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Abstract

The lack of conformational sampling in virtual screening projects can lead to ineffi-

cient results because many of the potential drugs may not be able to bind to the target

protein during the static docking simulations. Here, we performed ensemble dock-

ing for around 2000 FDA approved drugs with the RNA-dependent RNA polymerase

(RdRp) protein of SARS-CoV-2 as target. The representative protein structures were

generated by clustering classical molecular dynamics trajectories, which were evolved

using three solvent scenarios, namely, pure water and benzene/water and phenol/water

mixtures. The introduction of dynamic effects in the theoretical model showed to im-

prove the docking results in terms of the number of strong binders and binding sites in

the protein. Some of the discovered pockets were found only for the cosolvent simula-

tions, where the nonpolar probes induced local conformational changes in the protein

that lead to the opening of transient pockets. In addition, the selection of the ligands

based on a combination of the binding free energy and binding free energy gap between
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the best two poses for each ligand provided more suitable binders than the selection

of ligands based solely on one of the criteria. The application of cosolvent molecular

dynamics to enhance the sampling of the configurational space is expected to improve

the efficacy of virtual screening campaigns of future drug discovery projects.

Introduction

Proteins are ubiquitous building blocks playing a critical role in the reproduction, metabolism,

and regulation of living organisms and viruses. Understanding and manipulating the way

proteins interact with their surrounding is, therefore, of utmost interest from both a bio-

logical and a medical point of view. Currently, the most important method to manipulate

the function of proteins is through the administering of drugs. For this reason, there exists

a growing interest in identifying new binders for a wide variety of proteins in the hopes of

treating a number of different sicknesses.1–7 In fact, 78 % of the biological drugs approved

by the United States Food and Drug Administration (FDA) have clear protein molecular

targets.8 Therefore, it is not surprising that scientists turned to them once again, when faced

with the new and immediate challenges of the coronavirus disease 2019 (COVID-19).

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) continues to claim thousands of lives every day more than a year after its

outbreak.9 However, the knowledge and the developed tools to fight against it are vastly

more potent than they were a year before.10 Antiviral drugs targeting the proteins vital to

the reproduction of SARS-CoV-2 have been the most important tools,11 aside from vaccines

which are being used as preventative measures. For example, Remdesivir, one of the most

widely used antiviral drugs against SARS-CoV-2 around the world,12 targets the RNA-

dependent RNA polymerase (RdRp) protein of the virus.13 Furthermore, given the urgency of

developing an effective treatment, most attempts to find new inhibitor substances were in fact

drug repurposing studies, targeting the virus’s RdRp14–18 or other important proteins.19–22

The RdRp protein is an especially promising drug target as it is responsible for the replication
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of the viral RNA inside the host cell,23 and it is highly similar to the RdRp of SARS-

CoV,24 which already has a number of verified inhibitors.25 In addition, its high-quality

three dimensional (3D) structure has been available from as early as April 2020.26 In large

part, due to the urgent nature of the COVID-19 pandemic, most of the above cited research

projects relied heavily, or even exclusively, on computational techniques for the discovery of

the potential inhibitors, due to the cost and time efficiency of such methods.

High-throughput screening enables the routinely evaluation of thousands of substances in

a week.27 This tremendous efficacy is often supported by the development and application of

innovative computational methods, which became more useful since the advent of structure-

based drug design, where potential drugs are created or found based on the 3D structure of

the protein target.28,29 Although such target structures were initially only obtainable through

costly and cumbersome experimental methods, such as X-ray crystallography30 or nuclear

magnetic resonance (NMR) spectroscopy,31 they are nowadays much more readily available

due to the gradual improvement of existing methods, the appearance of new experimental

methods, such as cryo-electron microscopy,32 and the development of recent computational

techniques, such as homology modeling.33 Taking advantage of the quickly growing body of

available genomic data, computational tools capable of predicting protein structures from

mere amino acid sequence information have also been developed.34–36 By employing one (or

a combination) of the above techniques, high-quality structures are available for a larger

number of protein targets than ever before.

The current challenge to computational chemists is therefore how to best utilise the

available structural information. The computational methods developed for structure-based

drug design fall into two main categories: de novo design methods construct new, tailored

ligands, while docking methods select ligands complimentary to the target from the ex-

isting compound space.37 Although different methodologies have been widely employed to

investigate the binding of ligands to proteins, such as Monte Carlo techniques38,39 and Gaus-

sian accelerated molecular dynamics (MD),40,41 the vast majority of theoretical drug design
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investigations rely on docking calculations due to their computational efficiency. Among

the docking methods, virtual screening (VS) has emerged as a particularly successful tech-

nique.7,42 This procedure can be thought of as a computational extension to high-throughput

screening, where a large number of compounds are docked to the target protein structure in

silico. Traditionally, VS campaigns have been carried out utilising a single, experimentally

determined protein structure, often in the crystallised form.37,43 However, the deficiencies of

using only a single crystallised protein structure has been recently recognised.37,43–46 Firstly,

the structure of the crystallised protein often differs significantly from the conformations

that the protein adopts in vivo. Secondly, even if the crystal structure is representative of

the conformation most often visited in solution, a single structure cannot account for the

dynamics of protein motion.

Different theoretical models that consider the importance of protein motion have been

developed at the cost of computational efficiency, e.g., the induced-fit model of ligand dock-

ing,47,48 where the structure of the protein may change during ligand uptake, or the model

of conformational selection,49–51 which views the target protein as a dynamic object even in

the absence of ligands. The need to take protein flexibility and motion into account became

even clearer with the discovery of cryptic or hidden pocket structures.52–54 The characteristic

property of these pockets is that they only appear in the presence of the appropriate ligand,

while their existence is not obvious from the equilibrium structure of the protein. The exact

mechanism of their formation is not yet clear, although some combination of induced-fit and

conformational selection has been hypothesised.53 The discovery and theoretical description

of such pockets are hindered by the fact that their opening often requires large scale re-

arrangements of the protein structure, events that are traditionally hard to predict with

computational techniques.55

With the importance of protein dynamics gaining wider recognition, new and more elab-

orate methods are appearing which aim to account for this phenomenon. On the one hand,

some of the modern computational docking programs, such as AutoDock Vina,56 can treat
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a selected number of protein residues as flexible at the cost of increased calculation times.

This method is well suited to study a previously known, specific binding site of the protein.

However it cannot account for larger structural changes of the protein and is limited to a

handful of flexible residues due to its computational requirements. On the other hand, the

family of ensemble docking techniques utilises traditional (rigid protein) docking calculations

in combination with an ensemble of protein conformations to account for the flexibility of the

target.37,43 The careful selection of the structures of the ensemble can enable the description

of large scale conformational changes and to the discovery of new cryptic pockets.51,54,55

The main challenge for these methods is the generation of the protein structure ensemble,

which can be achieved experimentally by using different crystallised structures,37,57,58 or

computationally by, e.g., conformational space searches,59 neural networks60 and MD.43,61

MD is an especially promising avenue, after all it has been designed for the very purpose of

efficiently sampling the conformational space of proteins and other large molecules. However,

one of the most important obstacles of MD calculations is the extremely slow convergence of

the calculated trajectories,43 which precludes the population of rarely visited conformations.

