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Abstract The demands on the accuracy of force fields for classical molecular dynamics simulations are steadily

growing as larger and more complex systems are studied over longer times. One way to meet these growing demands

is to hand over the learning of force fields and their parameters to machines in a systematic (semi-)automatic man-

ner. Doing so, we can take full advantage of exascale computing, the increasing availability of experimental data,

and advances in quantum-mechanial computations and the calculation of experimental observables from molecular

ensembles. Here, we discuss and illustrate the challenges we face in this endeavor and explore a way forward by

adapting the Bayesian inference of ensembles (BioEn) method [Hummer and Köfinger, J. Chem. Phys. (2015)]

for force field parameterization. In the Bayesian inference of force fields (BioFF) method developed here, the

optimization problem is regularized by a simplified prior on the force field parameters and an entropic prior act-

ing on the ensemble. The latter compensates for the unavoidable over-simplifications in the parameter prior. We

determine optimal force field parameters using an iterative predictor-corrector approach, in which we run simula-

tions, determine the reference ensemble using the weighted histogram analysis method (WHAM), and optimize the

BioFF posterior. We illustrate this approach for a simple polymer model, using the distance between two labeled

sites as the experimental observable. By systematically resolving force field issues, the BioFF corrections extend

to observables not included in ensemble reweighting. We envision future force field optimization as a formalized,

systematic, and (semi-)automatic machine learning effort that incorporates a wide range of data from experiment

and high-level quantum chemical calculations and takes advantage of exascale computing resources.

1 Introduction

The predictive power of molecular dynamics (MD) sim-

ulations relies on the accuracy and the computational

efficiency of the applied force fields describing the molec-

ular interactions. Widely used semi-empirical force fields

aim to strike a balance between accuracy and efficiency

[1, 2]. The latter restricts their computational complex-

ity. Force fields are parameterized in part by quantum

mechanical calculations and in part by fitting calculated

observables to experimental data. For decades, molecu-

lar force fields have been adapted and re-parameterized

to fit an ever-growing resource of theoretical and exper-

imental information [3]. These cumulative efforts have
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dramatically increased the predictive power of MD sim-

ulations [4].

The advent of exascale computing makes it possible

– and ultimately necessary – to hand over the task of

force field optimization to machines in a formalized, sys-

tematic, and (semi-)automatic manner [5, 6, 7, 8, 9, 10].

However, the complexity of molecular force fields, their

high-dimensional parameter spaces, and the interde-

pendence of the parameters pose difficult challenges for

automated force field optimization. Whereas this prob-

lem is well recognized for classical mechanical energy

functions, a quite similar problem arises in modeling

using quantum mechanical descriptions since the lat-

ter also involve multiple model choices (say, which level

of description or which basis set to use), or extensive

parameterizations (e.g., in density functional theory).
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Intrinsically, force field calibration is a problem of

statistical inference, where we update our current un-

derstanding of molecular interactions, e.g., from quan-

tum mechanical calculations for molecular fragments,

with uncertain information from various sources [9, 11].

Quantum mechanical calculations, experimental mea-

surements, MD simulations, and the forward calcula-

tions of experimental observables from molecular mod-

els are all subject to systematic or sampling errors. In a

Bayesian formulation, a prior distribution on the force

field parameters encodes our current state of knowl-

edge which is then updated with new experimental data

through the likelihood. Unfortunately, it is difficult to

define such priors. The complex and often strong inter-

dependence of force field parameters is hard to quantify.

Consequently, without good priors, even small changes

in the parameters can lead to highly nonphysical con-

formations in Boltzmann sampling.

We illustrate these challenges and explore the use

of maximum entropy [12, 13, 14, 15] and Bayesian [16,

17, 18] ensemble refinement methods to compensate for

the lack of good priors on the force field parameters. In

ensemble refinement, we use experimental data to re-

fine the statistical weights of an ensemble of structures.

Our starting point is the Bayesian inference of ensem-

bles (BioEn) method [17]. In BioEn, an entropic prior

acts on the statistical weights of the structures in an en-

semble such that refinement changes the weights only

minimally to better fit the experimental data. Prop-

erties of the system that are independent of the data

remain untouched.

Here, we extend BioEn by expressing the statistical

weights as functions on selected force field parameters

and by adding a prior on these parameters. Unavoidable

deficiencies in the parameter prior are compensated by

the entropic prior on the ensemble of structures. In this

Bayesian inference of force fields (BioFF) method, we

iteratively optimize the resulting BioFF posterior by in-

corporating the results of MD simulations with original

and newly optimized force field parameters to ensure

convergence. To illustrate the BioFF method, we infer

the value of the single force field parameter of a simple

polymer model using a single label distance as experi-

mental data.

