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Abstract 

The use of high-throughput docking (HTD) in the drug discovery pipeline is today widely 
established. In spite of methodological improvements in docking accuracy (pose prediction), 
scoring power, ranking power, and screening power in HTD remain challenging. In fact, pose 
prediction is of critical importance in view of the pose-dependent scoring process, since 
incorrect poses will necessarily decrease the ranking power of scoring functions. The 
combination of results from different docking programs (consensus scoring) has been shown 
to improve the performance of HTD. Moreover, it has been also shown that a pose 
consensus approach might also result in database enrichment. We present a new 
methodology named Pose/Ranking Consensus (PRC) that combines both pose and ranking 
consensus approaches, to overcome the limitations of each stand-alone strategy. This 
approach has been developed using four docking programs (ICM, rDock, Auto Dock 4, and 
PLANTS; the first one is commercial, the other three free). We undertook a thorough 
analysis for the best way of combining pose and rank strategies, and applied the PRC to a 
wide range of targets sampling different protein families with a variety of binding site 
properties. Our approach exhibits an improved systematic performance in terms of 
enrichment factor and hit rate with respect to either pose consensus or consensus ranking 
alone strategies at a lower computational cost, while always ensuring the recovery of a 
suitable number of ligands. An analysis using four free docking programs (replacing ICM by 
Auto Dock Vina) displayed comparable results. 
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Introduction 

The experimental evaluation of chemical libraries for activity against a target of 
pharmaceutical interest through high-throughput screening has been long used in the drug 
discovery pipeline; this is a both time and resource consuming technique1.  Computational 
methods are today valuable and established tools in all drug discovery endeavors, saving 
time, resources, and costs2-4.  

Among in silico methods in drug discovery, molecular docking has been widely used 
during the last three decades4-6. In protein-molecule docking, the optimal position, orientation 
and conformation (pose) of each molecule within the binding site is assessed (“docking 
stage”), and an estimation of its binding energy calculated. High-throughput docking (HTD) 
allows the screening of large chemical libraries (from thousands to millions of molecules) to 
generate a hit-list enriched with potential binders, which will be then prioritize for biochemical 
and biological evaluation. To be computationally efficient, HTD involves several 
approximations at different levels7, and the binding free energy calculation is later replaced 
by a docking score, which is a measure of the probability that the molecule will bind to the 
target. Thus, the docking stage is followed in this case by the “scoring stage”7, 8. 

In spite of its undoubted success, HTD is not without challenges, since its performance 
depends on the energy representation of the system, the degree of target flexibility4, 9-11, and 
the consideration of water molecules within the binding site4, 12, 13. A recent extensive 
comparison of docking programs showed that, in agreement with earlier works14, 15, they 
perform better in terms of docking accuracy (docking stage) than in terms of scoring power, 
ranking power, and screening power (scoring stage)16. We would like to stress that pose 
prediction is nevertheless of the utmost importance in molecular docking, since incorrect 
poses will result in meaningless scores, which would thus reduce the ranking capacity of 
scoring functions. The performance of HTD using different docking programs has been 
further evaluated on several systems17-19, and several inconsistencies have been found, 
such as different performances across programs, also showing that the effectiveness of 
each scoring function is system dependent.18, 20, 21. Several efforts have been conducted to 
improve the reliability at the scoring stage, such as machine-learning-based scoring 
functions22, 23, and quantum mechanical-base scoring24-29.   

The combination of several docking programs (consensus scoring) has been shown to 
improve the performance of HTD20, 30.  It should be highlighted that in consensus scoring (or 
ranking), it would desirable, for the sake of robustness, that scores for a given molecule be 
combined when the poses assessed by the different docking programs are similar. In 2013, 
Houston and Walkinshaw proposed for the first time a consensus docking procedure that 
used several docking programs to increase the reliability of the predicted poses31. Tuccinardi 
et al. later used ten docking protocols to evaluate pose consensus on database 
enrichment32, and later extended their analysis to 36 benchmark targets of the DUD 
database33. They obtained comparable results to Arciniega and Lange’s Docking Data 
Feature Analysis (DDFA), an approach for carrying out virtual screening analysis based on 
artificial neural networks which was among the best performing methods at the time34. To 
obtain good hit rates with their pose consensus strategy, molecules with at least seven 
matching poses between programs should be selected; in general, the best results were 
obtained with ten matching poses, which could represent a high computational cost. 
However, and more importantly, the number of ligands retrieved in most of those cases was 
very small, with the risk of being zero in some cases. 
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We present a new strategy that combines both pose and ranking consensus to 
overcome the limitations of each strategy when used in a stand-alone fashion, and thus 
increase the performance of HTD campaigns. This method, named Pose/Ranking 
Consensus (PRC) is consistent with theory in the sense that scores (or ranks) obtained with 
different programs are only combined when poses are coincident. We performed an 
exhaustive search to look for the best way of combining pose and rank requirements, and 
evaluated this new method over a wide range of targets that correspond to different protein 
families sampling different binding site properties. Our results show a consistent and 
improved performance compared to either pose consensus alone, or consensus scoring or 
ranking alone strategies. This method is simple to use and implement, and simpler than 
machine learning consensus scoring methods. 