Even with highly specialised codes and computers the longest timescales reachable are in

the range of milliseconds.62 In order to be able to sample rare events, a number of modified

MD techniques have been developed. The first group of these is the enhanced sampling

methods, where some unphysical bias is introduced into the simulation in order to encourage

the sampling of otherwise unlikely conformations. Some of the most popular enhanced-

sampling methods in the context of cryptic pocket discovery are umbrella sampling,63 steered

MD,64 metadynamics,65 and replica exchange MD,66 among others. A completely separate

approach for the sampling of rarely visited conformations harboring cryptic pockets is that of

the cosolvent methods. The main idea behind these frameworks is to replace the traditional

water solvent in MD simulations with a mixture of water and some other cosolvent. The

oftentimes hydrophobic or amphipatic cosolvent probes can then interact with the protein

and occasionally induce conformational changes or stabilise some conformations where a

5



cryptic pocket is open. Cosolvent methods have been successfully used to identify cryptic

sites in a number of targets.51,54,67–72

The primary aim of the present work is to investigate the effect of protein dynamics in

the results of a VS campaign. The ensemble of protein structures is obtained via MD sim-

ulations. Further sampling is achieved by cosolvent trajectories where water/benzene and

water/phenol mixtures are employed. Recognising the severity of the COVID-19 pandemic,

the calculations are carried out on the RdRp protein of SARS-CoV-2 and a set of FDA

approved small molecule drugs, in the hopes of contributing to the generation of knowledge

necessary to develop effective treatments against this virus. We show that the introduction

of protein dynamics in VS significantly improves the chances to find suitable binders and

unveil potential new binding sites in the protein. This is especially relevant considering

the significant amount of work published in the last year aimed to discover efficient antivi-

ral agents against the SARS-CoV-2 virus based on static docking calculations that neglect

dynamic effects.

Computational Details

Setup and Molecular Dynamics Simulations

The SARS-CoV-2 RdRp protein complex was chosen as the target of our investigations. In

its active form it is composed of three domains, namely, the nonstructural proteins (NSP) 7, 8

and 12 of SARS-CoV-2. Its active site is located in a deep groove at the boundary of the palm

and thumb domains of its NSP12 unit,14 and is highly similar to that of the analogous protein

of the SARS-CoV.25 Its simulation ready structure was obtained from the website of D. E.

Shaw Research,73 where extensive MD simulations have already been carried out for it. In

Reference 14, the authors note that two zinc ions are necessary for the structural integrity of

the protein. These ions were however not found in the structures and trajectories downloaded

from D. E. Shaw Research. After numerous failed attempts at stabilising these zinc ions in
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their bound positions with restraining potentials and gradual heating, their inclusion was

rejected in favor of the original D. E. Shaw structure. Additionally, the crystal structure

in its apo form determined with cryo-electron microscopy was also downloaded from the

Protein Data Bank website (6M71)74 to carry out docking calculations, as explained below.

The MD calculations were carried out with the Amber 18 program package,75 according

to the following protocol. The protein was described by the ff14SB force field,76 water by

the TIP3P model,77 the cosolvents benzene and phenol by the general Amber force field

for organic molecules,78 and the sodium ions by suitable Amber force field parameters.79

Three types of solvent boxes were prepared for the simulations: a simple water one and

two with either benzene or phenol as cosolvent. The cosolvent boxes were built with the

help of the packmol program.80 The concentration of the cosolvents were set to 10 v/v %.

In the case of benzene, severe clustering of the cosolvent molecules was observed during

the MD simulations when the default force field parameters were used. To circumvent this

issue, scripts included in the ParmEd distribution81 were utilised to introduce Lennard–Jones

potentials for the C atoms of the benzene molecules with parameter values of γ = 0.00036

kcal/mol and Rmin = 7.12719 Å (the default values used in ParmEd). After this modification

was made, no clustering of the benzene molecules was observed during the simulations.

The protein structures were solvated using the tleap program of Amber 1875 in octahe-

dral solvent boxes, where a distance of at least 12 Å was left between any atom of the protein

and all sides of the solvent box. The charge of the system was neutralised with sodium ions.

During the simulations, the particle-mesh Ewald method82 with a grid spacing of 1.0 Å was

used to compute the electrostatic interactions and a 12 Å cutoff for the nonbonded interac-

tions was chosen. The solvated systems were first minimised for 1000 gradient descent steps

followed by 1000 conjugate gradient steps. Next, the heating of the systems to 300 K were

performed during a 1 ns simulation with the Langevin thermostat (collision frequency of 1.0

ps−1) and with a 2.0 fs timestep in the NVT ensemble. Finally, production simulations were

carried out at 300 K and 1 bar pressure using the Langevin thermostat (collision frequency
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of 1.0 ps−1) and Berendsen barostat (relaxation time of 2.0 ps) in the NPT ensemble, using

a timestep of 2.0 fs. Specifically 3 replicas of 200 ns each were run for the production calcu-

lation for each solvent. The last 2 simulations for each solvent were started from a random

equilibrated frame of the first simulation for that solvent, with the velocities of all particles

randomised according to the Boltzmann distribution at 300 K. The production calculations

were run with GPU acceleration, using the CUDA version of the pmemd program of Amber

18.83

For the clustering of the MD trajectories the cpptraj program84 of Amber 18 was utilised.

A density based clustering algorithm (chosen with the dbscan keyword of cpptraj) was

employed, with the parameters k (unitless) and ε set to 4 and 1.1 Å, respectively, as will

be explained below. For each type of solvent the equilibrated part of the first production

simulation and the two additional replicas were concatenated and the clustering was carried

out separately for each solvent. Before clustering, the structures in every frame were aligned

to each other by their alpha carbon atoms. The clustering was performed using the RMSD

values of the alpha carbon atoms as the distance metric between the conformations. A total

of 19 cluster representatives were obtained with 13 structures coming from the trajectory

with water as the solvent, while the benzene and phenol cosolvent trajectories yielded 3

cluster representatives each.

Docking Calculations

The set of FDA approved drugs were downloaded from the ZINC database85 in the mol2

format. This set is a popular choice for drug repurposing studies16–18 and, with approxi-

mately 2000 contained ligands, it was feasible to perform docking calculations for all protein

conformation/ligand pairs. From this set, 1957 ligand structures were converted to the pdb

format, necessary for docking with AutoDock Vina, with the openbabel program.86 The 19

cluster representative protein structures along with the apo crystal structure were aligned

to each other by the RMSD distances between their alpha carbons. The protein and ligand
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structures were prepared for docking, relying on the scripts included in the AutoDockTools

4 distribution.87 The same docking region, generated by AutoDockTools 4, was used for

all docking calculations, which encompassed the whole protein structure. To carry out the

docking calculations, AutoDock Vina was run with the default command line options, except

for the exhaustiveness option which was increased to 24, as suggested by the authors for

large docking regions, and the num modes option which was set to 20 to obtain the 20 best

poses for each ligand. The parallel execution of the docking calculations were managed with

in-house scripts. Attending to the results of the docking calculations the best ligands binding

to each discovered pocket were selected based on two different criteria, namely, binding free

energy and binding free energy gap between the two best poses of each ligand, which will be

discussed below.