The article is organized as follows. In Sect. 2 we

briefly review ensemble refinement in the context of

force field parameterization and introduce the BioFF

method. We present method details in Sect. 3 and a

simple proof of principle for a two-dimensional polymer

in Sect. 4. We discuss the results in a broader context

in Sect. 5 and present an outlook on the future of force

field optimization and conclusions in Sect. 6.

2 Theory

We briefly introduce ensemble refinement methods and

review their use for force field optimization before pre-

senting the BioFF method. We do so step-by-step: We

first present the BioFF posterior in its general form as

a functional on the domain of probability distributions,

which we then adapt for discrete ensembles. For opti-

mization, we express the discrete weights as function of

the force field parameters using reweighting. The key to

the efficiency of BioFF by reweighting is to pool all MD

simulations generated for different force fields and cal-

culate new reference weights using the binless weighted

histogram analysis method (WHAM) [19, 20, 21, 22].

Equally, one can use Bennet’s acceptance ratio (BAR)

method [23]. The latter has to be executed only once

for each new simulation added to the pool. We sketch

the BioFF-by-reweighting procedure at the end of the

section.

2.1 Background and preliminaries

In ensemble refinement, we adapt the statistical weights

of the structures in an ensemble to obtain better agree-

ment with experimentally measured ensemble averages

[14, 17, 24]. By properly accounting for uncertainties

and balancing the information encoded in the struc-

tural ensemble and in the experimental data, the re-

sulting ensemble is a better representation of the true

ensemble underlying the experiment. The structural en-

semble is usually generated in free or restrained MD

simulations. The refinement of such simulation ensem-

bles by reweighting ensures convergence with ensemble

size [17].

Many of the current approaches to ensemble refine-

ment that appear to be different on the surface are ac-

tually quite similar and will in principle provide nearly

the same optimal ensembles if we encode the same prior

knowledge [12, 16, 17, 18, 25, 26, 27, 28]. In the follow-

ing, we use the formalism of the BioEn method [17] to

introduce ensemble refinement. We then adapt BioEn

for force field parameterization.

Consider a potential energy function U(x|c) for con-

formations x that depends on a vector of m force field

parameters ci, c = (c1, . . . , cm). Structures are dis-

tributed according to the normalized Boltzmann dis-

tribution

p(x|c) =
exp[−βU(x|c)]∫
dx′ exp[−βU(x′|c)]

(1)

β = 1/kBT is the inverse temperature and kB is Boltz-

mann’s constant.
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For uncorrelated Gaussian errors, the BioEn poste-

rior is given by the functional [17]

P[p(x)] ∝ e−θSKL−χ2/2 (2)

where the Kullback-Leibler divergence [29] is given by

SKL =

∫
dx p(x) ln

p(x)

p(x|c0)
(3)

and where

χ2 =

M∑
k=1

[∫
dx p(x)yk(x)− Yk

]2
σk2

(4)

is the chi-squared defined as the sum of the squared er-

rors in units of the estimated standard errors. p(x|c0)

is the reference ensemble or c0-ensemble. Yk are the M

experimental data points, yk(x) are the corresponding

calculated observable values for structure x, and σk is

the combined theoretical and experimental error. θ ex-

presses our confidence in the reference ensemble [12, 17].

By maximizing the BioEn posterior given by Eq. (2)

with respect to p(x), we obtain the BioEn optimal en-

semble

p(x) ∝ p(x|c0) exp

 M∑
j=1

yj(x)fj

 (5)

determined self-consistently by theM generalized forces

fk = −〈yk〉 − Yk
θσk2

. (6)

Angular brackets indicate the average over the N struc-

tures in the optimal ensemble, i.e., 〈yk〉 =
∫
dx p(x)yk(x)

for a normalized p(x). Thus, the mean force to restore

the reference distribution is exactly balanced by the

mean force to fit the data [17]. The generalized forces

correspond to Lagrange multipliers in the correspond-

ing expressions for Eq. (5) in the maximum entropy

formulations of ensemble refinement [13, 24, 27, 30, 31].

The generalized forces parameterizing the optimal en-

semble can be efficiently determined by gradient-based

optimization methods [32, 33]. The optimal ensemble

corresponds to a Boltzmann ensemble∝ exp[−βU(x|c0)−
β∆U(x)], where the energy is given by the sum of the

potential energy of the reference ensemble βU(x|c0)

and a correction term

β∆U(x) = −
M∑
k=1

yk(x)fk (7)

which is linear in the calculated observables yαk = yk(xα)

[13, 16, 17].

