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1 Abstract
Silica-based materials including zeolites are commonly used for wide ranging
applications including separations and catalysis. Substrate transport rates in
these materials can significantly influence the efficiency of such applications.
Two factors that contribute to transport rates include 1) the porosity of the
silicate matrix and 2) non-bonding interactions between the diffusing species
and the silicate surface. These contributions generally emerge from disparate
length scales, namely ‘microscopic’ (roughly nanometer-scale) and ‘macroscopic’
(roughly micron-scale), respectively. Here, we develop a simulation framework
to estimate the simultaneous impact of these factors on methane mass transport
in silicate channels. Specifically, we develop a model of methane transport us-
ing homogenization theory to obtain transport parameters valid at length scales
of hundreds to thousands of nanometers. These parameters implicitly reflect
interactions taking place at fractions of a nanometer. The inputs to the ho-
mogenization analysis are data from extensive molecular dynamics simulations
that incorporate atomistic-scale interactions, processed to yield local diffusion
coefficients and mean force potentials. With this model, we demonstrate how
nuances in silicate hydration and silica/methane interactions impact methane
diffusion rates in silicate materials, including the effects of silicate surface chem-
istry such as the presence of silanol groups. The molecular dynamics simulations
indicate that methane diffusivity at the silica surface is lower than the bulk-like
rates observed at the center of channels of sufficient width. However, potentials
of mean force generally evidence attractive methane/silica interactions that en-
hance diffusion overall. By simultaneously accounting for both of these effects,
we show that the effective diffusion coefficient for the nanoporous silicate can be
approximately double the value of estimates assuming fully bulk-like behavior in
the channel. This study therefore demonstrates the importance of determining
diffusion coefficients and potentials of mean force at an atomistic level when esti-
mating transport properties in bulk materials. Importantly, we provide a simple
homogenization framework to incorporate these molecular-scale attributes into
bulk material transport estimates. This hybrid homogenization/molecular dy-
namics approach will be of general use for describing small molecule transport
in materials with detailed molecular interactions.

2 Introduction
Porous media are encountered in many applications in a variety of fields of sci-
ence and engineering, including chemical reactors, groundwater analysis, petroleum
extraction, and even some types of artificial organs [1, 2]. In particular, these
applications often depend on the rate of transport of a given reactant, contam-
inant, or other chemical species through the fluid-filled pores of the material.
The successful prediction of macroscopic transport properties such as Fickian
diffusion coefficients requires proper consideration of the physical and chemical
interactions within the system at smaller scales. Previous studies of the trans-
port properties of porous media have noted that the structure and behavior
of the pore fluid differs significantly from bulk conditions for pores that are
sufficiently small. For example, recent molecular dynamics (MD) studies have
shown that water under confinement exhibits changes in the dynamics of the
hydrogen bond network of the water molecules, with effects similar to a reduc-
tion in temperature [3]. A study of water confined to a gap of 6.5 to 14.5 Å
between two graphene plates observed a layered water structure, with the num-
ber of layers increasing as the gap widened [4]. Water confined to metal-organic
frameworks has been found to exhibit spatially heterogenous water structure [5].
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Other studies, described below, have used various parameters to quantify the
difference in fluid transport properties between bulk and confined conditions.
Such approaches include spatial variations of the diffusion coefficient within the
pore space, or the consideration of a Potential of Mean Force (PMF) within the
pore space.

A variety of prior studies have investigated hydrocarbon transport in silicate
materials. Hansen et al. [6] and Hansen and Keil [7] considered the alkylation
of benzene within a zeolite catalyst. The reaction and diffusion were considered
in the gas phase. Consequently, the Maxwell-Stefan diffusion equations were
used rather than Fickian or Smoluchowski diffusion. Information from MD and
kinetic Monte Carlo simulations was used to provide inputs to the continuum
diffusion model. The continuum diffusion model was evaluated analytically
under an assumption of spherical symmetry, rather than a numerical simulation
using the pore geometry. One key focus of the study was to predict reaction
rates agreeing with experiment, which is not attempted herein.

In an analysis conducted by Bui et al. [8], a channel of one nanometer in
width was studied in various materials, including silica. The study computed the
diffusion coefficient within the channel using the Mean Squared Displacement
(MSD) of unrestrained methane gas molecules. This results in a coefficient
value that does not distinguish spatial variations within the channel, reducing
the accuracy in inhomogeneous situations [9]. No multi-scaling method was
applied to the result; behavior at larger scales was not investigated. In addition
to using a metadynamics approach to evaluate the free energy variations within
the channel, umbrella sampling was also applied. Finally, the silica structure of
the Bui et al. [8] study does not appear to include silanol terminations at the
surface. The silanol groups present on the silicate surfaces studied herein would
be expected to increase the affinity for water molecules, leading to different
results for the water density within the channel, and consequently affecting the
PMF and diffusion coefficients. The study found anisotropy in the diffusion
coefficient, with differing coefficients for directions perpendicular to the silica
face than parallel to it.

Collin et al. [10] used MD to study water in a cylindrical nanopore of 1 nm
diameter. In these simulations, 0-25% of the silanol groups on the pore surface
were deprotonated, leaving behind a negative surface charge that was found
to strongly affect the water density near the surface. A variety of alkali metal
counterions were used to balance the net electrical charge of the system, but the
results were not found to vary significantly among the different alkali metals.
No PMF calculation was included in the study. The MSD of unrestrained water
molecules was used to obtain the self-diffusion coefficient of water. The authors
note that this procedure had lower precision in the nanochannel than in bulk
water. While this lower precision was not investigated further, we speculate
that it might have been caused by inhomogeneity of the conditions within the
pore, insufficient sampling in thermodynamically unfavorable regions, or the
influence of a PMF. A diffusion coefficient for the entire pore was also calculated
by analysis of the diffusion behavior of a subset of water molecules. The authors
found agreement between these two procedures.