Pocket Description

The binding sites of the protein, discovered through computational docking calculations,

were analysed with the mdpocket program,88 part of the fpocket distribution. To this end,

the 19 cluster representative protein structures were aligned to each other by their alpha

carbons and concatenated to create a mock trajectory readable by mdpocket. The regions

of space which the discovered binding pockets occupy were selected manually, by inspecting

the poses of the ligands binding to the pocket in question. Based on the suggestions of the

mdpocket authors, large regions were selected for each pocket, encompassing all or almost

all docked ligand poses. With the protein structures concatenated and the binding regions

selected, mdpocket was run with the -S option, instructing the program to score pockets

by their druggability. Among its results mdpocket provides a number of pocket descriptors

calculated for each frame of the supplied trajectory. From these descriptors, the pocket

volume is utilised in the present study to discuss of stability of the pockets.
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Results and Discussion

Equilibration of the Trajectories

In this section, first the equilibration of the protein during the various (cosolvent) MD tra-

jectories is examined by plotting the RMSD of the protein structure from its initial state

throughout the simulated time. On top of the usual task of selecting the equilibrated part of

each trajectory to be considered for further analysis, these plots are useful to detect potential

differences in the equilibration process between the water solvent and the cosolvent trajec-

tories. On Figure 1A,C,E such plots obtained for the first replica of 200 ns of each solvent

type are shown. The protein structures are well equilibrated after 50 ns of simulation time in

water and in benezene/water solvents. In the case of phenol/water, significant variations are

still observed after 100 ns, a fact that could indicate that the cosolvent probes have stabilised

some protein conformations that are not often visited with water as the solvent, and that

are farther from the original protein conformation than those appearing frequently in water

based simulations. This is further investigated by plotting the average residue-wise RMSD

values in order to monitor the mobility of the different regions of the protein. This data is

shown on Figure 1B,D,F for the first production replicas of all solvents. The initial fraction

of the trajectories where the RMSD suffers a strong increase, which correspond to 40, 20 and

10 ns for water, benzene/water and phenol/water, respectively, was not considered. To make

the plots more readable, the moving average of residue mobility calculated with a symmetric

window with a width of nine residues is plotted. The numbering of the residues on this

figure simply describes the order in which Amber18 considers them, therefore these numbers

cannot be straightforwardly compared with another numbering published in the literature.

At first glance the three plotted curves of Figure 1B,D,F appear fairly similar: they show-

case higher mobility of the terminal residues and lower average RMSD values for residues

between 200 and 800. The section between residues 600 and 800 (the interface of the palm

and thumb domains of the core NSP12 unit) is roughly where the active site of the protein
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Figure 1: On the left side (panels A, C and E), the evolution of the RMSD distance of the
protein from the starting conformation during the MD trajectories. The first replica for
each solvent is plotted. On the right (panels B, D and F), average RMSD values for the
protein residues in the three different solvent trajectories. The transparently coloured region
around the average values represents the standard deviation throughout the simulation. The
first replica for each solvent is plotted. The location of the NSP domains of the protein is
indicated by the dashed vertical lines.
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is located. Since the conformation of the residues around the active site is crucial for the

activity of the protein, it is not surprising that these regions are more stable in the absence

of substrates, than some other less critical areas. Upon more careful inspection, some dif-

ferences between the three mobility plots can be identified. Most notable are the unusually

high RMSD values around residues 870-880 observed in the trajectory with phenol as the

cosolvent. These residues correspond to the terminal regions of the NSP12 and NSP7 units

of the RdRp complex and, therefore, their higher mobility in itself is not surprising. The fact

that the RMSD values are outstandingly high only in the phenol trajectory could indicate

some occasional interaction of these residues with the phenol probes, and could explain the

higher RMSD observed in Figure 1E after 100 ns of simulation. A further difference between

the three curves is the larger variance of the per residue RMSD values observed when the

cosolvent MD trajectories are considered. Firstly, this manifest itself in the slightly larger

standard deviations shown for these trajectories, especially around residues 1100-1192, where

larger standard deviation areas can be observed for the cosolvent trajectories with similar

average mobility for all three trajectories. Secondly, the differences between the average

RMSD values between neighboring residues are also in general larger for the two cosolvent

trajectories. This results in much deeper valleys and higher, more pronounced spikes in

Figure 1D,F than in Figure 1B. This latter observation can lead one to assume that the

effects of the cosolvent probes are quite local in nature: they can significantly change the

conformation of the handful of residues they are directly interacting with but leave the larger

scale structure of the protein more or less intact.

Selection of Representative Protein Conformations

As mentioned above, the dbscan algorithm of cpptraj is used to perform the clustering

of the trajectories. The clustering is carried out separately for the three solvents, with the

three replicas of each of them concatenated and treated as a single trajectory, but excluding

the first 40, 20 and 10 ns for water, benzene/water and phenol/water, respectively, where
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the RMSD of the protein is not stabilized. In order to carry out a successful clustering of

the trajectories, first the k and ε parameters of the density based clustering algorithm have

to be tuned. On top of performing this tuning of the parameters, the effects of considering

only the alpha carbon atoms for the RMSD calculations instead of all heavy atoms of the

protein are also evaluated. Finally, possible redundancies in the set of representative protein

structures are investigated.

The tuning of the parameters of the dbscan algorithm is performed by systematically

varying the values for these parameters to see which combination yields the most optimal

clustering. The computation of the RMSD distances between all frames of a trajectory is

much more demanding if on top of the alpha carbons, all other heavy atoms are considered

as well. To speed up these computations, the technique of sieving is utilised: only every

other frame is considered explicitly during the clustering, the remaining frames are simply

added to the cluster with the cluster representative most similar to them. To measure the

quality of the clustering, four metrics are utilised. Two of these, namely the Davies–Bouldin

index (DBI) and the pseudo-F statistic (pSF), aim to compare the intra- and intercluster

variances, with a small intracluster and large intercluster variance indicating good quality

clustering.89 Since both of these scores are heavily influenced by the number of obtained

clusters, the comparison of their absolute values between different MD trajectories has limited

meaning. Instead, the trends arising in these metrics through the systematic variation of the

clustering parameters can be interpreted to optimise these parameters. At this point it is

useful to mention that low values of DBI and high values of pSF are desirable. The other two

descriptors utilised to describe the quality of the clustering are the number of noise frames

(frames not included in any cluster), and the number of clusters defined by the algorithm.

The number of noise frames should clearly be kept low to avoid missing any important

conformations only because it is visited very rarely and is therefore considered an outlier

by the algorithm. Finally, while a high number of clusters is desirable, as it can result in a

wider variety of protein conformations, the computational limitations of performing explicit
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docking calculations to each representative conformation with thousands of ligands should

be kept in mind.