For well sampled ensembles, the bias energy given

by Eq. (7) can be used to update force field param-

eters. However, in general, it is not guaranteed that

we can adapt the force field parameters to fit β∆U(x),

because the correction may not be adequately repre-

sentable given the functional form of the force field.

In the special case of 3J couplings, Cesari et al. ex-

ploited the functional similarity of the Karplus equation

to dihedral potentials to calibrate RNA force fields [27].

More recently, Cesari et al. generalized this approach

and replaced the observables yk(x) in the expression

for the optimal ensemble, Eq. (5), by a potential en-

ergy correction function and treated the generalized

forces as fitting parameters [34]. A regularized error

function keeps the calculated observables close to the

measured values and the fitting parameters small. Ce-

sari et al. tune the latter using a parameter to balance

experiment and MD simulations similar to the BioEn

confidence parameter.

In any systematic approach to force field refinement

[5, 27, 34, 35, 36], we have to regularize the problem

and balance the information from experiment and MD

simulations for the given uncertainties. BioEn has both

features already built in. In the following, we adapt

BioEn for systematic force field refinement.

2.2 The BioFF posterior

For force field refinement, we restrict the function space

of p(x) in the BioEn posterior, Eq. (2), to probabil-

ity distributions parameterized by c, i.e., to p(x|c) ∝
exp[−βU(x|c)]. Note that c denotes the parameters we

want to optimize and that p(x|c) will usually depend on
additional force field parameters. Doing so, the BioEn

posterior becomes a function on c. Introducing an ad-

ditional prior p0(c) on the force field parameters, we

obtain the BioFF negative log-posterior as

L(c) = − ln p0(c) (8)

+θ

∫
dx p(x|c) ln

p(x|c)

p(x|c0)

+

M∑
i=1

[∫
dx p(x|c)yi(x)− Yi

]2
2σi2

The BioFF optimal solution satisfies

0 = L′(c) = −p
′
0(c)

p0(c)
(9)

+θ

∫
dx p′(x|c)

[
ln

p(x|c)

p(x|c0)
+ 1

]
+

M∑
i=1

∫
dx p′(x|c)yi(x)

[∫
dx p(x|c)yi(x)− Yi

]
σi2
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where prime (′) denotes a gradient with respect to c.

We show next how to optimize the BioFF posterior for

a given ensemble of structures, which is at the core of

the BioFF-by-reweighting procedure presented below.

2.3 BioFF optimization by reweighting

Let us assume we performed a reference simulation us-

ing the force field parameters c0. For unbiased MD sim-

ulations, each of the N structures in this reference en-

semble has a statistical weights w
(0)
α = 1/N . The opti-

mal weights wα(c) of structures xα minimize the BioFF

posterior

L(c) = − ln p0(c) + θ

N∑
α=1

wα(c) ln
wα(c)

w
(0)
α

+ (10)

M∑
i=1

[∑N
α=1 wα(c)yi(xα)− Yi

]2
2σi2

and thus satisfy

0 = L′(c) = −p
′
0(c)

p0(c)
(11)

+θ

N∑
α=1

w′α(c)

[
ln
wα(c)

w
(0)
α

+ 1

]
+

M∑
i=1

∑N
α=1 w

′
α(c)yi(xα)

[∑N
α=1 wα(c)yi(xα)− Yi

]
σi2

The c-dependence of the weights wα(c) can be expressed

by reweighting of the c0-ensemble to the c-ensemble via

wα(c) = w(0)
α

p(xα|c)

p(xα|c0)

[
N∑
γ=1

w(0)
γ

p(xγ |c)

p(xγ |c0)

]−1
(12)

which becomes

wα(c) =
w

(0)
α e−β∆U(xα|c,c0)∑N

γ=1 w
(0)
γ e−β∆U(xγ |c,c0)

(13)

where ∆U(xα|c, c0) = U(xα|c) − U(xα|c0). The gra-

dient of these weights, which is needed to evaluate the

gradient of the negative log-posterior, Eq. (11), is given

by

w′α(c) = wα(c)

[
N∑
γ=1

wγ(c)βU ′(xγ |c)− βU ′(xα|c)

]
(14)

where we used that ∆U ′(xα|c, c0) = U ′(xα|c). The cal-

culation of the Hessian is straightforward. The Hessian

is needed for optimization using the (L-)BFGS algo-

rithm, for example. The evaluation of Eq. (13) for the

weights wα(c) is computationally cheap such that nu-

merical optimization can be performed efficiently.