 
Methods 
 
Target systems preparation 
The sixteen targets listed in Table 1 were downloaded from the PDB. Water molecules and 
cofactors were deleted, except in the following cases (cf. Table 1): A Ca2+ was conserved 
within 8 Å of the native ligand in PA2GA and NRAM; a Zn2+ was conserved for LKHA4, and 
in HDAC2 both a Zn2+ and Ca2+ were conserved. In the case of water molecules, they were 
conserved in the following cases: HSP90a, water molecules 2059, 2121, 2123, and 2236; 
FA7, 2440; FABP4, 303, 623, 634, 665; LKHA4, 1099, 1322. The structure of the Dopamine 
D3 receptor was in the antagonist bound conformation, and that of β2 adrenergic receptor 
was in the agonist bound conformation. In the case of the HMG-CoA reductase, the binding 
site is within both protomers (chains a and b), which were both included for docking 
calculations. 

Receptors were prepared with the ICM program35 (version 3.8-7c; MolSoft, San Diego, 
CA 2020), in a similar fashion as in other works25. Missing residues and hydrogen atoms 
were added followed by a local energy minimization of the system. Polar and water 
hydrogens within the binding site were optimized using a Monte Carlo simulation in the 
torsional space. Glu and Asp side chains were assigned a -1 charge, and Lys and Arg were 
assigned a +1 charge. Asn and Gln were inspected for possible flipping and adjusted if 
necessary. Histidine tautomers were assigned according to their most favorable hydrogen 
bonding pattern. 

 
Table 1: Target proteins used in the molecular docking calculations 

Receptor 
Receptor 

code 
PDB 
entry 

Resolution 
(Å) 

Co-factorsa 
Water 

moleculesb 

Thymidine kinase KITH 2B8T 2.0 - - 

Phospholipase A2 PA2GA 1KVO 2.0 Ca2+ - 

Coagulation factor VII FA7 1W7X 1.8 - 1 

Hexokinase type IV HXK4 3F9M 1.5 - - 

Cyclin-dependent Kinase 2 CDK2 1FVV 2.8 - - 

Cyclooxygenase-1 COX1 2OYU 2.7 - - 

Fatty acid binding protein adipocite FABP4 2NNQ 1.8 - 4 

Heat shock protein 90 α HSP90a 1UYG 2.0 - 4 

Estrogen receptor α ESR1 3ERT 1.9 - - 

Neuraminidase NRAM 1B9V 2.3 Ca2+ - 



4 
 

β2 adrenergic receptor (agonist bound) ADRB2 4LDO 3.2 - - 

HMG-CoA reductase HMDH 3CCW 2.1 - - 

Dopamine D3 receptor (antagonist bound) DRD3 3PBL 2.8 - - 

Histone deacetylase 2 HDAC2 5IXO 1.7 Zn2+,Ca2+ - 

Leukocyte adhesion glycoprotein LFA-1α LFA1 2ICA 1.6 - - 

Leukotriene A4 hydrolase LKHA4 3CHP 2.1 Zn2+ 2 
aWithin 8 Å of the crystallographic ligand 
bWithin 4 Å of the crystallographic ligand 

 
Docking libraries 
Docking chemical libraries were prepared for each target by merging a set of actives and 
their corresponding matching decoys according to similar physico-chemical properties and 
structural dissimilarity, what it has been shown to ensure unbiased calculations in docking 
simulations36, 37. The number of actives, decoys and sources for each target are shown in 
Table 2. For all molecules, chirality and protonation states were inherited from the 
corresponding original databases. 
 
Table 2: Docking chemical libraries 

Receptor 
Receptor 

code 
Actives Decoys Source 

Thymidine kinase KITH 132 2866 DUD-E38 

Phospholipase A2 PA2GA 127 5215 DUD-E38 

Coagulation factor VII FA7 185 6300 DUD-E38 

Hexokinase type IV HXK4 127 4802 DUD-E38 

Cyclin-dependent Kinase 2 CDK2 72 2074 DUD37 

Cyclooxygenase-1 COX1 210 6955 DUD-E38 

Fatty acid binding protein adipocite FABP4 57 2855 DUD-E38 

Heat shock protein 90 α HSP90a 125 4942 DUD-E38 

Estrogen receptor α ESR1 133 6555 NRLiSt39 

Neuraminidase NRAM 222 6227 DUD-E38 

β2 adrenergic receptor (agonist bound) ADRB2 206 8034 GLL/GDD36 

HMG-CoA reductase HMDH 299 8884 DUD-E38 

Dopamine D3 receptor (antagonist bound) DRD3 317 12363 GLL/GDD36 

Histone deacetylase 2 HDAC2 238 10366 DUD-E38 

Leukocyte adhesion glycoprotein LFA-1α LFA1 233 8690 DUD-E38 

Leukotriene A4 hydrolase LKHA4 244 9477 DUD-E38 

 
Docking calculations 
For protein-molecule docking, five programs were used in total: ICM35, Auto Dock 440, 
rDock41, PLANTS42, and Auto Dock Vina43. The latter was used for the free software 
evaluation only, replacing ICM. These programs have different search algorithms and 
scoring functions as described in previous works30, 42.  For all the HTD runs, the top scored 
conformation of each molecule was selected. The box center and dimensions were 
determined with ICM in such a way that all molecules in the chemical library will fit within the 
binding site, and then used for all programs. In rDock, the docking cavity was automatically 
built using the reference ligand method, which defines a docking volume of a given size 
around the binding mode of a known ligand. 
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Auto Dock Tools utilities40 were used to prepare the input files for Auto Dock 4, where the 
Lamarckian genetic algorithm was used for a 20-run search for each compound using 1750 
000 steps of energy evaluation. For PLANTS, the ChemPLP scoring function was used and 
speed1 set as search speed. For rDock, a radius of 8.0 Å ± 2.0 Å from a reference ligand 
binding mode was used to represent the cavity. For Vina, an exhaustiveness value of 8 was 
set. For ICM, a thoroughness of 2 was used for the search algorithm. All the other 
parameters for every software remained at their default values. On average, each program 
took between 13 seconds and 130 seconds per core, per molecule, with ICM being the 
fastest and Auto Dock 4 the slowest program. 
 