On Figure 2, the descriptors of the water solvated trajectory clustering can be seen for

the case when only the alpha carbons are considered during the RMSD distance calculations.

As it can be seen, considering ε values larger than 1.2 Å leads to a single obtained cluster

(Figure 2D), for which the clustering descriptor metrics cannot provide a meaningful value.

Since a single cluster is clearly not ideal, these large ε values do not need to be considered

during the search for the optimal parameters. Focusing instead on parameter k, the most

significant differences between the different values for this parameter can be discovered on

the pSF bahaviour (Figure 2B). Here, the curves with k= 4 or 6, reaching their peak at

ε=1.1 Å, are clearly superior to the other two. Contrary, the variation of k has much more

limited effects on DBI, as shown in Figure 2A. In fact, all DBI curves are more or less

constant if ε is smaller than or equal to 1.1 Å, at which point the DBI values drop rapidly

and become zero at 1.2 Å. Considering the behaviour of the pSF and DBI descriptors, values

of ε=1.1 Å and k=4 are promising candidates to be the optimal choice. Further advantages

of this choice can be seen by looking at Figure 2C,D: the number of noise frames stay below

2 %, while a reasonable number of clusters (thirteen) is obtained. The thirteen clusters

resulting in thirteen representative protein conformations is deemed suitable number both

because docking to these conformations represents a manageable computational challenge,

and because similar numbers of clusters have been reported in the literature for comparable

MD trajectories.1,2

As a comparison, similar descriptors are calculated for the clusterings when all heavy

atoms are considered during the RMSD calculations. The trends observed in this case look

very similar to those discussed when only the alpha carbons are considered, therefore these

plots are omitted. The only notable difference is that significantly larger ε values are needed

to obtain similar results as in the case when only the alpha carbons are considered. This

phenomena can be explained if higher mobility is assumed for the non-backbone heavy
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atoms of the protein in comparison to the alpha carbons. Since no clear advantage of the all

heavy atom clustering is found, the significantly increased computational costs of considering

much more atoms for the RMSD calculations make this type of clustering an inferior option

compared to considering only the alpha carbons.

The performance of the clustering algorithm is also examined on the benzene cosolvent

trajectory, with only the alpha carbons considered for the RMSD distance calculations, to

investigate any potential differences in the quality of the clustering due to the presence of

cosolvent probes during the simulation. The same descriptors as in the case of the water

solvated trajectory are plotted on Figure 3. Contrary to the water trajectory, in this case

the number of clusters does not decrease to a single one at higher ε values, but instead is

saturated at three, see Figure 3D. As a consequence, the DBI and pSF values do not vanish

for these values of ε (Figure 3A,B). Instead, a sudden shift can be observed between ε=1.0 Å

and 1.1 Å for both metrics, while for values higher or lower than these, the curves are more

or less constant. The facts that this shift is occurring near ε = 1.1 Å, and that this value is

already in the more favorable interval for both metric curves (small values of DBI and high

values of pSF), highlight the attractiveness of choosing 1.1 Å as the value of the ε parameter.

The pSF value at ε = 1.1 Å of the curve associated with k = 4 is again one of the best along

with k = 5. Figure 3C,D reveals no surprises: the number of noise frames is negligible

with the parameter values being considered, while the number of clusters stagnates around

the reasonable value of 3 and increases sharply only for ε values lower than 1.0 Å. Similar

plots have been created for the trajectory with phenol as the cosolvent, however it showed

very similar characteristics as this one, therefore it is not displayed here. To summarise,

the clustering parameters values of ε = 1.1 Å and k=4 prove to be ideal choices, as they

result in a clustering that is suitable for our purposes for all types of trajectories considered.

The resulting clustering yielded 19 total representative protein conformations (13 from the

water, 3 from the benzene/water and 3 from the phenol/water trajectories), which were

utilized during the subsequent ensemble docking calculations.
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k=7
k=6
k=5
k=4

p
S

F
[-

]

ε [Å]
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Since the clustering of the trajectories obtained with different solvents is carried out in-

dependently from each other, it is possible that some cluster representatives coming from

different trajectories are quite similar to each other. This redundancy would clearly not be

optimal as it increases the computational requirements of the ensemble docking calculations

without providing much additional information. It is worth investigating this redundancy as

its presence would indicate that the cosolvent simulations do not provide protein conforma-

tions different than those from the simulation in pure water. To this end, another clustering

is performed utilising the parameters selected in the previous section, but with all trajec-

tories considered at once. This clustering yields 18 cluster representative structures, which

is only marginally less than the 19 ones obtained with the original clustering scheme. The

fact that the clustering algorithm cannot merge many clusters coming from different solvent

trajectories, i.e., returns a similar number of clusters as when the trajectories are considered

individually, signals that the three trajectories with different solvents indeed visit markedly

different conformations.

To further confirm the assumption that conformations coming from trajectories with dif-

ferent solvents are more dissimilar to each other than conformations coming from the same

trajectory, the RMSD distances between all cluster representatives are calculated. More

specifically, the 19 representative protein conformations obtained in the previous section

are taken, and RMSD values between all possible pairs formed from them are calculated,

considering only their alpha carbons. By looking at the probability distribution of these

RMSD values for conformation pairs obtained from the same or from different MD trajec-

tories, one can compare the intra- and intertrajectory similarity of protein conformations.

Figure 4 shows this data grouped by the solvent pairs from which the protein conformations

are obtained. For example, the solid cyan curve represent the distribution of RMSD values

between protein conformations coming from the same water simulation, while the dashed

yellow line represents the distribution of RMSD values between conformations from the wa-

ter simulation and conformations from the benzene/water simulation. The most noticeable
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feature of this graph is that the intratrajectory distances are considerably smaller than the

intertrajectory ones, with the solid curves being to the left of the dashed ones. There is only a

single outlier benzene conformation, which is quite dissimilar to all other cluster representa-

tives obtained from this trajectory. Therefore, the data represented in Figure 4 validates our

assumption that by utilizing different solvents, a more diverse set of protein conformations

can be obtained than in the case when only a single solvent (water) is employed.
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Figure 4: The distribution of the RMSD deviation distances between the selected protein
conformation cluster representatives. The curves represent the frequencies with which a
given RMSD value is found among all distances calculated between conformations coming
from the trajectories denoted by their solvent in the legend.

Performance of the Docking Protocol

Before performing ensemble docking calculations with the obtained set of protein confor-

mations, first the accuracy of the employed docking protocol is evaluated. To this end, a

number of confirmed binders for the RdRp of SARS-CoV-2 are obtained from Reference

14, along with the most important interacting residues for each binder. To obtain these

results, the authors utilised the experimentally determined apo protein structure with PDB
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code 6M71. To compare the performance of AutoDock Vina, we have performed docking

calculations considering only the same crystallized structure. However, there are still signif-

icant differences in the preparation of the protein structure and the execution of the docking

calculations between the cited work and the one presented here. Most notably, no minimi-

sation of the structure is performed here, and all residues of the protein are considered rigid

during the docking calculations, contrary to the work of Ahmad et al., where key residues

around the active site were treated as flexible. Therefore, although perfect agreement with

the previous simulations will not be achieved, it is expected that the published binders and

their poses can be at least partially reproduced using the docking procedure adopted in this

work.