2.4 Data for multiple different systems

We note that Eqs. (10) and (11) can readily be gener-

alized to incorporate Ms data from multiple different

systems s = 1, . . . , S sampled with Ns conformations

each, as will be the case in most force field optimiza-

tions. The negative log-likelihood then becomes

L(c) = − ln p0(c) + θ

S∑
s=1

(
Ns∑
α=1

wαs(c) ln
wαs(c)

w
(0)
αs

(15)

+

Ms∑
i=1

[∑Ns
α=1 wαs(c)yis(xαs)− Yis

]2
2σis2

)
For each system s, the weights satisfy Eqs. (13) and

(14) with wα, xα, and N replaced by wαs, xαs, and Ns,

respectively.

2.5 Data for individual conformations from quantum

mechanical calculations

In many practical cases, one also has data Yj(xj) (j =

M + 1, . . . ,M + M∗) for individual conformations xj ,

such as forces or potential energies from quantum me-

chanical calculations. We can include such data in BioFF

by adding a term χ2
∗/2 to the negative log-posterior,

χ2
∗ =

M+M∗∑
j=M+1

[yj(xj |c)− Yj(xj)]2

σj2
(16)

where yj(xj |c) is the corresponding forward calculation

for the force field with parameters c, and σj
2 is the

combined squared uncertainty of data and forward cal-

culation. χ2
∗/2 can be added to L(c) in Eq. (10). Its

gradient with respect to c is(
χ2
∗

2

)′
=

M+M∗∑
j=M+1

y′j(xj |c) [yj(xj |c)− Yj(xj)]
σj2

(17)

This expression can be added to the gradient L′(c) in

Eq. (11) to account for data reporting on the properties

of individual conformations.

2.6 The BioFF-by-reweighting method

In the following, we sketch an iteration procedure to de-

termine the BioFF optimal parameters by reweighting

(Fig. 1).

At iteration 0, we start with a single simulation us-

ing force field parameters ci=0 and calculate all M ob-

servables yαk for all N0 structures in this initial estimate

for the reference ensemble. The reference weights are

given by w
(0)
α = 1/N0. We minimize Eq. (8) numeri-

cally to obtain new parameters ci=1.
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Calculate reference weights 
from ALL simulations (WHAM). 

Calculate observables 
for new simulation.

Optimize BioFF posterior 
to obtain new force field 

parameters.

Molecular simulation for 
reference force fieldData

Converged?

Optimal force field 
parameters

No

Yes

Run simulation for 
new force field 
parameters.

Fig. 1 Flowchart of the BioFF-by-reweighting optimization
procedure. The input (green) are experimental or theoretical
data and a structural ensemble generated in a molecular sim-
ulation using the reference force field. The calculation of the
reference weights and observables, optimization of the BioFF
posterior, and running of an additional simulation for the
newly optimized parameters are iterated until convergence
(blue). The result are optimal force field parameter values
(red).

1. We run an additional simulation for the newly op-

timized force field parameters ci and generate Ni
structures in the ci-ensemble.

2. We calculate N =
∑i
j=0Nj new reference weights

w
(0)
α from all MD simulations at parameters c0, . . . , ci

using binless WHAM [20, 21, 22]. We calculate all

observables yαk for the new simulation ensemble.

3. We minimize Eq. (8) numerically to obtain new pa-

rameters ci+1.

4. We check for convergence of the force field parame-

ters. If not converged, we continue with step 1 and

the new force field parameters ci+1. If converged,

ci ≈ ci+1 are the BioFF optimal parameters and

we are finished.

In the presented procedure, we start with an un-

biased simulation using the reference force field. One

can, however, also use any unbiased or biased simula-

tions and different force fields than the reference force

field and apply binless WHAM to calculate the refer-

ence weights w
(0)
α in the c0-ensemble.

3 Methods

3.1 BioFF implementation

The ultimate goal of full automatization of force field

optimization requires careful consideration of steps that

would otherwise be handled by experienced practition-

ers. In particular, when reweighting using Eq. (13) we

have to ensure that the reference ensemble covers the

reweighted ensemble sufficiently. If the population of

structures in the overlap region between reference en-

semble and reweighted ensembles is too low, then the

reweighed ensemble will suffer from artifacts. As a mea-

sure of the coverage between the reference and reweighted

ensemble we use Kish’s effective sample size [37, 38]

given by

N ′ =

(∑N
α=1 wα

)2
∑N
α=1 w

2
α

(18)

In contrast to Rangan et al. [38], we use the effective

sample size N ′ itself and not the relative size N ′/N as a

measure. Our iterative optimization procedure ensures

good coverage of the optimal ensemble even far from

the reference ensemble, which grows with each itera-

tion. Consequently, an absolute measure for the quality

of sampling is needed because, relatively, the coverage

may get smaller with each iteration.