Exponential Consensus Ranking 
In the Exponential Consensus Ranking (ECR)30, the consensus rank ECR(i) for each 
molecule i is calculated as  

 
(1) 

 
 

where rj(i) is the rank of molecule i determined using the scoring function of program j, and σ 
is the expected value of the exponential distribution; while the ECR was found to be quasi- 
independent on σ,30 we used σ = 10% of the total number of molecules for each docking 
library. Since the ECR is based on rank rather than score, it is thus independent on score 
units, scales and offsets. 
 
Pose Consensus approach 
From the HTD campaigns, 4 binding modes were obtained for each molecule in the 
database, which correspond to the 4 docking programs used. The RMSD between all 
combinations of these poses was calculated using the ICM software, which allowed for the 
calculation of the static deviation between molecules. Poses are considered to match if they 
are within 2.0 Å RMSD. A molecule is considered to have three matching poses (MPs) if the 
three corresponding combinations of two poses match. For four matching poses, the six 
corresponding combinations of two poses must be coincident.  
 
Evaluation Metrics 
The enrichment factor (EF) is defined as  
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where Hitsx represents the number of actives present in a subset x of the docked library, Nx 
the number of molecules in subset x, Hitstotal is the total number of ligands within the entire 
chemical library, and Ntotal its total number of molecules. EF represents the probability of 
finding an actual ligand within subset x with respect to the probability of finding a ligand at 
random. Whenever a molecule were represented my multiple states regarding its protonation 
or chirality, each state was calculated its score, and the lowest score among those was used 
to build the rank and thus to calculate the EF.  
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and is a measure between 0 and 1 which represents the probability of finding an actual 
ligand within the subset x. 
 

Results and Discussion 
We ran four HTD campaigns on 16 targets, which represent different protein families, and 
exhibit different binding site properties, including the presence of co-factors and water 
molecules (cf. Table M1). The chemical libraries used are described in Methods. Four 
docking programs were used, AutoDock 4, ICM, rDock and PLANTS, which have different 
search algorithms and scoring functions. Auto Dock Vina was also evaluated, but we 
selected only the best four performing programs to develop a method with the lowest 
computational cost for a future prospective campaign. For each docking program, the pose 
corresponding to the best score for each molecule was selected, and the ranking was 
established according to that score. On average, ICM presented the best performance, 
followed by rDock. There was not a program that performed best over all the systems 
evaluated. 

As starting point, we used the Exponential Consensus Ranking (ECR)30. This consensus 
method combines results from several docking programs using an exponential distribution 
for each individual rank. In a previous work, it demonstrated a higher performance than other 
traditional consensus strategies and individual programs. In this work we extended the 
analysis of ECR to 16 targets using four instead of the original six programs. Our results 
confirm its better performance when compared to individual programs. On average, it 
showed at least a 1.5-fold increase (ratio between EF1 for ECR over an individual program) 
over every program (Table 3). 
 
Table 3: Average enrichment factor at 1% (EF1) for each individual program calculated on 
the 16 benchmark targets, and the average fold increase of the ECR method over each 
program. 

Average ICM rDock AutoDock4 PLANTS ECR 

EF1 17.3 9.0 4.8 7.1 15.5 

Fold increasea 1.5 3.1 >100 >100 1.0 

aAverage value calculated as 
N

i

program
i

ECR
i EFEF

N
1/1

1
, where N is the number of targets 

 
Pose consensus alone is not enough to guarantee high enrichment  
Initially, we evaluated the performance of a pose consensus alone strategy using the four 
docking programs on the 16 benchmarking targets. Table 4 shows the enrichment factor 
(EF) for each target, calculated on the subset of molecules that meet the selection criteria 
according to the number of matching poses (MPs) between programs. Poses are considered 
to match if they are within 2.0 Å RMSD. Consistent with earlier works32, 33, in general, the EF 
increases as the number of coincident poses requested is increased. However, the number 
of ligands in some cases is already low when considering four coincident poses. For 
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example, in LKHA4 only 2 ligands are present in the subset of molecules selected, and 
similar numbers were seen for HDAC2 and ADRB2. Furthermore, it can be seen from these 
results that a solely pose consensus strategy with four docking programs is not enough to 
obtain acceptable EFs. 
 
Table 4: EF values for a pose consensus alone strategy of at least two (2 MPs), three (3 
MPs) and four matching poses (4 MPs). The best EF for each target is highlighted. 