The results obtained with AutoDock Vina and those from Reference 14 are compared in

Table 1 for the seven ligands listed in the first column. This subset of the binders presented

in the original article, comprises the ligands for which a 3D structure could be obtained from

the ZINC database. In addition, the second column of the table shows the most important

interacting residues reported for each of the binders. The results returned by the AutoDock

Vina simulations performed by us are given in the last two columns of the table. Specifically,

the rank of the best poses returned by Vina, where the binder interacts with the residues

given in the second column, is reported. Moreover, in the fourth column, the total number of

found poses – out of the 20 most important ones – which interact with the specified residues

is given. It can be seen, that there are only two ligands (benzquercin and pegamotecan),

out of the seven considered, for which AutoDock Vina does not find the pose reported in

the literature. For these two ligands, a region near the active site of the protein is clearly

favored by Vina. For the other five ligands, the pose predicted in the literature is found by

Vina as well, and in three cases it is among the top five returned poses. Moreover, in the

case of three ligands, the predicted interacting residues are reproduced by more than one

pose, indicating the stability of these results. Since the main focus of this study is not on the

accuracy of the docking calculations in itself, but rather on the investigation of the effects
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of cosolvents and protein dynamics on the docking results, the proposed docking procedure

is deemed suitable and is, therefore, utilised throughout the rest of our work.

Table 1: Comparison of the results of AutoDock Vina to the binding poses reported in the
literature. The data in the first two columns of the table is reproduced from Tables 1 and 2
of Reference 14, originally published by Ahmad et al.. The third and fourth columns show
the rank of the best pose and the total number of poses returned by AutoDock Vina that
interact with the residues shown in the second column.

ligand reported interacting residues
rank of first

matching pose
number of

matching poses

ornipressin
ASP760, THR591, ASP865,
GLN815, SER814, CYS813,

GLU811, TYR619
1 8 (40 %)

benzquercin ARG553, LYS798 – 0 ( 0%)

cisatracurium ARG553, ARG555, GLU811 2 1 (5 %)

ditercalinium ASP623, ASP760 9 1 (5 %)

examorelin ASN691, HIS810 15 3 (15 %)

nacartocin LYS798 4 3 (15 %)

pegamotecan LYS621 – 0 (0 %)

Ensemble Docking Simulations

Binding Free Energy Criterion

After the adeptness of the docking protocol has been verified, the distribution of the binding

free energies obtained from docking the approximately 2000 FDA approved drugs to the

19 representative protein conformations is examined. The distributions of the best binding

energies of each protein conformation-ligand pair are shown on Figure 5A, separately for the

three types of MD trajectories. The most noticeable feature of this plot is that the distri-

butions of the two cosolvent trajectories extend to lower binding energies (or larger binding

energies in absolute value), than that of the simple water trajectory. Accordingly, the num-

ber of unique ligands with favorable binding energies are larger for the cosolvent trajectories

as can be observed from the coloured numbers immediately to the left of each distribution
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on the figure. The presence of such general trend likely indicates some significant differences

in the protein conformations utilised during the docking calculations. For example, it might

happen that one or more binding regions, especially those containing hydrophobic residues,

are more accessible to ligands in the conformations obtained from the cosolvent trajectories

than in those obtained from the water solvated trajectory, and therefore, the binding ener-

gies are more favourable in the cosolvents. The larger druggability of some pockets when

the nonpolar cosolvents are used in the simulations will be discussed in more detail later.

Since the binding energy of a given ligand is very strongly dependent on the conformation

of the target protein, it is expected that some ligands bind strongly only to specific protein

conformations, which are not present in all the solvent situations. In fact, it has been

demonstrated on Figure 4 that the different solvent trajectories sample markedly dissimilar

protein conformations. Consequently, it can be expected that some strong binders can only

be found when the docking is performed with a specific solvent. When this is the case, then,

one should observe that docking to one or even to just a few conformations is not sufficient

to find all the best binding ligands for a given protein. This would also mean that utilising

a well constructed ensemble of protein conformations during the docking calculations is

beneficial because it aids the discovery of new binders and better binding poses. To test

this hypothesis, the selection criterion for choosing the best binding ligands is set to -9.9

kcal/mol binding energy, as this arbitrary threshold selects sufficiently many ligands for each

trajectory – around 100 ligands – from the 1957 initially docked in the protein, as can be

seen in Figure 5A.

The binders selected in this way are subsequently grouped according to which cluster

representative protein structures they bind to. Note that a ligand can be in multiple groups

simultaneously if its binding energy is lower than -9.9 kcal/mol for more than one protein

conformation. Next, the cluster representatives are ordered in descending order according

to the number of ligands they bind. Finally, the representative protein conformation with

the highest number of binding ligands is selected, and its ligands are removed from the lists
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of all other conformations, which happen to also bind that ligand. This last step is repeated

until all conformations and all binding ligands are accounted for. From the data obtained

in this manner, cumulative ligand binding plots are created and displayed on Figure 5B,C.

These diagrams visualise the number of protein conformations which are necessary to find

a certain percentage of all the best binding ligands, discovered through any of the cluster

representatives. On Figure 5B, the ligands discovered by different solvent trajectories are

separated, and the cluster representatives are ordered on the horizontal axis in decreasing

importance (from many to few new ligands discovered). It can be observed that with a

single protein conformation, only about 75 % of all binders of the cosolvent trajectories and

about 40 % of the binders of the water solvent trajectory would have been discovered, even

if the conformation with the most binders would have been utilised. Moreover, all protein

conformations have unique ligands that only bind to them, and not to other conformations

of the given trajectory. These results, therefore, validate the increased computational costs

of docking to an ensemble of protein structures, as they show that significantly more binders

can be discovered by utilising multiple protein conformations than in the case of a single

considered structure.

Figure 5C shows a similar curve but, instead of considering the ligands of the different

protein conformations separately, they are merged together for each solvent. In this case,

the horizontal axis displays the various solvents that the conformations were obtained from.

From this plot it can be observed that every MD trajectory for a specific solvent is able

to find unique ligands that do not bind to conformations of the other trajectories, further

validating the use of multiple solvents. The last data point of this plot corresponds to the

binders discovered by docking to the apo crystal structure of the protein. It is clear that no

new ligand is found by docking to this structure, that would not have been already found

by one of the conformations obtained from the MD trajectories. This observation indicates

that the trajectories sample a wide range of conformations, and can even account for those

ligands that would bind to the crystallised protein structure.
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Binding Free Energy Gap Criterion

A common approach to selecting the most promising binders from the candidate ligands in

a VS campaign is to consider the binding free energy estimate calculated by the docking

program, as was done in the previous section. However, the inaccuracies of the binding

energy estimates calculated by such programs are well known.90 Additionally, it is noted

that this binding energy is naturally dependent on the size of the ligand being considered.