To be able to use common optimization libraries,

we include a threshold on the effective sample size N ′

given in Eq. (18) in the objective function. To account

for the reweighting limit in the objective function used

for optimization, we introduce

f(N ′, N∗) = exp

[
−kN

′ −N∗

N∗

]
+ 1 (19)

with a suitable chosen N∗ > 0 and k > 0. This func-

tion approaches one for N ′ > N∗. For N ′ < N∗, it

diverges exponentially. Defining the objective function

for optimization as

O(c) = L(c)f(N ′, N∗) (20)

we thus make sure that we do not extrapolate further

than supported by the data. Iterating optimization and

simulation at the new optimal parameter sets, we make

sure that O(c) and L(c) converge to the same optimum.

3.2 Polymer model

We use a simple polymer model to illustrate the princi-

ples of the BioFF method. The two-dimensional poly-

mer consists of a string of n beads, with positions ri and
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ri+1 of neighboring beads separated by a unit of length,

i.e., |vi| = 1, where the n− 1 bond vectors are given by

vi = ri+1 − ri. ∆φi is the angle between the two bond

vectors vi and vi+1 such that v>i = (sin(φi), cos(φi))

where φi =
∑i
j=1∆φj and ‘>’ indicates the transpose

of the column vector vi.

We introduce a potential energy acting on ∆φi

βU(∆φi|µi, κi) = − ln p(∆φi|µi, κi) (21)

such that the Boltzmann distribution corresponds to

the von Mises distribution given by

p(∆φi|µi, κi) =
eκ cos(∆φi−µi)

2πI0(κi)
(22)

where I0(κ) is the modified Bessel function of order

zero. The parameters κi > 0 determine the stiffness

of the polymer at positions i. µi introduce directional

biases.

The probability of a polymer with n beads is given

by

p(∆φ|µ,κ) =

n−1∏
i=1

p(∆φi|µi, κi)

=
e
∑n−1
i=1 κi cos(∆φi−µi)

[2πI0(κi)]n−1
(23)

where we introduced ∆φ = (∆φ1, . . . ,∆φn−1), κ =

(κ1, . . . , κn−1), and µ = (µ1, . . . , µn−1). Without distance-

dependent bead interactions, we can efficiently generate

uncorrelated polymer conformations by drawing n − 1

angles from the von Mises distributions given by Eq. (22).

We can include distance-dependent bead interactions

and sample conformations using Markov chain Monte

Carlo simulations and trial moves in the angles ∆φi.

Despite its simplicity, the 2(n−1) parameters of the

polymer model facilitate rich structural diversity. Stiff,

ordered parts have large κi-values. Disordered regions,

linkers, and short, flexible hinges, have low κi-values.

Turns can be introduced as short stretches with large

κi-values and non-zero µi-values of the same sign.

The computational efficiency of generating polymer

conformations and the simplicity of their visualization

in two-dimensions make the polymer model an attrac-

tive system for method development. We use the von

Mises polymer model here to sketch the BioFF opti-

mization procedure.

3.3 Calculation details

As a simple example, we use the von Mises polymer

model introduced above with n = 100 beads and κi = κ

and µi = 0 for i = 1, . . . , n − 1. We use the distance

between bead 1 and n/2 = 50 as the experimental ob-

servable. For validation, we additionally monitor the

end-to-end distance given by the distance between bead

1 and n.

We use the same model to generate synthetic exper-

imental data for a chosen value κexp = 10 of the single

force field parameter by drawing N = 10000 random

conformations according to Eq. (23). We calculate the

experimental value of the label distance as an average

over this ensemble.

For the initial reference simulation, we set the value

of our force field parameter, corresponding to c0, to

κ0 = 20. We draw N0 = 4000 conformations, which

form the initial reference ensemble and for which we

calculate the label distances. In contrast to the sam-

pling in MD simulations, the structures in the ensemble

are strictly uncorrelated. Correlations would have to be

taken into account in the WHAM evaluation.

To detect the limit of the reweighting, we set N∗ =

300 and k = 10 in Eq. (19). As we will see below, this

choice is rather conservative in the example considered

here. Lower values of N∗ or k will decrease the number

of iterations needed for convergence.