Receptor 2 MPs 3 MPs 4 MPs 

KITH 1.4 2.6 4.7 

PA2GA 1.7 3.4 4.7 

FA7 1.7 3.4 3.2 

HXK4 1.3 1.4 1.7 

CDK2 1.2 1.9 3.3 

COX1 1.1 1.3 1.5 

FABP4 1.2 1.5 1.5 

HSP90a 1.1 1.3 2.0 

ESR1 1.1 1.7 3.6 

NRAM 2.0 4.7 5.6 

ADRB2 1.4 1.2 0.4 

HMDH 1.6 3.2 3.6 

DRD3 1.1 1.1 1.0 

HDAC2 0.9 1.5 1.2 

LFA1 0.6 0.9 1.9 

LKHA4 1.0 1.4 0.9 

Average 1.3 2.0 2.5 

 
 
Combining pose and rank consensus outperforms previous strategies 
We observed that applying a ranking filter on pose consensus enhanced the performance of 
the latter. To further explore this fact, various possible combinations of the number of 
required MPs and ranking thresholds were considered, and three general options were 
initially explored: A) Pose consensus with at least two programs, selecting among those only 
molecules with the two corresponding ranks in the top 5, 10, or 20%; B) Pose consensus 
with at least three programs, selecting among those only molecules with the three 
corresponding ranks in the top 5, 10, or 20%; C) Pose consensus with the four programs, 
selecting among those only molecules with the four corresponding ranks in the top 15, 20, or 
25%. These three options were evaluated in terms of minimum, maximum, and average EF 
values for the 16 benchmark targets; among the ones that showed high averages, those with 
higher minimum values and EFs closer to the average were preferred, in order to prioritize 
strategies that work well across all targets. Strategies that exhibited the best EFs in those 
specific targets that displayed low performance in the four programs were also prioritized. 
For option A (two MPs), the best results were obtained with a 5% rank cutoff. For option B 
(three MPs), the best results were obtained with a 10% rank cutoff. For option C (four MPs), 
the best results were obtained with a 20% rank cutoff. Option B marginally showed the best 
performance among the three options, followed by option C. It was observed, however, that 
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in some cases there were very few molecules that met the requirements, and in HXK4 no 
actual ligands could be found. In Table 5 the best performance for each option is presented. 
 
Table 5: EF values and Active/Selected (A/S) molecule rate for Option A (2 MPs – top 5%); 
Option B (3 MPs – top 10%); and Option C (4 MPs – top 20%). The best option for each 
target is highlighted. 

Receptor Option A Option B Option C 

 A/Sa EF A/Sa EF A/Sa EF 

KITH 24/38 14.0 3/4 17.0 1/3 7.6 

PA2GA 26/48 22.0 9/10 37.9 3/3 42.1 

FA7 84/107 27.5 33/35 33.1 1/1 35.1 

HXK4 17/67 9.8 0/10 0.0 0/2 0.0 

CDK2 23/56 12.2 17/47 10.8 11/22 14.9 

COX1 10/200 1.7 11/134 2.8 9/54 5.7 

FABP4 22/65 17.3 14/30 23.8 5/7 36.5 

HSP90a 21/82 10.4 5/23 8.8 0/5 0.0 

ESR1 39/133 15.4 25/70 18.8 14/24 30.7 

NRAM 20/53 11.0 10/12 24.2 0/1 0.0 

ADRB2 63/144 17.6 9/38 9.5 1/10 4.0 

HMDH 21/66 16.7 4/12 17.5 2/3 34.9 

DRD3 11/137 3.2 2/29 2.8 0/6 0.0 

HDAC2 19/83 13.0 8/19 23.9 1/5 11.3 

LFA1 11/121 5.7 6/46 8.1 2/11 11.4 

LKHA4 24/165 8.2 6/43 7.8 1/10 5.6 

Average 27/98 12.9 10/35 15.4 3/10 15.0 
aNumber of Actives and Selected molecules for each target 
 

Next, we considered a combination of the three options A, B, and C, in the following 
fashion: if a molecule has a maximum of two MPs, the corresponding ranks obtained with 
those two programs should be within the top 5%; with a maximum of three MPs, those 
corresponding three ranks must be within the top 10%; with four MPs, the four ranks are 
requested to be in the top 20%. While this strategy (named Option D) showed a slightly less 
average EF than Option B (15.1 vs 15.4), there were no cases where actual ligands could 
not be found. Therefore, it was preferred over each individual option. We explored other 
combinations of ranking thresholds, but 5%, 10% and 20% for two, three and four MPs, 
respectively, were the best choice (similar results were also obtained with values of 7%, 12% 
and 15%). If the selected molecules are sorted by ECR, and only those in the top 1.5% are 
selected (option E), an even better performance is obtained (Table 6). Threshold values 
between 0.5% and 2% were also evaluated, with 1.5% showing the best results. This last 
option showed the best performance in almost every target evaluated, with the exception of 
two cases (NRAM and HMDH) where the difference was minimal.  
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Table 6: Evolution of the EF values for different strategies as molecular selection criteria are 
added: pose consensus alone using 4 MPs; Option D (2 MPs top 5% - 3MPs top 10% - 
4MPs top 20%; Option E or PRC (Option D with an ECR top1.5% threshold). The hit rate 
(HR) represents the probability of finding a ligand within the selected molecules. 