Here, we propose a multi-scale model incorporating the chemical and phys-
ical processes that dominate different portions of the hierarchy of scales. We
demonstrate these techniques on an example system consisting of methane as
the solute, water as the solvent, and a nanoporous silicate medium. The silicate
geometry is shown in Figure 1. The mathematical procedure of homogenization
[11, 12] is used to aggregate the non-bulk behavior within the nanopore into
an effective diffusion coefficient for a larger analysis scale. In order to include
spatial variations of the local diffusion coefficient and the presence of a PMF,
the homogenization procedure is based on the Smoluchowski diffusion equation.
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Along with the local diffusion coefficent and the PMF, local water density values
are also used to assess the change of the water structure from bulk conditions.
These parameters are measured inside the pore from MD simulation trajectories.
A similar approach has previously been applied to the permeability, diffusion,
and consolidation properties of a bentonite clay [13].

We explored variations of the nanoporous silicate system including alter-
ations of the porosity and changes to the surface chemistry of the silicate. We
found that the local variations in the diffusion coefficient, alone, tend to result
in suppressed diffusion within the pore overall. In the fully protonated case,
the channel contains areas where the PMF is attractive to methane relative
to bulk water, and the effect of this potential is to result in a net increase in
the effective diffusion coefficient. However, partial deprotonation of the silicate
surface appears to remove the attractive regions of the PMF, resulting in a fur-
ther reduction of the effective diffusion coefficient. Such deprotonation would
be present under most pH conditions [10].
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Figure 1: Silicon dioxide (SiO2) matrix with ‘slit’ of variable height (1.2-2.0
nm). A periodic material with this geometry would contain multiple parallel
channels. a) Sketch showing key dimensions, coordinate axes, and simulation
boundaries. b) Rendering of the 1.2 nm channel along the X-axis in the fully
protonated condition. Silicon (Si) atoms are tan, oxygen (O) atoms are red,
and hydrogen (H) atoms are white. c) Oblique rendering of the 2.0 nm channel
with 27% deprotonation after solvation and equilibration. Sodium (Na) ions are
shown as purple spheres. d) Same view as (c) without water molecules. The
methane molecule is visible in white, near mid-channel. The silicate structures
provided in Emami et al. [14, 15] were used to construct this geometry in the
MD simulations.

5



3 Results
We conducted a series of homogenization and MD simulations to assess how
methane diffusion at larger scales is influenced by non-bulk behavior within the
nano-scale silicate channel.

First, we applied the homogenization analysis to the silicate channel geome-
try under the assumption that the diffusion behavior of methane through water
within the channel would be identical to the diffusion behavior of methane
in bulk water. Under this assumption, the effective diffusion coefficient for
the nanoporous silicate can also be obtained by other calculation procedures.
Comparison of the results from different methods also serves to validate the ho-
mogenization procedure. These simulations are discussed in Sect. 3.1. A further
validation of the homogenization procedures, using an assumed potential within
the channel, is discussed in Sect. 3.2.

Next, we used MD simulations to quantify the differences between aqueous
methane diffusion in the silicate channel and the diffusion of methane in bulk
water. This included bulk simulations described in Sect. 3.3 for validation and
comparison purposes. Sect. 3.4 then describes the findings from the MD sim-
ulations for an example channel. Variations of the channel size, and thus the
porosity of the nanporous silicate, are examined in Sect. 3.5, and variations in
the degree of protonation of the channel surfaces are examined in Sect. 3.6.

Finally, the transport behavior observed in the MD simulations is incorpo-
rated into the homogenization simulations in Sect. 3.7.

3.1 Homogenization assuming bulk behavior in the chan-
nel

Solvated in bulk water, a single methane molecule experiences no net PMF,
and the diffusion coefficient is both isotropic and homogenous. Assuming such
conditions inside the silicate channel leads to a model with purely Fickian dif-
fusion. The effective diffusion coefficient for larger scales can be estimated from
Equation 1 [2].

Dmacro

Dbulk
=
εδ

τ
(1)

where
ε = effective porosity, ≤ 1
δ = constrictivity, ≤ 1
τ = tortuosity, ≥ 1

In this case, the pore is straight, giving a tortuosity of τ = 1. The assumption of
bulk conditions also implies a constrictivity of δ = 1. The effective porosity, ε,
is easily computed from the ratio of the channel cross-sectional area to the unit
cell area. For the channel geometry shown in Figure 1, this effective porosity
is identical to the porosity of the silicate material. The porosity, φ, is the ratio
of the channel volume to the unit cell volume, and is also known as the free
volume fraction for this reason.

Equation 1 provides an analytical estimate of the effective diffusion coef-
ficient that can be compared to the results from homogenization simulations.
However, the parameters of Equation 1 are not easily obtained in more compli-
cated situations.

Homogenization simulations were conducted for three different channel widths.
The resulting effective diffusion coefficients are shown in Table 1. These results
are also plotted in the left panel of Figure 9. For further validation, the effec-
tive diffusion coefficient was also computed directly from the fluxes obtained by
simulations of Fick’s Law as described in Sect. 6.2.3. All three methods gave
the same results to at least three significant figures.
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Table 1: Effective diffusion coefficient assuming bulk behavior in the channel.
The results are normalized to the bulk diffusion coefficient.

Channel Width
[nm]

Analytical
Estimate

Homogenization
Result

Flux-based
Result

1.2 0.207 0.207 0.207
1.6 0.258 0.258 0.258
2.0 0.303 0.303 0.303

3.2 Homogenization assuming a quadratic potential in the
channel

The analysis in Sect. 3.1 validates the homogenization approach for case of
purely Fickian diffusion, where there is no mean force potential driving or re-
tarding the diffusion. Situations where there is a spatially varying potential
are described by the Smoluchowski equation. To validate the homogenization
simulation methodology for the Smoluchowski diffusion equation, we conducted
additional simulations that could be compared to a theoretical result. The local
diffusion coefficient was assumed to be isotropic and equal to the bulk diffu-
sion coefficient at all locations within the channel. A quadratic potential, as
described by Equation 2 was also applied.