Since ligands with a high number of atoms can benefit from more interactions between their

atoms and those of the protein, this metric makes the selection of ligands that contain

only a small number of atoms very unfavorable interacting moieties. These imperfections

of the binding energy estimate make it a somewhat unreliable criterion for the selection of

the best binding ligands. To devise an improved metric of the ligand interaction strength,

one commonly used idea is to correct for the entropic terms missing from most scoring

functions, by accounting for the spatial distribution of the docked poses.91,92 However, in

the case of AutoDock Vina, the obtained best poses are first clustered by the program, and

only the cluster representative poses are returned,56 which makes the above mentioned pose

distribution based corrections unfeasible. In this section, an alternative approach to enhance

the selection of the best binders is devised and evaluated, that can be carried out relying

only on the information provided by AutoDock Vina.

Our first attempts towards devising such a ligand selection criterion revolved around

scaling the binding energy estimate by the number of heavy atoms in the considered ligand.

Unfortunately, this approach turned out to favor small ligands too much, while the inclusion

of some parameter to scale this bias down, seemed too arbitrary. Consequently, the procedure

presented here is based solely on the binding energies themselves. More specifically, it

evaluates the binding free energy gap between the two best poses found for the ligand.

The idea behind this approach is that a truly good docked pose should be something out

of the ordinary compared to the myriad of other suboptimal poses. Given the scarcity of

such extraordinary minima of the scoring function, it is expected that only a small fraction
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of the stochastic optimisation runs, performed during a docking calculation, will find the

corresponding ligand poses. In practice, this phenomenon could manifest itself in the form

of a single docked pose with a highly desirable binding energy estimate, found among the

many other mediocre poses in the results of a docking calculation. A large gap between

the binding energies of the two best docked poses for a given ligand could indicate such a

situation and consequently signal a true binder of the target protein. Therefore, it is proposed

to categorise ligands as binders (non-binders) based on whether the gap between their two

best binding energies is larger (smaller) than a given threshold. Finally, it is possible that

this criterion functions best in combination with a simple binding energy threshold, where

it would serve to eliminate some large ligands that are only categorised as binders due to

the bias of the latter criterion towards larger ligands.

As the first step of evaluating the performance of this new ligand selection criterion,

its preferred binders are compared to those selected based on their binding energy. If very

few or no common ligands are found between the two criteria, it could indicate that this

alternative selection method does not perform as expected, because even though the binding

energy estimate provided by the docking program is an imperfect one, in general it will

select reasonable ligands. To carry out this comparison, two sets of selection thresholds were

determined for the binding energy and energy gap criteria each. The thresholds in these

sets were constructed separately for the protein conformations coming from different solvent

trajectories, such that they select approximately 100 ligands for each trajectory. This results

in thresholds between -8.8 and -10.2 kcal/mol for the binding free energy and between 0.6

and 1.2 kcal/mol for the binding free energy gap. With the best binders selected separately

by the two different criteria, the ratio of common ligands can now be defined to be:

R =
|S1 ∩ S2|

max (|S1|, |S2|)
, (1)

where S1 and S2 are the sets of ligands selected by one of the criteria. On Figure 6A, this
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ratio of ligands selected by both criteria is plotted separately for the protein conformations

obtained from each MD trajectory and the crystal structure. One can observe that about

15-20 % of the best 100 ligands are common to both criteria. Even though the two criteria

select ligands in entirely different manners, at least part of the ligands they favor are common

to both of them. This gives us some confidence that the energy gap based selection criterion

can indeed be suitable to augment and complement simple binding energy based selection

methods.

After observing that a substantial ratio of the selected ligands are common for the two

selection criteria, the question naturally arises: are these common ligands especially suitable

binders? This would validate the use of the composite ligand selection method involving the

binding energy and binding energy gap criteria. Therefore, it would be beneficial to confirm

that the ligands selected based on the composite selection criterion exhibit a favorable binding

energy as well, thus further increasing the confidence in the adeptness of this ligand selection

method. To investigate this, the normalised distribution of the binding energies are plotted

for the ligands present in the top 100 binders using the binding energy criterion and for the

ligands which satisfy both the binding energy and energy gap criteria. The first distribution

is represented by the lightly coloured left half of each violin plot of Figure 6, while the second

distribution is represented by the violin plots with a darker color. The figure clearly shows

that the binding energies of those ligands which are common to both selections are lower

(more favorable) than those of ligands selected solely by their binding energy. It is therefore

confirmed that ligands satisfying both criteria tend to bind more favourably than ligands

which satisfy only the binding energy criterion.

Binding Sites of the Target Protein

In this section, the binding sites of the target protein are identified and characterised through

the ligands interacting with them. To this end, a number of promising ligands are selected
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the distribution obtained for the ligands selected by their binding energy, while the right
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energy gap.
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with the previously discussed two selection criteria. In both cases, the selection threshold is

determined in a way to yield approximately 100 ligands for the water solvent MD trajectory.

Then, the same threshold is employed for the cosolvent simulations. For this purpose, a

binding energy threshold of -9.9 kcal/mol, and an energy gap threshold of 1.2 kcal/mol were

found to be the most optimal.

With the binders selected in this way, the most important interacting sites of the protein

can be identified by visual inspection of the most favorable docked poses of the best binders.

These poses are visualised on Figure 7, considering the ligands of both selection criteria

together. After inspecting the docked ligands of the nine most important binding sites,

interacting protein residues have also been assigned to them, collected in Table 2. It is noted

that binding site number 4 identified here corresponds well to the active site of the protein,

as reported in Reference 14. Therefore, the interacting residues shown for this pocket in

Table 2 are taken from that work.

Table 2: The interacting residues of the binding pockets discovered through ensemble docking. The
interacting residues of the active site, which corresponds to the fourth pocket in the numbering of
this work, are taken from Section 1.1 of Reference 14 by Ahmad et al. The chain identifiers and
residue numbers are consistent with the numbering of the structure with PDB identifier 6M71.74

pocket nr. interacting residues

1 chain A: LEU172, TYR265, THR319, PRO323, THR394, PHE396, LEU460

2 chain A: ASP36, TYR38, ILE66, SER68, ASP208

3 chain A: LEU49, ASP711, ASP714, GLN773

4
chain A: ASP618, CYS622, ASN691, ASN695, MET755, ILE757, LEU758,
SER759, ASP760, ASP761, ALA762, VAL763, GLU811, PHE812, CYS813,

SER814

5
chain A: ASN447, chain B: PRO133, ASP134, TRP182, PRO183, chain

B: LYS27

6
chain A: ASN414, ASN416, ASP418, VAL844, chain C: ILE68, chain D:

ARG111

7 chain B: TYR138, THR145, TRP154, GLU155, LEU169

8 chain A: GLU254, ASP269, LYS272, ARG285

9 chain A: GLN292, THR293, LEU302, ASP303, ARG305, LEU470
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Figure 7: Binding sites on the protein, as identified by the visual inspection of the poses of the best
binding ligands. The protein structure is the first cluster representative structure obtained from
the water solvent MD trajectory. The coloured molecule clusters are the superimposed binders for
all cluster representative protein structures as selected by either one of the binding energy criteria.
Note that only those ligands are shown which bind to one of the identified pockets, an additional
2 % of the binders, which bind to other regions of the protein are hidden.
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After the binding sites of the protein have been identified, the number of ligands binding

to each of them are counted and presented in Table 3, separately for the MD trajectories

with different solvents, and for the apo crystal structure, and considering the binding energy

and binding energy gap criteria as selection methods. Overall, the nine identified pockets are

responsible for 97-99 % of the best binders found for every trajectory, which clearly highlights

the importance of these regions of the protein surface for potential subsequent targeted VS

campaigns. It is most interesting that some of the identified pockets only bind ligands if

specific cosolvents or even a specific ligand selection method is employed. This observation

shows how the presence of cosolvent probes significantly influence the protein structure, so

much so that it can lead to the opening or the closing of certain pockets. Regarding the

population of the active site (pocket 4), on the one hand, it is reassuring to see that multiple

binders are found, with all three solvents considered, as this site has already been identified

as druggable.14–17 On the other hand, no binders are found for this site if the crystallised,

apo protein structure is employed in the docking calculations. This fact emphasises the

importance of protein flexibility during ligand uptake, and makes it clear why docking to

a single, crystallised, apo protein structure can be inadequate to utilise the full power of

docking calculations and VS.

Considering now the other binding sites of the protein, the most highly populated pocket

is either the first or the second one, depending on the cosolvent and binder selection criterion

employed. Among these, the first identified pocket is especially promising, as ligands bound

here tend to be very well buried in the protein (see Figure 7). The fact that these two pockets

are populated by a relatively large number of ligands, regardless of the solvent utilised to

obtain the protein conformations, signals that they are quite stable and are open in most of

the conformations regularly visited by the protein. On the other hand, the sixth and seventh

pockets are almost exclusively populated with a few ligands when protein structures obtained

from the benzene cosolvent MD trajectories are considered. It seems logical that the cause of

this phenomenon is that the benzene probes were able to induce some conformational local
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changes in these regions of the protein. These latter two pockets are therefore more likely

to be cryptic pockets, open only in rarely visited protein conformations or in the presence

of binders.

For the third pocket, similar results are found as for the sixth and seventh ones, with the

exception that some ligands are also selected for the conformations obtained from the phenol

cosolvent MD trajectory. The fact that on top of the benzene cosolvent molecules, the more

polar phenol probes were also able to open this pocket to a certain degree, could be connected

to the higher ratio of hydrophilic residues around this binding site (see Table 4). Finally,

the fifth, eighth and ninth pockets all seem to be more open in the conformations coming

from the water solvent trajectory, with the latter two only having ligands if the energy gap

ligand selection criterion is considered. As can be seen in Table 4, the residues around these

pockets also tend to be more hydrophilic than in the case of some other sites. Remarkably,

these pockets are also not present in the crystallised apo structure. It is therefore very likely

that some reorganisation of the neighbouring residues, accounted for during the conventional

MD calculations with water as the solvent, are necessary for their opening.

Table 3: The distribution of the binders, as selected by the two ligand selection criteria,
across the various binding sites of the protein. Ligand counts are reported separately for
each cosolvent utilised to obtain the protein conformation to which the ligand binds and the
apo crystal structure. For the definition of the pocket numbering see Figure 7 and Table 2.

pocket
binding energy criterion energy gap criterion

water benzene phenol crystallized water benzene phenol crystallized

1 56 8 99 2 31 3 9 1
2 9 67 22 1 25 13 11 0
3 0 11 4 3 0 3 2 1
4 4 29 9 0 3 10 2 0
5 29 2 5 0 19 0 0 0
6 0 6 0 0 1 7 0 1
7 0 4 0 0 0 5 0 0
8 0 0 0 0 4 2 0 0
9 0 0 0 0 8 0 0 0

other 1 3 1 0 5 0 0 0
total 99 130 140 6 96 43 24 3
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Next, it is assessed whether or not the polarity of the cosolvent molecules correlate with

the hydrophilicity of the binding pockets that are open during the MD trajectory calculated

with that cosolvent. To perform this analysis, the residues nearest to the nine binding sites

identified in the previous section are selected. This is done by first selecting the protein

conformation for which the highest number of binders are found for the pocket in ques-

tion. Then, those residues which have atoms not farther than 3 Å from one of the atoms of

one of the binders are chosen. Then, the selected protein residues are categorised as either

hydrophilic or hydrophobic based on the results presented in Reference 93. The ratio of hy-

drophobic residues for each pocket, along with the cosolvent with which the most populated

protein conformation is obtained for that pocket, is shown in Table 4. It is noted that other

methods for selecting the nearest residues for each binding sites have been experimented with

(e.g., defining a center for each pocket and defining a distance threshold from that point),

and these methods yielded very similar results to those presented here.

Table 4: The ratio of hydrophobic residues near each pocket, along with the cosolvent
with which the protein conformation which produced the most binders for that pocket was
obtained. The assignment of residues to each pocket is discussed in the main text.

pocket total no. of residues hydrophobic residues [%] cosolvent

1 34 47 phenol
2 35 34 benzene
3 14 21 benzene
4 19 58 benzene
5 26 31 water
6 9 55 benzene
7 6 50 benzene
8 4 0 water
9 9 33 water

Looking at the hydrophobicity data in Table 4, it is apparent that the pockets which

were most open in the protein conformations coming from the water solvent trajectory all

have low hydrophobic residue ratios. In particular pockets 8 and 9, which were previously

seen to bind ligands almost exclusively if protein conformations from the water solvated

33



trajectory are considered (see Table 3), have a low ratio of hydrophobic residues. On the

contrary, the most apolar cosolvent, benzene, opens the most hydrophobic pockets best.

More specifically, pockets 6 and 7, which were only discovered with the benzene cosolvent

protein conformations, both have a hydrophobic residue ratio of at least 50 %. Pockets

2 and 3 are also most populated with the benzene cosolvent protein conformations, even

though both of them are decidedly hydrophilic in character. However, it is worth noting

that these pockets are also well populated when protein structures from trajectories with

water and especially with phenol are considered. Based on the above results, a link between

the polarity of the solvent, and the hydrophilicity of the pockets opened by said solvent can

be confidently established. This highlights once again the usefulness of employing cosolvent

MD simulations for the generation of protein conformations in ensemble docking: by utilising

apolar cosolvent probes, new, more hydrophobic binding sites can be opened that would

otherwise not be discovered.