Receptor 4 MPs Option D Option E (PRC) 

 A/Sa EF A/Sa EF A/Sa EF HR 

KITH 17/83 4.7 15/23 14.8 13/15 19.7 0.87 

PA2GA 9/81 4.7 16/30 22.4 12/16 31.5 0.75 

FA7 9/100 3.2 64/73 30.7 44/45 34.3 0.98 

HXK4 6/135 1.7 15/45 12.9 9/23 15.2 0.39 

CDK2 25/225 3.3 14/33 12.6 11/17 19.3 0.65 

COX1 51/114 1.5 11/111 3.4 8/47 5.8 0.17 

FABP4 8/270 1.5 20/37 27.6 20/25 40.9 0.80 

HSP90a 29/534 2.0 11/37 12.1 8/21 15.4 0.38 

ESR1 32/470 3.6 28/77 19.1 28/53 27.8 0.53 

NRAM 14/72 5.6 14/29 14.0 9/19 13.8 0.47 

ADRB2 3/274 0.4 53/98 21.7 35/60 23.4 0.58 

HMDH 4/59 3.6 18/52 18.1 10/30 17.5 0.33 

DRD3 10/421 1.0 7/74 3.8 6/48 5.0 0.13 

HDAC2 2/93 1.2 18/67 15.2 16/43 21.1 0.37 

LFA1 9/290 1.9 5/59 5.3 5/43 7.3 0.12 

LKHA4 2/128 0.9 18/129 7.9 10/69 8.1 0.14 

Average 14/274 2.5 20/61 15.1 15/36 19.1 0.48 

aNumber of Actives and Selected molecules for each target 
 
Figure 1 shows a schematic representation of this Pose/Rank Consensus (PRC) pipeline.  
Starting from the binding modes and ranks obtained with the four docking programs, a 
Pose/Rank filtering approach is carried out. For this, the maximum number of MPs (1-4) is 
assessed for each molecule, coupled with identifying those programs where the poses 
matched. Then, we look first for the ones that have four MPs and we filter them according to 
the 20% rank threshold in the corresponding programs. The same is performed for three 
MPs (10% rank threshold), and two MPs (5% rank threshold). In parallel, the ECR method is 
calculated onto the whole database. The molecules that pass the Pose/Rank filters are 
ordered by their corresponding ECR, previously calculated, and the ones in the top 1.5% are 
finally selected. 
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The maximum value (98%) was obtained for FA7 where 44 out of 45 selected molecules are 
ligands. LFA1 showed the lowest hit rate value (12%) and the lowest number of ligands 
retrieved (5). In 2016, Tuccinardi et al. achieved an average hit rate of 45%, which they 
demanded to be at the level of the best performing methods34.  We note, however, that the 
results they report correspond to the maximum hit rate that can be obtained for each target, 
which depends on the number of MPs used, and therefore is not directly applicable in a 
prospective analysis. 
To further evaluate the performance of the PRC method we compared the improvement 
against ECR for every target. Table 7 shows the EFs of the PRC method compared to those 
of ECR at 1% (EF1). We chose EF1 as it is a standard metric, widely used in virtual 
screening. The fold increase (the ratio between PRC EF and ECR EF1) is also presented for 
a clearer comparison of the results. It can be noticed that 11 out of 16 targets showed an 
increase in the EF. The remaining 5 targets showed almost the same results in both 
strategies. On average, the PRC method has a 1.57-fold increase over ECR EF1. The 
improvements are especially noticeable in targets with low EF1 both on individual programs 
and on ECR; for example, EF values are increased by a factor of three in PRC for 
Neuraminidase and HSP90a. Regarding LFA1 (the worst performer in PRC), the four 
docking programs performed poorly on this target, and our method allowed to obtain the 
same EF as ECR EF1. 

We also looked at the ECR EF when selecting the same number of molecules from the 
top as those returned by the PRC, for each target. It should be noticed that this is not a 
measure of practical value in prospective HTD, as this threshold is never known beforehand. 
However, the hit rate of PRC surpassed that of ECR (48% vs 43%, respectively); moreover, 
our method showed an eight times higher EF in HXK4, and still showed 3-fold increase 
values in the worst performing targets. 

Taking into account that the ECR already implies an improvement of the results over 
previous consensus strategies and to individual programs, these results show that the PRC 
method allows for significantly higher hit rates and EF values, with a minimum computational 
cost, and therefore can reach the best results in future prospective HTD campaigns. 
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Table 7: Comparison of the EF at 1% (EF1) for PRC and ECR. The fold increase (PRC 
EF/ECR EF1) is also displayed in the last column. 