To detect convergence, we demand that for at least

two consecutive iteration steps the relative difference

between the previous and the actual value of κ is smaller

than 0.05, i.e., |κi − κi−1|/κi < 0.05.

For selected values of the confidence parameter θ =

10, 1 and 0.1, we optimize Eq. (20) using the Nelder-

Mead method [39] for the reference simulation and w
(0)
α =

1/N , which returns a new value κ1. For this param-

eter value, we run a simulation, i.e., we draw N1 =

4000 new structures, and calculate the label distances

for all conformations. We then perform binless WHAM

[20, 21, 22] to obtain new values of reference weights

w
(0)
α for the combined N = N0 + N1 structures. With

this new set of simulations, we again optimize the ob-

jective function given by Eq. (20). We iterate this pro-

cedure until convergence. Note that we do not use a

prior p0(κ) in this example.

4 Results

We obtain convergence for all values of θ (Fig. 2). For

the smallest value of the confidence parameter θ = 0.1,

the BioFF optimal value (κ ≈ 10.4) comes close to

the value underlying the synthetic experimental data

(κexp = 10).

For decreasing values of the confidence parameter θ,

BioFF optimal distance distributions converge to the

experimental distribution (Figs. 3 and 4). Reflecting

the fact that BioEn is less restrained in its optimiza-
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tion than BioFF, we find that the calculated average

label distance of the BioEn optimal solution is consis-

tently closer to the experimental value than the BioFF

solution for the same θ value. However, by correcting for

the underlying force field error, BioFF also improves the

statistics of the end-to-end distance, which we do not

use in the refinement (Fig. 4). By contrast, BioEn gives

only small improvements for the end-to-end distance

even at large values of θ. Indeed, the BioEn-optimal av-

erage end-to-end distance is approximately the same for

all θ-values examined here. By contrast, the BioFF end-

to-end distance distribution and their average converge

towards the reference with decreasing θ even though

they are not used in the refinement.

Note that the difference between the BioEn optimal

weights and the BioFF optimal weights increases with

decreasing values of θ. This difference is quantified by

the Kullback-Leibler divergence SKL between optimal

weights and the reference weights (see figure legends

in Fig. 3). For θ = 0.1, SKL ≈ 0.4 for the BioEn op-

timal weights and SKL ≈ 14 for the BioFF optimal

weights. The reason for this large difference between

the SKL values is that the label distance distributions of

the reference ensemble and the experimental ensemble

have a large overlap and thus little BioEn reweighting is

needed to obtain agreement. However, the potential en-

ergy distributions overlap only very little (Fig. 2), such

that the BioFF optimal weights are quite different from

the reference weights. By combining the ensembles ob-
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tained for different parameters ci with binless WHAM,

issues with poor overlap are effectively avoided in the

BioFF optimization.

5 Discussion

BioFF combines a simple prior on the force field param-

eters and an entropic prior on the statistical weights of

the sampled conformations. For good parameter priors,

the entropic prior can be neglected. A good prior prop-

erly accounts for the interdependence of the parameters

and their uncertainties. For poor parameter priors, the

entropic prior takes care that we do not move too far
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black dashed lines), BioEn (blue), and BioFF(orange). The
end-to-end distance was not used for refinement. The con-
fidence in the reference ensemble decreases top to bottom
(θ = 10, 1, 0.1).

from the reference ensemble. Indeed, the entropic prior

prefers parameter values that keep the Kullback-Leibler

divergence to the reference ensemble small.

The BioFF method can be viewed as an umbrella

of methods distinguished by the prior on the force field

parameters and the value of the confidence parameters

θ. If we set θ = 0 then the prior on the force field

parameters is the only a-priori regularization of the pa-

rameter optimization problem. In this case, the prior

has to have an appropriate functional form with accu-

rately known uncertainties to properly account for the

complex interdependence of parameters. If we use an

uninformative prior on the force field parameters and

θ > 0 then the a-priori regularization enters through
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the functional dependence of the weights on these pa-

rameters, Eq. (13), in the Kullback-Leibler divergence,

Eq. (3). If additionally the potential energy contains

terms of the same functional form as the observables,

Eq. (7), then the BioEn optimal ensemble and BioFF

optimal ensemble are the same [27].

