and s block 

metals with low Vas2ƒ are good dopant candidates for this reaction. 
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