Receptor ECR EF1 PRC EF 
Fold 

Increase 

KITH 12.5 19.7 1.57 

PA2GA 25.4 31.5 1.24 

FA7 34.5 34.3 0.99 

HXK4 5.5 15.2 2.74 

CDK2 18.5 19.3 1.05 

COX1 3.4 5.8 1.73 

FABP4 40.5 40.9 1.01 

HSP90a 4.9 15.4 3.17 

ESR1 31.1 27.8 0.89 

NRAM 4.5 13.8 3.03 

ADRB2 24.5 23.4 0.96 

HMDH 10.0 17.5 1.75 

DRD3 3.2 5.0 1.57 

HDAC2 13.6 21.1 1.55 

LFA1 7.3 7.3 1.00 

LKHA4 9.4 8.1 0.87 

Average 15.5 19.1 1.57a 
a Average of the fold increase values 

 
Performance of the PRC method using only free available docking programs 
In some cases, it may happen that only free docking programs are available. Therefore, we 
present the results using only free and accessible programs. For this task, we replaced ICM 
with Auto Dock Vina, which was the other available software. Table 8 shows the results 
obtained after applying the same PRC Pipeline (Figure 1) using Auto Dock 4, rDock, 
PLANTS and Auto Dock Vina for the HTD. For 2MPs, we evaluated the possibility of 
excluding the combination of Auto Dock 4 and Auto Dock Vina, as we saw that there were 
many molecules that met this requirement. This exclusion allowed better results, and so it 
was maintained for the free programs procedure. Option D selection strategy and pose 
consensus with 3 MPs are also displayed in Table 8 as a reference. In this case, 3 MPs are 
displayed instead of 4 MPs because the former performed best when using free docking 
programs. The maximum hit rate (77%) was obtained for PA2GA where 10 out of 13 
molecules selected were active. For HSP90a, all the individual programs performed poorly, 
and no actual ligands could be found. On average, a hit rate of 30% was obtained. It can be 
noted that the best results were also obtained when combining the Pose/Rank filters with the 
ECR threshold (option E). However, Option D is shown as a good alternative for targets that 
do not perform well in none of the programs used, as it is the case of HXK4, HSP90a and 
NRAM. 
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Table 8: Same as Table 6 in a Free Programs context. 3 MPs are shown instead of 4 MPs 
because in this case the former performs best.   

Receptor 3 MPs Option D Option E (PRC) 

 
A/Sa EF A/Sa EF A/Sa EF HR 

KITH 42/380 2.5 3/17 4.0 3/9 7.6 0.33 

PA2GA 24/450 3.9 11/16 28.9 10/13 32.4 0.77 

FA7 49/488 3.5 27/40 23.7 22/29 26.6 0.76 

HXK4 44/920 1.9 2/31 2.5 1/22 1.8 0.05 

CDK2 39/549 2.1 17/34 14.9 12/22 16.3 0.55 

COX1 119/2894 1.4 11/236 1.6 5/91 1.9 0.05 

FABP4 22/714 1.6 13/64 10.4 12/23 26.7 0.52 

HSP90a 53/1457 1.5 2/48 1.7 0/31 0.0 0.00 

ESR1 50/1598 1.6 27/144 9.9 24/74 17.1 0.32 

NRAM 54/513 3.1 4/33 3.5 2/25 2.3 0.08 

ADRB2 55/2419 0.9 23/119 7.8 20/73 11.1 0.27 

HMDH 18/432 2.2 12/41 15.3 4/21 10.0 0.19 

DRD3 47/1854 1.0 9/151 2.4 6/70 3.4 0.09 

HDAC2 17/781 1.2 20/72 15.7 15/38 22.4 0.39 

LFA1 18/1136 1.0 6/86 4.4 6/53 7.1 0.11 

LKHA4 18/780 1.3 34/181 10.6 23/74 17.5 0.31 

Average 42/1085 1.9 14/82 9.8 10/42 12.7 0.30 
aNumber of Actives and Selected molecules for each target 
 

In Table 9 we compare the results of PRC and ECR for free docking programs. Better 
results were obtained in 13 of the 16 targets with an average 1.75-fold increase of the PRC 
method over ECR EF1. Of the remaining three, LFA1 achieved almost the same results and 
HSP90a is the one that shows the highest decrease. In this target, Vina did not manage to 
perform well, showing zero EF1, and the other three programs also showed a poor 
performance. Option D achieved a slightly better EF as ECR EF1, and it may be a better 
selection strategy for cases where individual performances in terms of scoring stage are very 
poor. Regarding ESR1, while it still shows acceptable EF values, it performed slightly worse 
than ECR. This was also the case in the previous procedure (Table 7). It should be noted, 
anyway, that the number of selected molecules (74) is higher than 1% of the database (67). 
A very noticeable improvement of PRC over ECR can be seen for KITH, HXK4, NRAM and 
HMDH, where EF values of more than double the ECR EF1 were obtained. The average fold 
increase was even higher than in the previous case, therefore reaffirming the applicability of 
PRC method when only free docking programs are available.  
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Table 9: Same as Table 7 in a Free Programs context.  

Receptor ECR EF1 PRC EF 
Fold 

Increase 

KITH 2.3 7.6 3.22 

PA2GA 16.7 32.4 1.94 

FA7 24.1 26.6 1.10 

HXK4 0.8 1.8 2.23 

CDK2 12.8 16.3 1.27 

COX1 1.0 1.9 1.95 

FABP4 19.4 26.7 1.38 

HSP90a 1.6 0.0 0.00 

ESR1 23.9 17.1 0.71 

NRAM 0.5 2.3 5.12 

ADRB2 10.8 11.1 1.03 

HMDH 3.5 10.0 2.85 

DRD3 3.1 3.4 1.11 

HDAC2 13.6 22.4 1.64 

LFA1 7.3 7.1 0.97 

LKHA4 12.3 17.5 1.42 

Average 9.6 12.7 1.75 

 
 

Conclusions and Perspective 
A new method combining both pose and ranking consensus (PRC) is presented and 
evaluated in 16 diverse protein targets, displaying an improved performance with respect to 
either pose consensus alone, or consensus scoring alone approaches. Our method is 
especially robust in the sense that scores (and ranks) are only combined when poses are 
coincident within a 2 Å threshold. In the PRC method four docking programs to build 
consensus strategies were used (ICM, rDock, Auto Dock 4, and PLANTS), and we 
performed a comprehensive analysis for the optimal way of combining pose and rank 
requirements, which greatly improved the results compared to individual programs and also 
to previous consensus strategies. It should be noted that high hit rates were obtained with 
low computational cost, yielding an appropriate number of ligands. It was observed that PRC 
greatly improves the results even when only free available docking programs are used 
(replacing ICM by Auto Dock Vina).  