The BioEn optimal ensemble poses a limit for the

BioFF optimal ensemble. For the same value of θ, BioEn

will essentially always provide a better fit to the exper-

imental data used in refinement while staying closer

to the reference ensemble than BioFF. In BioEn, the

Kullback-Leibler divergence and the experimental data

restrain the optimal statistical weights. In BioFF, the

functional dependence of the statistical weights on the

force field parameters and the force field parameter

prior provide additional restraints. As a consequence,

the less restrained BioEn posterior in Eq. (2) evaluated

for the BioFF optimal weights is lower than or, at best,

equal to that for the BioEn optimal weights.

Typically, one will select certain force field param-

eters for optimization based on prior knowledge. Ex-

perience with the force field and physical insight on

which structural features are probed by the experimen-

tal observables guide this process. For example, if an

atomistic force field provides an ensemble of intrinsi-

cally disordered proteins that is too compact then likely

candidates are dihedral angles and the water-protein in-

teraction [40, 41, 42].

In a more systematic approach, force field param-

eters can be identified as candidates for optimization

by a sensitivity analysis. Given a set of ensembles cor-

responding to U(x|ci), we can use binless WHAM to

estimate the sensitivity of the estimated observable av-

erages 〈yk〉c as a function of c to the different force field

parameters cj by

Jkj = ∆cj
(〈yk〉c − Yk)

σk2
∂〈yk〉c
∂cj

(24)

Here, ∆cj is the uncertainty in coefficient cj as encoded,

e.g., in a Gaussian prior. To linear order, the dimen-

sionless |Jkj | reports on the improvement achievable for

observable k by varying parameter j. Indeed, we have

∆cj∂χ
2/∂cj = 2

∑
k Jkj , i.e., the sum of the Jkj is twice

the change in χ2 associated with a small change ∆cj .

BioFF optimization enables us to learn about the

interdependence of parameters. For the BioFF optimal

solutions, we can perform a sensitivity analysis by eval-

uating the Hessian at the optimum. Performing this

analysis for different sets of parameters, we are able

to quantify how informative the experimental data are

with respect to individual parameters. Importantly, the

off-diagonal elements provide information about the in-

terdependence of the parameters. This information is

conditioned on the molecular systems we are simulat-

ing and the observables that have been measured in

experiments and used for parameter refinement.

The reweighting approach in BioFF is more efficient

for soft degrees of freedom but it can also handle stiffer

degrees of freedom. An example for a soft degree is the

dispersion energy parameter of the Lennard-Jones in-

teraction. Adapting this parameter, mainly the depth

of the minimum changes. In general, conformations will

be part of both the reference and the reweighted ensem-

ble with significant albeit different weights. By contrast,

the diameter of a Lennard-Jones particle is a stiff de-

gree of freedom due to the diverging repulsive part of

the interaction. A small decrease of the diameter tends

to introduce new conformations not previously sampled

in the reference simulation. Consequently, reweighting

is less efficient in predicting ensembles for decreased di-

ameters. In BioFF, the iteration of parameter optimiza-

tion for a given ensemble and running new MD simula-

tions for optimized parameters will converge eventually.

Convergence can be sped up by softening stiff degrees

of freedom, e.g., by replacing the diverging repulsive in-

teraction by a soft-core potential of finite height, and

using WHAM to obtain the proper reference weights.

6 Conclusions and Outlook

Optimized force fields from diverse data and systems.

Force field parameterization is a complex process with

broad implications for the MD simulation community.

In light of the many possible pitfalls, the optimization

has to be performed with great care. Seemingly small

corrections of certain force field parameters driven by
data for one system may cause unexpected, negative

consequences in MD simulations of other systems. In

practice, it is therefore important to include a wide

range of systems and data in the optimization process

and to test the results on systems and data not used in

the optimization process.

Covering diverse systems and data requires careful

accounting for the respective errors. However, uncer-

tainty quantification is a recognized challenge [9, 43,

44], as we are dealing with errors in experiments, quan-

tum mechanical calculations, statistical sampling, and

forward calculation of observables. The respective er-

rors and error models will have to be carefully and reg-

ularly re-assessed to minimize the risk that data with

poorly modeled errors skew the optimization process.

Force field optimization as a community effort.The re-

quirement to cover a wide range of systems and data

makes force field improvement a community effort. Data

and computing resources of individual researchers are
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necessarily limited. To include as wide a range of in-

puts and tests as possible, data should be pooled, and

optimization and testing tasks should be distributed.

Indeed, ultimate validation happens in the field by sci-

entists applying these force field and checking for con-

sistency.