V (z) = Az2 +B (2)
In this quadratic potential, z is the distance in the z-coordinate from the center
of the channel. The values of the constants A and B were selected such that
the minimum and maximum values of the potential within the channel were in
the same range as the minima and maxima of the PMF results from the MD
simulations, which we present later in Sect. 3.5. This required the potential to
rise more quickly in smaller channels than in wider ones, which is a phenomenon
also observed in the PMF data from the MD simulations. These quadratic
potentials are plotted in Figure S3. The analytical solution for this result is
presented in the Supplement.

The effective diffusion coefficient results from these simulations are compared
to both the analytical values and the results computed directly from fluxes ob-
tained from simulations of the Smoluchowski equation in Table 2. All three
methods gave the same results to at least three significant figures. The homog-
enization results and analytical calculation results are also plotted in the left
panel of Figure 9.

Table 2: Effective diffusion coefficient for a quadratic potential and bulk diffu-
sion coefficient. The results are normalized to the bulk diffusion coefficient.

Channel Width
[nm]

Analytical
Estimate

Homogenization
Result

Flux-based
Result

1.2 0.289 0.289 0.289
1.6 0.360 0.360 0.360
2.0 0.423 0.423 0.423
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3.3 Behavior of methane in bulk water in molecular dy-
namics simulations

For later comparison to the MD simulation results within the silicate channel,
and to validate our procedures, we performed simulations of a single methane
molecule in bulk water. The diffusion coefficient of methane in bulk water
was calculated from these simulations for comparison with experimental results
presented in Witherspoon and Saraf [16].

First, a set of simulations was conducted where the methane molecule was
not restrained. In this case, the MSD should increase linearly with respect to
time, with a slope equal to 6D [17]. Accordingly, for these simulations, the
MSD was plotted against time and fit to a linear function, with the diffusion
coefficient calculated from this fit. Results from three trials are shown in Figure
S1. The resulting diffusion coefficients are shown in Table 3.

Table 3: Diffusion coefficient results from unrestrained methane simulations in
bulk water.

Trial
Diffusion
Coefficient

(1× 10−5cm2/sec)
Trial A 2.39
Trial B 1.21
Trial C 4.51

Mean of Trials
±Standard Error

of the Mean
2.70± 0.96

While the use of unrestrained simulations for obtaining the local diffusion
coefficient is relatively simple, it is not appropriate for situations where the
diffusion coefficient exhibits significant spatial variation [9]. Accordingly, the
local diffusion coefficient was also obtained from simulations of a restrained
methane molecule in bulk water. The calculation procedure is described in
Sect. 5.2.

The restrained methane simulations in bulk water were conducted with two
different force fields. The force field parameters for silicate from Emami et al.
[14, 15] were desired for the simulations of the silicate channel. For compatibility
with this force field, the force field parameters for the united atom approxima-
tion of methane were taken from Jorgensen, Madura, and Swenson [18], and the
SPC water model was used. As this validation does not contain any silicate, the
first force field used is a combination of the Jorgensen et al methane parame-
ters and the SPC water model, designated as the Jorgensen/SPC force field. In
contrast, Daldrop, Kowalik, and Netz [19] used the GROMOS 53A6 [20] force
field in their validation, and found that it was capable of matching experimental
results, so this force field was also tested for comparison to the Jorgensen/SPC
force field. Each simulation was 16 ns in duration, and was conducted at a
temperature of 298 K. Both force fields gave MSD results that approximated
the expected result of kBT/K (where K is the spring constant for the harmonic
restraining potential applied to the methane), and the two simulation values
were in agreement with one another, as shown in Table S1.

An example Position Autocorrelation Function (PACF) curve from each sim-
ulation is shown in the upper panel of Figure 2. The diffusion coefficient for
methane in bulk water was then calculated in both simulations from the PACF
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for each coordinate. The results are shown in Table 4. The GROMOS 53A6
force field matches the experimental results quite well, as reported by Daldrop,
Kowalik, and Netz [19]. In contrast, the Jorgensen/SPC force field overesti-
mates the diffusion coefficient by roughly 60%, because it gives a slightly lower
curve for the PACF as shown in the upper panel of Figure 2.

Table 4: Diffusion coefficient results from simulations of methane in bulk wa-
ter. The error reported for the experimental result by Witherspoon and Saraf
[16] was the standard deviation of the mean from four to six repeated runs of
the experiment. The experimental result did not distinguish between different
directions. The error for the molecular dynamics (MD) simulation results is the
standard error of the mean over the three directions of measurement.

Direction
Experimental
Result [16]

(1× 10−5cm2/sec)

Jorgensen/SPC
Force Field

(1× 10−5cm2/sec)