In spite of the obvious success, we would like to point out two facts related to this 
methodology: i) It is still dependent on the performance of the individual programs on the 
target. If no program managed to perform well, then the PRC method would still improve the 
results obtained, but in a limited way; ii) Option D (cf. Table 6) is a good alternative in a 
prospective case when it is suspected that a little number of actual ligands might be present 
in the query database, or when the target belongs to a family of proteins that does not 
usually perform well in HTD campaigns, since it will likely retrieve more ligands. While (i) is a 
common limitation to all consensus strategies, PRC shows itself as a promising tool to solve 
it. In a follow-up contribution, we will evaluate the dependence of the method on the 
relationship between the number of ligands and decoys in the database for each target. 

 
 



15 
 

Acknowledgments 
This work was supported by the National Agency for the Promotion of Science and 
Technology (ANPCyT) (PICT-2017-3767). CNC thanks Molsoft LLC (San Diego, CA) for 
providing an academic license for the ICM program. The authors thank the Centro de 
Cálculo de Alto Desempeño (Universidad Nacional de Córdoba) for granting the use of their 
computational resources. 
 

References 

1. Phatak, S. S.; Stephan, C. C.; Cavasotto, C. N., High-throughput and in silico screenings in 
drug discovery. Exp. Opin. Drug Discov. 2009, 4, 947-959. 
2. Jorgensen, W. L., Efficient drug lead discovery and optimization. Acc. Chem. Res. 2009, 42, 
724-33. 
3. Schneider, G., Automating drug discovery. Nat. Rev. Drug Discovery 2017, 17, 97-113. 
4. Spyrakis, F.; Cavasotto, C. N., Open challenges in structure-based virtual screening: 
Receptor modeling, target flexibility consideration and active site water molecules description. Arch. 
Biochem. Biophys. 2015, 583, 105-19. 
5. Ciancetta, A.; Moro, S. Protein-Ligand Docking: Virtual Screening and Applications to Drug 
Discovery. In In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications, 
Cavasotto, C. N., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, 2015; Chapter 7, pp 189-
213. 
6. Sulimov, A.; Kutov, D.; Ilin, I.; Zheltkov, D.; Tyrtyshnikov, E.; Sulimov, V., Supercomputer 
docking with a large number of degrees of freedom. SAR QSAR Environ. Res. 2019, 30, 733-749. 
7. Cavasotto, C. N.; Orry, A. J., Ligand Docking and Structure-based Virtual Screening in Drug 
Discovery. Curr. Top. Med. Chem. 2007, 7, 1006-1014. 
8. Guedes, I. A.; Pereira, F. S. S.; Dardenne, L. E., Empirical Scoring Functions for Structure-
Based Virtual Screening: Applications, Critical Aspects, and Challenges. Front. Pharmacol. 2018, 9, 
1089. 
9. Cavasotto, C. N.; Singh, N., Docking and High Throughput Docking: Successes and the 
Challenge of Protein Flexibility. Curr. Comput.-Aided Drug Design 2008, 4, 221-234. 
10. Cozzini, P.; Kellogg, G. E.; Spyrakis, F.; Abraham, D. J.; Costantino, G.; Emerson, A.; Fanelli, 
F.; Gohlke, H.; Kuhn, L. A.; Morris, G. M.; Orozco, M.; Pertinhez, T. A.; Rizzi, M.; Sotriffer, C. A., 
Target flexibility: an emerging consideration in drug discovery and design. J. Med. Chem. 2008, 51, 
6237-55. 
11. Cavasotto, C. N.; Aucar, M. G.; Adler, N. S., Computational chemistry in drug lead discovery 
and design. Int. J. Quantum Chem. 2019, 119, e25678. 
12. Amadasi, A.; Surface, J. A.; Spyrakis, F.; Cozzini, P.; Mozzarelli, A.; Kellogg, G. E., Robust 
classification of "relevant" water molecules in putative protein binding sites. J. Med. Chem. 2008, 51, 
1063-7. 
13. Cozzini, P.; Fornabaio, M.; Mozzarelli, A.; Spyrakis, F.; Kellogg, G. E.; Abraham, D. J., Water: 
how to evaluate its contribution in protein-ligand interactions. Int. J. Quantum Chem. 2006, 106, 647-
651. 
14. Cavasotto, C. N.; Abagyan, R. A., Protein flexibility in ligand docking and virtual screening to 
protein kinases. J. Mol. Biol. 2004, 337, 209-225. 
15. Slater, O.; Kontoyianni, M., The compromise of virtual screening and its impact on drug 
discovery. Expert Opin. Drug Discov. 2019, 14, 619-637. 
16. Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R., Comparative Assessment of 
Scoring Functions: The CASF-2016 Update. J. Chem. Inf. Model. 2019, 59, 895-913. 
17. Çınaroğlu, S. S.; Timuçin, E., Comparative Assessment of Seven Docking Programs on a 
Nonredundant Metalloprotein Subset of the PDBbind Refined. J. Chem. Inf. Model. 2019, 59, 3846-
3859. 
18. Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T., Comprehensive evaluation 
of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of 
sampling power and scoring power. Phys. Chem. Chem. Phys. 2016, 18, 12964-75. 
19. Xu, W.; Lucke, A. J.; Fairlie, D. P., Comparing sixteen scoring functions for predicting 
biological activities of ligands for protein targets. J. Mol. Graph. Model. 2015, 57, 76-88. 