Practitioners choose force fields depending on the

molecular system at hand, their research question, and

their prior experience with molecular force fields. They

can compensate for known deficiencies by applying bi-

ases during MD simulations or by adapting their anal-

ysis, for example. However, for structurally and chem-

ically heterogeneous systems, large system sizes, and

long simulation times, it becomes more difficult to find a

force field that satisfies all demands. Therefore, the de-

velopment of computationally efficient force fields that

accurately account for a wide range of data for diverse

systems becomes critical.

Systematic and automated force field optimization. We

can only meet the steadily growing demands on the ac-

curacy of molecular force field by applying systematic

and comprehensive approaches to force field parame-

terization. We envision that in a systematic and (semi-

)automatic process, force field parameters are validated

and updated and their uncertainties are quantified. Ex-

perimental data and their uncertainties would be col-

lected in an open data base for a wide ranges of meth-

ods, systems, and experimental conditions. Importantly,

the results of high-level quantum chemical calculations

can be readily included in the process, both at the level

of priors (e.g., by defining tolerable variations of cer-

tain parameters) and of data (by entering into χ2; see

Sect. 2.5). For each of the systems, molecular models

are built. Uncertainties in the modeling are accounted

for by building multiple models for the same system

and weighing them according to prior knowledge in the

subsequent refinement. One then runs (un-)biased MD

simulations for these systems, combines them with pre-

vious runs, and quantifies the sampling errors. From

these ensembles, one calculates the experimental ob-

servables and quantifies the uncertainties in these calcu-

lations. By performing Bayesian inference of the param-

eters, e.g., using BioFF or similar methods, the different

sources of errors can be taken into account. Validation

of the new parameters involves systems, observables,

and data not included in the optimization.

Following this rough outline, resources could be set

aside at a super-computing center to regularly perform

force field parameterization, validation, and uncertainty

quantification. Users can submit experimental data, molec-

ular models, and trajectories. With this steadily grow-

ing wealth in data, models, and MD simulations one

could refine force fields with different emphasis. Spe-

cialized force fields can be parameterized for protein

folding, liquid-liquid phase separations, protein-ligand

binding, and so on. For structurally and chemically het-

erogeneous systems, as we encounter in (sub-)cellular

structures, we need to parameterize general-purpose force

fields. The comparison of general-purpose force fields

with specialized force fields also enables us to identify

the limitations stemming from the chosen functional

form of the force fields, i.e., model adequacy [9].

BioFF produces experimentally refined simulation mod-

els.The BioFF approach also addresses a fundamental

problem in MD simulations, namely whether to accept

or reject the simulation model as a faithful description

of the system of interest. Quantitative comparisons of

MD simulations to experiment often end in a frustrat-

ing experience, in which for a given system some of the

observables agree well with experiment, yet others not

so well or not at all. One is then left with the decision

whether the simulation model should be discarded as a

whole (on the basis of partial but significant disagree-

ments) or accepted for further analysis. This decision

is a serious one since one of the goals of molecular sim-

ulation studies is to gain insight beyond what can be

deduced readily from experiment alone. By providing a

means to incorporate the experimental information into

the model, frameworks like BioFF allow one to refine

the original simulation model “on the fly” to account

for the measurements. By providing an experimentally

refined model, BioFF offers a possible route out of the

dilemma of accepting or rejecting the original model.

The outcome of BioFF is not only an empirically
optimized force field but also an ensemble of molecular

conformations that can then be analyzed further. As

such, BioFF can be viewed as an enhanced sampling

method. Seen from this perspective, the procedure ad-

dresses the dual challenges of obtaining better simula-

tion models and of gaining insight into molecular sys-

tems on the basis of MD simulations that capture “all”

available experimental information and remain solidly

based on physics, which enters, e.g., through quantum

mechanical calculations used in the parameterization.

Improving the functional form of force fields.BioFF, like

many other approaches [5, 27, 34, 35, 36], tries to work

around one main challenge in force field refinement: the

lack of good force field priors. Ideally, priors not only

act on the parameters but also on the functional form of

the force fields. Going forward with any of these meth-

ods, we will be able to better understand force fields,

the interdependence of their parameters and their un-

certainties, and the limitations due to their functional
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forms. We will come up with better priors and methods

to develop force fields along the way.

Python 3 source code using Numpy [45], Scipy [46],

Matplotlib [47], and Numba [48] and Jupyter notebooks

[49] to perform BioFF for the simple example case pre-

sented here can be found at https://github.com/bio-phys/

BioFF. This code uses the open-source BioEn optimiza-

tion software (https://github.com/bio-phys/BioEn)

and an open-source binless WHAM implementation (https:

//github.com/bio-phys/binless-wham).
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