Finally, the volumes of a stable and a transient pocket across conformations of the en-

semble are compared to identify further characteristics of the different pocket types. The

pocket volumes are calculated by mdpocket and are shown on Figure 8 for all 19 protein con-

formations. Looking at the top plot of this figure, where the volumes of the transient pocket

7 are shown, one can observe that the structures obtained from the benzene MD trajectory

harbor pocket conformations with the largest volumes, in one case reaching more than 400

Å3. This observation is to some extent in line with the fact that ligands are only able to

bind to this pocket when the protein conformations obtained from the benzene trajectory are

considered (see Table 3). In general, it is clear that this pocket has a non-zero volume only

in a small subset of the complete conformational ensemble, further confirming its transient

nature. Furthermore, the ability of the benzene cosolvent simulations to provide open pocket

conformations is again demonstrated. It must be noted that mdpocket calculates non-zero

volumes for some protein conformations obtained from the water solvent trajectory as well,

indicating the presence of an open pocket in those conformations. However, the docking
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calculations found no ligands for the water solvent trajectory, not even for these conforma-

tions. This indicates that simple descriptors, such as the volume, although valuable, are

not perfectly reliable and cannot be considered a substitute to the more accurate explicit

docking calculations. In other words, the ability of a pocket to accommodate binders cannot

be quantified by just looking at simple structural descriptors.
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Figure 8: Volumes of pocket 4 (A) and 7 (B) calculated for all considered protein conformations.
Pocket volumes were calculated with the mdpocket program. For the definition of these binding
pockets, see Table 2 and Figure 7.

In comparison to the results found for pocket 7, one can observe a more homogeneous

pocket volume distribution across the various protein structures for the stable pocket 4.

However, the fluctuation between protein conformations is still large with the volume of the

active site pocket ranging between 600 and 1700 Å3. Comparing the two binding sites further,

pocket 4 is found to have a much larger volume than the transient pocket 7 in all frames. The
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main similarity between these pockets is that their largest respective volumes are calculated

when conformations coming from the benzene cosolvent trajectories are considered. However,

this is not surprising because both pockets present the largest number of binders for the

benzene/water simulation, as was shown in Table 3. That being said, the difference in

pocket volume between the water solvent and benzene cosolvent or between the phenol and

benzene cosolvents trajectory frames is far less significant in the case of the active site.

This agrees with the fact that several binders are found to bind pocket 4 for the water and

phenol/water trajectories, while this is not the case for pocket 7, which is populated only

when benzene is used as cosolvent. The ability of cosolvent MD trajectories to provide higher

pocket volumes in comparison to traditional MD simulations for both stable and transient

pockets is worth mentioning.

Conclusions

In drug discovery projects, the technique of VS has proved to be especially useful, contribut-

ing to the discovery of hundreds of small molecule drug candidates by performing docking

calculations to a given protein structure with thousands of ligands. Owing to its numerous

successes, considerable efforts are expended to achieve further improvements in its accuracy

and usability. For example, the introduction of conformational sampling has been shown to

be crucial to improve the efficacy of VS campaigns. In the present work, we have considered

conformational sampling by performing ensemble docking calculations on different protein

geometries generated by classical MD simulations. To further improve the sampling of the

configurational space, the simulations were evolved in three different solvent scenarios: on

top of the usual water solvent, benzene/water and phenol/water mixtures were utilised. Due

to the COVID-19 pandemic that have already claimed millions of lives around the world,

the simulations were performed for the RdRp protein of the SARS-CoV-2 virus as target of

almost 2000 FDA approved drug molecules, in the hopes of revealing information, especially
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from the methodological point of view, that can contribute to the development of effective

treatments.

The ensemble of protein geometries employed in the docking calculations were generated

by density based clustering of the MD trajectories evolved in the three solvents. The cluster-

ing analysis provided 13, 3 and 3 representative conformations for the simulations in water,

benzene/water and phenol/water, respectively. These cluster representative frames selected

from different cosolvent trajectories proved to harbor protein conformations with meaning-

ful differences, as evidenced by their large RMSD distances from each other. This result in

itself highlights the importance of running MD simulations with different cosolvents since

the different protein conformations obtained could accommodate different binders compared

to the traditional dynamics simulations run in pure water as the solvent.

Ensemble docking calculations were performed utilising the 19 representative protein

conformations and the crystal structure, together with a set of approximately 2000 FDA

approved drug molecules. The best binders were identified attending to two different selection

methods based on the binding free energy and the binding free energy gap between the two

best docked poses of a particular drug. The second selection method is intended to help in

finding the ligands with the best interacting chemical moieties, regardless of the size of the

ligand since the simple binding energy criterion might overestimate the importance of large

ligands. It was found that both approaches select a reasonable ratio of common ligands.

Most importantly, these ligands selected by both methods presented the most favorable

binding energies of all the considered ligands. Therefore, the importance of using different

binder selection methods – and a combination of them – to propose promising protein binder

candidates was demonstrated.

Subsequently, utilising either of the two selection criteria, the best binders of the pro-

tein were selected. By inspecting the poses of these ligands, nine important binding sites

(including the already known active site) of the protein were identified, that harbored the

best pose for over 98 % of the best binders. The pocket search was dependent on the solvent
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and on the binder selection criteria, indicating once again that the combination of differ-

ent approaches can provide better results in VS campaigns. In addition, the importance of

conformational sampling was evidenced, since only four pockets were identified by running

the docking simulations employing the crystal apo structure of the protein, instead of the

19 representative conformations. By analysing the populations of the binding pockets across

different MD trajectories they were separated into two groups, corresponding to stable and

transient binding sites. It was found that stable pockets are open in many or all frames

of the various MD trajectories, and they bind a relatively large number of ligands. On the

contrary, transient or cryptic binding sites were found to be open only in a limited set of

protein conformations, often originating from the same cosolvent MD trajectory calculated

with an apolar cosolvent. In fact, a correlation between the polarities of the pockets and

solvents were found.

In order to understand the effects of cosolvents better, the protein conformations around

two selected binding sites were compared between representative structures originating from

different MD trajectories. One of these selected pockets was the active site of the protein,

which was characterised as a stable pocket, and the other one was a transient pocket distal

to the active site. Considering first the transient pocket, it was found that only the apolar

cosolvent benzene was able to induce conformational changes which lead to an increase of the

pocket volume, and therefore to the opening of the binding site. Looking at the active site,

it was revealed that this region of the protein is more conserved, since a more homogeneous

pocket volume distribution across the protein structures and the solvents was observed.

However, despite this relatively constant volume behaviour for the active site, it was found

that the effects of cosolvents are significant on both cryptic and well known stable pockets,

with more druggable protein conformations visited during cosolvent MD simulations than

either those found in the crystallised protein structure or those visited during traditional

MD trajectories with water as the solvent.

In summary, the use of dynamics simulations that introduce nuclear motion, the intro-
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duction of different solvent combinations that further improve sampling, and the application

of different criteria to select the best binders from docking calculations provided a larger

variety of potential binding sites and drug candidates for the SARS-CoV-2 RdRp protein

than static docking calculations. It is seen that the combination of a wide range of dynamics

and analysis techniques can significantly improve the efficacy of future VS projects aimed to

search for drug candidates to fight against COVID-19 and other diseases.
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