GROMOS 53A6
Force Field

(1× 10−5cm2/sec)
x n/a 3.13 1.91
y n/a 2.96 1.73
z n/a 3.06 1.85

Mean Value 1.88± 0.01 3.05± 0.05 1.83± 0.05

The lower panel of Figure 2 summarizes the validation results by averaging
over the directional components. Notably, the MSD approach for unrestrained
methane exhibited greater variation in the diffusion coefficient than the PACF
approach for restrained methane. The PACF and MSD approaches using the
Jorgensen/SPC force field gave notably higher diffusion coefficient values than
the experimental results of Witherspoon and Saraf [16], but were in general
agreement with one another. Accordingly, local diffusion coefficient values in
the silicate channel computed using the Jorgensen/SPC force field should be
normalized by the bulk value presented here for correct interpretation. Specifi-
cally, the local diffusion coefficient values are divided by 3.0 × 10−5cm2/sec to
report the ratio of local diffusion to bulk diffusion.
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Figure 2: Upper panel: Comparison of Position Autocorrelation Functions
(PACFs) for methane in bulk water using two different force fields. The PACF
values are normalized to their respective coordinate Mean Squared Displacement
(MSD) values. Both curves are for the z-direction. Lower panel: Comparison of
diffusion coefficient for methane in bulk water from the experimental results of
Witherspoon and Saraf [16], the PACF method using two different force fields,
and the MSD method. The error bars for the experimental result are the re-
ported standard deviation from repeated experimental trials. Each restrained
molecular dynamics (MD) simulation resulted in a measurement three orthog-
onal directions, with the arithmetic mean shown here. The error bars for the
restrained MD simulation results are the standard error of the mean from the
three orthogonal measurements. Three trials of the unrestrained MD simulation
were conducted, with the arithmetic mean shown here and error bars represent-
ing the standard error of the mean from the three trials.
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3.4 Effects of confinement in molecular dynamics simula-
tions

We conducted MD simulations of aqueous methane inside the silicate channel
to investigate the influence of confinement on the transport behavior of aqueous
methane. Here, we present the results for a fully protonated channel of 1.6 nm
in width. Results for variations in the channel width and silicate surface proto-
nation level are presented in Sections 3.5 and 3.6, respectively. Our expectation
for the channel is that interactions between the water and the channel surfaces
will result in a water structure differing from bulk conditions, which in turn
will produce non-bulk transport behavior for the methane. To provide insight
into the confined water structure, we first examine the water density within
the channel. Water density calculations were performed using water trajecto-
ries from simulations containing only the silicate and water, in the absence of
the methane solute. The water density within the simulation volume is shown
in Fig. 3 for a single plane. A region of the channel containing areas of both
high and low water density was selected for further MD simulations to map the
spatial variations of both the local diffusion coefficient and the PMF.

Figure 3: Water density over one plane in the MD simulation for the system
shown in Fig. 3, with a 1.6 nm channel width between the two silicates. The
dark areas of near-zero water density are the region occupied by the silicates.
Large variations in the water density are observed near the silicate surfaces. The
remainder of the model has a water density typical of bulk conditions. The green
rectangle highlights the portion of the model selected for detailed measurement
of the local diffusion coefficient and PMF. The water density was calculated at
half-Å spatial resolution, from 128 ns of simulation data.
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Local diffusion coefficients were calculated within this region of interest as
described in Sections 5.2 and 6.1.2. Fig. 4 shows the PACF results for three dif-
ferent locations within the channel. The curve for the bulk simulation presented
in Section 3.3 (see upper panel of Figure 2) is also included for comparison. The
curve that most nearly matches the bulk simulation result is from a point near
the middle of the channel. Fig. 4 also shows the local diffusion coefficient re-
sults plotted against position within the channel. The local diffusion coefficient
appears to approach the bulk value near the middle of the channel, and drop to
roughly half this value at positions closer to the channel surfaces. This observa-
tion is consistent with the presence of solvation layers of water near the silicate
surface, but a more bulk-like water structure near the middle of the channel.

Figure 4: Examples of local diffusion coefficient in the 1.6 nm channel. Left:
Position Autocorrelation Function (PACF) of methane for bulk conditions and
three different positions in the channel with Y = 5.2 nm. The PACF curve for
the bulk condition is from a 16 ns simulation, while the channel simulations
were 2 ns long. This results in a smoother curve for the bulk condition. Right:
Local diffusion coefficient variation within the channel, showing the values along
a line across the channel (z-direction), and also the averages over lines parallel
to the channel face (y-direction). The locations that have PACF curves on the
left panel are marked by circles on the right panel. The coordinate system is as
shown in Figure 1.
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Fig. 5 illustrates the spatial variation of the PMF, local diffusion coefficient,
and water density within the 1.6 nm channel. The values are averaged in the
y-direction, to demonstrate the general trend in values across the channel. The
local diffusion coefficient is suppressed near the channel walls, and approaches,
but does not match, the bulk diffusion behavior near the center of the channel.
This variation in the local diffusion coefficient is symmetric about the channel.
In contrast, the PMF appears to be asymmetric within the channel, though
still suppressed near the surfaces. This asymmetry may be the result of the
asymmetry of the silicate faces themselves; the faces are not mirror images
of one another. Also, the nearest silanol groups at each face are centered at
different distances from the plane of consideration. Some of the asymmetry in
the PMF may also be due to noise that could be reduced by longer simulations
at each point of measurement. The water density seems to oscillate near the
channel walls, likely due to solvation layers around the silicate, but the strength
of this oscillation reduces quickly with distance from the surface. These patterns
suggest that near the silicate surface, alterations of the water structure coincide
with the alterations of the local diffusion coefficient and PMF.

A more detailed examination of the co-variation in the water density, local
diffusion coefficient, and potential of mean force is presented in the contour
plots of Fig. 6, which illustrate the variations of all three quantities over two
spatial dimensions of the channel. The water density data is the same as shown
in Fig. 3, but over a smaller region of the plane, centered near the area where
measurements of the PMF and local diffusion coefficient were obtained. The
water density is near its bulk value over most of the channel, but has some lo-
calized areas of high water density at nearly consistent spacing along the channel
surfaces. This is most likely due to the presence of hydrophilic silanol groups
present on the surface in repeating patterns. (The patterns of water density
and the silicate face structure are compared in Figure S2.) The local diffusion
coefficient results show the same pattern as the results in Figure 4 and 5: the
value is highest near the middle of the channel, where the value is roughly the
bulk diffusion coefficient, and then suppressed closer to the channel surfaces.
The local diffusion coefficient seems to vary more with distance from the chan-
nel wall than with position along the channel. The PMF results are generally
highest at the channel walls because the walls are impervious to methane. The
PMF results are lower in the middle of the channel, where more bulk-like be-
havior is expected. However, localized depressions in the PMF seem to appear
at the channel surface in a generally periodic arrangement. These depressions
may be due to the periodic, but asymmetric, pattern of silanol groups on the
silicate channel faces.