16 
 

20. Kukol, A., Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. 
Chem. 2011, 46, 4661-4664. 
21. Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K. Y.; Hu, Y.; Humblet, C., 
Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. 
J. Chem. Inf. Model. 2009, 49, 1455-74. 
22. Ballester, P. J., Selecting machine-learning scoring functions for structure-based virtual 
screening. Drug Discovery Today: Technologies 2019, 32-33, 81-87. 
23. Pereira, J. C.; Caffarena, E. R.; Dos Santos, C. N., Boosting Docking-Based Virtual Screening 
with Deep Learning. J. Chem. Inf. Model. 2016, 56, 2495-2506. 
24. Aucar, M. G.; Cavasotto, C. N., Molecular Docking Using Quantum Mechanical-Based 
Methods. Methods Mol. Biol. 2020, 2114, 269-284. 
25. Cavasotto, C. N.; Aucar, M. G., High-Throughput Docking Using Quantum Mechanical 
Scoring. Front. Chem. 2020, 8, 246. 
26. Eyrilmez, S. M.; Kopruluoglu, C.; Rezac, J.; Hobza, P., Impressive Enrichment of 
Semiempirical Quantum Mechanics-Based Scoring Function: HSP90 Protein with 4541 Inhibitors and 
Decoys. ChemPhysChem 2019, 20, 2759-2766. 
27. Sulimov, A. V.; Kutov, D. K.; Ilin, I. S.; Sulimov, V. B., [Docking with combined use of a force 
field and a quantum-chemical method]. Biomed. Khim. 2019, 65, 80-85. 
28. Cavasotto, C. N.; Di Filippo, J. I., In silico Drug Repurposing for COVID-19: Targeting SARS-
CoV-2 Proteins through Docking and Consensus Ranking. Mol. Inform. 2021, 40, e2000115. 
29. Cavasotto, C. N.; Adler, N. S.; Aucar, M. G., Quantum Chemical Approaches in Structure-
Based Virtual Screening and Lead Optimization. Front. Chem. 2018, 6, 188. 
30. Palacio-Rodriguez, K.; Lans, I.; Cavasotto, C. N.; Cossio, P., Exponential consensus ranking 
improves the outcome in docking and receptor ensemble docking. Sci. Rep. 2019, 9, 5142. 
31. Houston, D. R.; Walkinshaw, M. D., Consensus Docking: Improving the Reliability of Docking 
in a Virtual Screening Context. J. Chem. Inf. Model. 2013, 53, 384-390. 
32. Tuccinardi, T.; Poli, G.; Romboli, V.; Giordano, A.; Martinelli, A., Extensive consensus docking 
evaluation for ligand pose prediction and virtual screening studies. J. Chem. Inf. Model. 2014, 54, 
2980-6. 
33. Poli, G.; Martinelli, A.; Tuccinardi, T., Reliability analysis and optimization of the consensus 
docking approach for the development of virtual screening studies. J. Enzyme Inhib. Med. Chem. 
2016, 31, 167-173. 
34. Arciniega, M.; Lange, O. F., Improvement of Virtual Screening Results by Docking Data 
Feature Analysis. J. Chem. Inf. Model. 2014, 54, 1401-1411. 
35. Abagyan, R.; Totrov, M.; Kuznetsov, D., ICM - a New Method For Protein Modeling and 
Design - Applications to Docking and Structure Prediction From the Distorted Native Conformation. J. 
Comput. Chem. 1994, 15, 488-506. 
36. Gatica, E. A.; Cavasotto, C. N., Ligand and Decoy Sets for Docking to G Protein-Coupled 
Receptors. J. Chem. Inf. Model. 2012, 52, 1-6. 
37. Huang, N.; Shoichet, B. K.; Irwin, J. J., Benchmarking sets for molecular docking. J. Med. 
Chem. 2006, 49, 6789-801. 
38. Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K., Directory of Useful Decoys, 
Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 
6582-6594. 
39. Lagarde, N.; Ben Nasr, N.; Jeremie, A.; Guillemain, H.; Laville, V.; Labib, T.; Zagury, J. F.; 
Montes, M., NRLiSt BDB, the manually curated nuclear receptors ligands and structures 
benchmarking database. J. Med. Chem. 2014, 57, 3117-25. 
40. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, 
A. J., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. 
Comput. Chem. 2009, 30, 2785-91. 
41. Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; 
Schmidtke, P.; Barril, X.; Hubbard, R. E.; Morley, S. D., rDock: A Fast, Versatile and Open Source 
Program for Docking Ligands to Proteins and Nucleic Acids. PLoS Comput. Biol. 2014, 10, e1003571. 
42. Korb, O.; Stutzle, T.; Exner, T. E., Empirical scoring functions for advanced protein-ligand 
docking with PLANTS. J. Chem. Inf. Model. 2009, 49, 84-96. 
43. Trott, O.; Olson, A. J., AutoDock Vina: improving the speed and accuracy of docking with a 
new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455-61. 

 

 