There is variation in the PMF even near the center of the channel, where the
water density and local diffusion coefficient are most bulk-like. The variation of
the PMF in the central region of the channel is roughly 1 kBT in magnitude. For
comparison, Bui et al. [8] obtained PMFs from Weighted Histogram Analysis
Method (WHAM) for gas-phase methane diffusing through a hydrated silica
channel of 1 nm width. In their results, the PMF at the center of the channel
oscillated with an amplitude of roughly 0.8 kBT , which is comparable to our
observations for aqueous methane near the center of a wider channel.
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Figure 5: Spatial variation of averaged PMF, local diffusion coefficient, and
water density in the 1.6 nm channel. The values are averaged over 0.6 nm in
the y-direction, for a single value of x, showing the spatial variation in the z-
direction (perpendicular to the channel faces). Dashed lines show the values
under bulk conditions. Shaded bands show the limits of variation in the y-
direction.

14



Figure 6: Water density, local diffusion coefficient, and potential of mean force
for the 1.6 nm channel width, fully protonated. The imposed rectangle shows
the bounds of the data selected for the Finite Element model within the plane.
The water density calculation is from 128 ns of simulation data, at half-Å spatial
resolution.
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3.5 Effects of variation in silicate porosity
To assess the influence of porosity on transport behavior within the silicate
channel, MD simulations were conducted for channel widths of 1.2, 1.6, and 2.0
nm. Results for water density, PMF, and local diffusion coefficient for these
channel widths are shown in Figure 7 and in Figure S3 in the Supplement. The
water density follows a similar pattern for all three channel widths: the density
is very nearly the value under bulk conditions over most of the channel width,
but increases at select locations near the silicate surface. The water density
appears to oscillate with distance from the silicate face, with the amplitude of
the oscillations decreasing with distance. Such oscillations of the water density
are somewhat indicative of solvation shells around the silicate. The PMF results
generally follow a pattern of approximating the bulk value near the middle of
the channel, though localized areas of low PMF adjacent to the silicate surface
are sometimes present. The local diffusion coefficients also follow a similar
pattern in all three channel widths: the coefficient is highest near the middle of
the channel, and drops to a lower value at locations closer to the silicate faces.
However, the local diffusion coefficients near the middle of the channel are closer
to the bulk value for the larger channel widths. These results illustrate that the
suppression of the local diffusion coefficient near the channel walls is consistent
for different channel sizes. Suppression of the effective diffusion coefficient is
expected, though it seems the size of the effect should generally reduce with
increasing channel width.
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Figure 7: Water density, PMF, and local diffusion coefficient results for channel
widths of 1.2, 1.6, and 2.0 nm. These results are averaged over the y direction
to show variation across the channel. All silanols are fully protonated for these
simulations. Top left: water density. Top right: PMF, with zero as the bulk
potential value. Lower left: local diffusion coefficient, normalized to the bulk
value. Lower right: maximum values of the normalized local diffusion coefficients
for each channel width, and the spatial average of the normalized local diffusion
coefficients.
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3.6 Effects of variation in surface protonation levels
To assess the influence of the silicate surface chemistry on transport behavior
within the channel, MD simulations were conducted for surface a range of surface
protonation levels. Specifically, simulations were conducted with 100%, 73%,
and 50% of the silanol groups on the silicate surface protonated, as structures
for these protonation levels were provided in [14, 15]. In the de-protonated
silanol groups, the hydrogen is absent, leaving a negative charge on the oxygen
ion. To balance this charge, one sodium ion was added to the simulation for
each de-protonated silanol group. These simulations used a channel width of
2.0 nm. Results for water density, PMF, and local diffusion coefficient for these
channel widths are shown in Figure 8 and in Figure S3 in the Supplement. The
PMF and local diffusion coefficient values generally seem to be consistent with
a slight reduction in the effective channel width as the level of protonation is
decreased. A similar pattern, though less pronounced, can also be inferred in
the water density results. This effect may be produced by sodium ions residing
at some of the deprotonated silanol locations, potentially creating an obstacle
to methane diffusion as well as further changes to the local water structure. It
is possible that this effect would be more pronounced at smaller channel widths
than 2.0 nm. Furthermore, while the PMF for the fully protonated condition
has a region of negative value, representing an area attractive to methane, this
region is absent in both of the partially de-protonated cases. This change in the
PMF will later be seen to have a great deal of impact on the effective diffusion
coefficients presented in Sect. 3.7.
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Figure 8: Water density, PMF, and local diffusion coefficient results for surface
protonation levels of 100%, 73%, and 50%. These results are averaged over the y
direction to show variation across the channel. All channels shown are 2.0 nm in
width. Top left: water density. Top right: PMF, with zero as the bulk potential
value. Lower left: local diffusion coefficient, normalized to the bulk value. Lower
right: maximum values of the normalized local diffusion coefficients for each
deprotonation level, and the spatial average of the normalized local diffusion
coefficients.
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3.7 Homogenization based on non-bulk behavior in the
channel

We next incorporated the spatially varying local diffusion coefficients and PMF
values from the MD simulations into the homogenization simulations, in order
to assess the impact of the observed differences from bulk behavior into the pre-
dicted transport properties of the nanoporous silicate. Variations in both the
channel width and the surface protonation level, identical to those in the MD
simulations, were included in the homogenization calculations. The results of
these simulations are shown in Figure 9. The theoretical calculations described
in Sections 3.1 and 3.2 are shown in the figure, along with the results of ho-
mogenization calculations for the same scenarios. As indicated previously, the
homogenization simulations reproduced the expected results for these situations.

The results from the left panel of Figure 9 generally show an increase in
the effective diffusion coefficient with increasing channel width in all scenarios,
due to the corresponding increase in porosity. Compared to the scenario where
the diffusion coefficient inside the channel is assumed to match the bulk value
in all locations (dashed red line), the use of the local diffusion coefficient from
MD (solid red line) reduces the effective diffusion coefficient by approximately
23 − 43%, with the reduction being larger for smaller channel widths. This
is presumably due to the suppression of the local diffusion coefficient near the
channel walls noted previously. In contrast, maintaining the bulk diffusion coef-
ficient in the channel but adding in a PMF with regions that are more attractive
to methane than the bulk condition can increase the effective diffusion coeffi-
cient. For the PMF from MD simulations (dashed blue line), this increase was
approximately 200 − 283%. For the quadratic PMF with the same maximum
and minimum values (dashed green line), this increase was approximately 40%
for each channel width, illustrating the importance of the spatial variations in
the PMF rather than only its magnitude alone. These competing effects of a
decrease due to the local diffusion coefficient, and an increase due to the PMF
combined (solid blue line) result in an overall increase of the effective diffusion
coefficient of about 84 − 112%. It appears that the PMF more strongly influ-
ences the effective diffusion coefficient than does the local diffusion coefficient.
In the right panel of Figure 9, the assumption of bulk conditions within the
channel (dashed red line) prevents any effects of the surface protonation level
on the effective diffusion coefficient, resulting in a horizontal line. Using the
local diffusion coefficient values from MD without a PMF (solid red line) re-
sults in an overall reduction of the effective diffusion coefficient, again due to
the suppression of the local diffusion coefficient near the channel walls. Inter-
estingly, the reduction is slightly more pronounced for lower levels of surface
protonation, with about a 10% reduction from the fully protonated case to the
50% protonated case. This suggests that the local diffusion coefficient is slightly
more suppressed at lower solvent pH levels, which is consistent with the data
shown in Figure 8. Most significantly, while the use of the PMF from MD (blue
lines) results in an increase in the effective diffusion coefficient for the fully pro-
tonated case compared to the cases without a PMF (red lines), the partially
de-protonated cases experience a reduction in the effective diffusion coefficient
instead. The reduction for the partially de-protonated cases with a PMF (blue
lines) is about 40− 60% for the corresponding cases without a PMF (red lines).
For the cases with a PMF (blue lines), there is a reduction of about 85% from
the fully protonated case to the partially de-protonated cases. Thus, the the
surface protonation level appears to influence the effective diffusion coefficient
more strongly through its effects on the PMF within the channel than through
changes to the local diffusion coefficient.
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Figure 9: Effective diffusion coefficient predictions from homogenization simu-
lations of the silicate channel. The results are plotted as an effective diffusion
coefficient normalized to the bulk diffusion coefficient. Left panel: Results for
channels of varying porosity, with all surfaces fully protonated. Right panel:
Results for channels of 2.0 nm width, with different levels of surface protona-
tion. Results from homogenization simulations are shown with continuous lines,
while analytically-derived results are plotted as points. Dashed lines are for sim-
ulations where the local diffusion coefficient is spatially invariant and equal to
the bulk diffusion coefficient. Solid lines are for simulations where the local dif-
fusion coefficient was taken from the MD results. Red lines are for simulations
without a PMF. The green line is for simulations with a quadratic potential as
described in Sect. 3.2. Blue lines are for simulations where the PMF was taken
from the MD results.
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4 Discussion and conclusion
4.1 Discussion of results
Our hypothetical explanation for the observed results is that the silicate surface
induces solvation layers in the water within the channel. This water structure,
in turn, influences local diffusion coefficients with the channel and also creates
regions of space that are more favorable and less favorable to the presence
of methane, which can be expressed as a PMF. These spatial variations in
the transport properties within the channel then contribute to changes in the
effective diffusion coefficient for the silicate material as a whole. In this way, the
interactions at the atomistic scale can be incorporated into multi-scale theory
for the diffusion coefficient appropriate at analysis scales representing hundreds
or thousands of nanometers.

The oscillations of decreasing amplitude in the water density seem to be
consistent with the idea of solvation layers around the silicate, and previous
observations of water layers in confined systems [10]. The decrease of the am-
plitude with distance from the silicate surface suggests that the closer solvation
layers are more strongly defined than more distant ones, in a transition to water
bulk behavior. This layered structure of the water may also be responsible for
reduced methane transport near the channel surfaces. Our initial expectation
was that methane methane would be attracted to areas of low water density and
repelled from areas of high water density because methane by the hydrophobic
interaction. However, the observed data does not generally match this expecta-
tion. Indeed, the layered water structure is not apparent in the PMF data.

The results of the homogenization simulations are consistent with other the-
oretical predictions for simple situations where such predictions were possible.
The local diffusion coefficients in the MD results were found to be lower near
the silicate surfaces, resulting in a reduction of the effective diffusion coefficient
that varied with channel width and surface protonation level. The changes in
the effective diffusion coefficient created by using the local diffusion coefficient
and PMF from MD results were also found to be appropriate for the MD results
with varying channel width and surface protonation level. The homogenization
simulations suggest that both the local diffusion coefficient and the PMF inside
the channel significantly influence the effective diffusion coefficient, and are both
needed for accurate theoretical predictions.

Overall, the MD and homogenization results illustrate the assumption of
bulk behavior within the channel is not justified and can lead to significant er-
rors, even though the non-bulk behavior within the channel includes competing
factors that partially offset one another. Furthermore, the results are consis-
tent with findings of Collin et al. [10] that the surface chemistry of the channel
can have a significant influence on the transport behavior. The influence of the
surface chemistry can be seen not only at the atomistic scale, but also at larger
analysis scales through the effective diffusion coefficient of the silicate material.

4.2 Assumptions and limitations
A number of assumptions were necessary to complete these studies. A harmonic
restraining potential was applied to all atoms of the silicate in order to remove
rigid-body motion of the silicate that would alter the channel geometry. This
includes the surface atoms of the silicate, potentially altering their response to
the presence of water and methane. We assume that any such effects on the
interactions between the silicate and the water or methane would be small in
comparison to the solvation effects under study.

The WHAM approach for PMF measurement within the channel provides
a spatially smooth result. In contrast, the water density and local diffusion
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coefficient measurements within the channel include some amount of noise, as
would be expected in data from MD simulations. Such noise is presumably
also present in the PMF, despite the apparent smoothness of the data. Our
interpretation of the PMF data assumes that this noise is small in comparison
to the real spatial variations, just as is the case for the water density and local
diffusion coefficient values.

As noted in Sect. 5.2, the constant K representing the strength of the re-
straining potential for the methane must simultaneously meet a few different
requirements. The value must be small enough to maintain the assumption of
over-damped dynamics. The values appropriate for this assumption may de-
pend on the non-bonded interaction parameters for the methane and water in
the MD force field. The value must also be large enough to adequately confine
the molecule for appropriate spatial resolution of the local diffusion coefficient,
as the region of space sampled by the methane molecule decreases with in-
creasing K. Finally, the value must also be larger than the magnitude of the
corresponding local PMF gradient by an amount sufficient to justify neglecting
the PMF in the post-processing of the PACF. Further challenges in the selection
of K have previously been noted by other researchers [9, 19]. The results herein
assume that there is a range of values of K where all of these requirements are
simultaneously met, and that the selected value is within this range. In partic-
ular, this assumption is most challenged for methane locations near the silicate
channel surface, where the PMF gradient has a large magnitude.

As noted in Sect. 3.3, the force field parameters used in the MD simulations
were not able to fully match the established empirical value of the diffusion
coefficient for methane in bulk water. Our results assume that the difference
between the empirical value and the value measured in the MD simulations in
linearly proportional to the simulation result, such that normalization by the
simulation bulk value is sufficient to generally resolve the discrepancy.

4.3 Conclusion
The transport behavior of aqueous methane through porous catalysts may play
a crucial role in the future design of gas-to-liquid methane conversion processes.
Describing this behavior requires assessments of atomistic-level and continuum-
level phenomena that jointly influence substrate transport. With respect to
atomistic considerations, this work has demonstrated that the forces involved
in diffusion can be resolved using MD simulations, by measuring the diffusion
coefficient and the PMF. The techniques employed herein can be applied even
when both of these parameters have spatial variations. Importantly, we show
that homogenization simulations are well-suited to couple atomistic-scale behav-
ior to the continuum level, namely by extrapolating these spatial variables to
obtain effective transport properties for a continuum approximation of a porous
medium. As noted in the results above, changes in the material porosity and
the surface chemistry of the pores can have effects on the local diffusion coeffi-
cient and PMF within the pore. These changes ultimately impact the effective
diffusion coefficient as well, allowing for the tuning of transport properties by
the proper selection of material porosity and surface chemistry. Further, these
techniques could also be extended to biological systems that are strongly influ-
enced by molecular-level interactions, as examined in some of our previous work
[21, 22].

5 Theory
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5.1 Hypothesis for the influence of solvent density on local
transport behavior

The motion of a single methane molecule surrounded by a solvent such as water
can be described by a Langevin equation in the limit of strong friction:

ξẋ = − ∂

∂x
V (x) + f(t) (3)

where ξ is the friction coefficient representing solute/solvent interactions, V (x)
is a mean force potential, and f(t) is a force varying randomly in time. A single
independent variable is shown here for clarity, but the analysis generalizes easily
to higher dimensions, as there is no coupling between orthogonal components of
the motion. When the solvent is confined to nano-scale pores within a medium
such as a silicate, the surface chemistry of the pores could cause local variations
in the number density of the solvent molecules. Our expectation is that these
local variations in the solvent density will alter the local transport properties
of the methane. We describe these effects by making the friction and potential
terms of the Langevin equation spatial variables.

Through the Einstein relation between ξ and the diffusion coefficient, D,
spatial variations in the friction coefficient will produce spatial variations in D
as well. This spatial variation was measured in the MD simulations using the
approach described in Section 5.2. The spatially varying PMF was measured
using standard procedures described in Section 6.1.2.

5.2 Determination of local diffusion of coefficient from
MD simulation

The diffusion coefficient relates the flux of a diffusion species to its concentration
gradient. In homogeneous media the average diffusion can be estimated based
on the MSD of individual molecules:

D =
1

6

∂〈r2〉
∂t

(4)

This approach is not applicable to non-homogeneous media, as the MSD would
be influenced by the local diffusion coefficient in all the areas visited by the
diffusing molecule. Instead, the spatial variation of the transport coefficient
can be obtained from a Green-Kubo relation. In our model, MD simulations
(described in Sect. 6.1) were used to predict Eq. 16 parameters using an approach
described in Daldrop, Kowalik, and Netz [19], based on earlier work in Hummer
[23] and Woolf and Roux [24]. We also previously used this approach in Setny
et al. [25]. The self-diffusion coefficient for the solute methane here implicitly
reflects the solute/solvent (water) interactions. Namely, the motion of methane
is approximated as over-damped Brownian motion.

To obtain local values of the diffusion coefficient, the methane is restrained by
a harmonic potential 1

2Kx
2. The equation of motion for the methane molecule

is therefore the Langevin equation of Eq. 5.
ξẋ = −Kx+ f(t) (5)

The statistical properties of the random variation of f(t) are such that they
satisfy Eq. 6 [26–28].

〈f(t)〉 = 0
〈f(0)f(t)〉 = 2ξkBT

(6)
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Under these conditions, it can be shown that the solution for x(t) will have the
properties shown in Eq. 7.

〈x2〉 = kBT
K

〈x(0)x(t)〉 = 〈x2〉e−t/τ
(7)

where τ = ξ/K. From these results, the integral of the position autocorrelation
function is given by Eq. 8.

τ =
1

〈x2〉

∫ ∞
0

〈x(0)x(t)〉dt (8)

This allows for determination of the friction coefficient ξ, and thus also the local
diffusion coefficient D, using the Einstein relation of Eq. 9.

D =
kBT

ξ
=
〈x2〉
τ

(9)

In Eq. 9, the actual MSD value, 〈x2〉, is used in place of its theoretical value for
a harmonic potential, because the actual potential is the superposition of the
harmonic biasing potential and the PMF. The procedure is adopted here, under
the assumption that the gradient of the PMF will be small in comparison to the
value ofK for the restraining potential. Note that larger values ofK will confine
the methane to a smaller region around the center of the harmonic potential,
allowing spatial variations in the local diffusion coefficient to be measured with
greater spatial precision. However, large values of K can also invalidate the
assumption of over-damping. This can result in oscillatory behavior in the
PACF, making integration more difficult [19]. Here, the value of K for the
harmonic potential was selected with the aim of being small enough to maintain
over-damped behavior, while remaining larger than reasonable magnitudes for
the PMF gradient.

The center of the harmonic restraining potential can be shifted to obtain the
local diffusion coefficient at selected spatial locations.

For anisotropic conditions, this analysis can be repeated for each component
of the position autocorrelation function to obtain the diagonal matrix compo-
nents. The simple geometry of the silicate channel studied here makes it very
likely that the selected coordinate system is a principal coordinate system, where
the off-diagonal terms of the matrix are zero. Future applications of this method
may involve porous materials with more complex pore geometry, where the off-
diagonal terms may be nonzero in some locations. A relatively minor extension
of the method for such circumstances would be to rotate the coordinate system
of the methane trajectories prior to calculation of the PACF, allowing the diag-
onal matrix terms to be computed in a different coordinate system. An estimate
of the off-diagonal terms could then be obtained from the known transformation
matrix between these two coordinate systems.

6 Methods
6.1 Molecular dynamics
6.1.1 Parameterization and simulation
Molecular dynamics simulations were conducted in GROMACS. The OPLS-AA
SPC water model was used for the explicit solvent. The united atom approxi-
mation was selected for the methane molecule, on the basis of the results pre-
sented in Bhatia and Nicholson [29]. The nonbonded force field parameters for
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Species σ [nm] ε [kJ/mole] q [e] Reference

Si 0.37 0.39 +1.1 Emami et al. [30]
OSi 0.31 0.23 −0.55 Emami et al. [30]
OH 0.31 0.51 −0.68 Emami et al. [30]
H 0.096 0.063 +0.4 Emami et al. [30]

CH4 0.37 1.23 0.0 Jorgensen, Madura, and Swenson [31]

Table 5: Non-bonded interaction parameters used for molecular dynamics sim-
ulations in GROMACS.

methane were taken from Jorgensen, Madura, and Swenson [18], which used the
same functional form for the 12-6 Lennard-Jones potential as GROMACS, so that
only unit conversions of the parameters were required. While the combining
rule noted in Jorgensen, Madura, and Swenson [18] is the geometric average,
the arithmetic average is used herein. The force field parameters for silica were
taken from Emami et al. [14, 15], and converted to the units and functional form
used in GROMACS. Specifically, the functional form of the 12-6 Lennard-Jones po-
tential for nonbonded interactions in Emami et al. [14] is given by Equation 10,
while the functional form used by GROMACS is shown in Equation 11. In both
equations, E is the interaction energy, and r is the separation distance between
the two atoms. The two functional forms can be used to represent the same in-
teraction potential by computing the GROMACS parameters from the parameters
provided by Emami et al. [14] using the relationships of Equation 12.

E = εamber

((σamber

r

)12

− 2
(σamber

r

)6
)

(10)

E = 4εgromacs

((σgromacs

r

)12

−
(σgromacs

r

)6
)

(11)

εgromacs = εamber
σgromacs = 2−1/6σamber

(12)

The nonbonded interaction parameters used in the simulations are listed in
Table 5.

To confirm the proper conversion of the nonbonded force field parameters,
the same method was used to convert the parameters from an AMBER input file
to the corresponding GROMACS input file parameters for an AMBER force field.
This comparison involves an additional step, because the AMBER force field pa-
rameters specify the van der Waals radius of each atom, and the depth of the
potential well, rather than specifying σamber and εamber directly. The additional
calculation is relatively simple, because the functional form of Equation 10 used
by AMBER has a well depth that is equal to εamber, with the point of minimum po-
tential energy located at r = σamber. At this minimum, the separation distance
r between two identical atoms would be twice the van der Waals radius. Thus,
σamber is simply twice the specified van der Waals radius, and εamber is equal to
the depth of the potential well. Using this information, the gromacs parameters
for the AMBER96 and AMBER99 force fields were successfully reproduced.

Following solvation, energy minimization was performed for 50,000 steps,
and then velocities were randomly assigned according to a Maxwell distribution.
The system was equilibrated in the Number, Volume, Temperature thermody-
namic ensemble (NVT) ensemble for 0.1 nanoseconds, using the Nosé-Hoover
thermostat. This was followed by 0.1 nanoseconds of equilibration in the Num-
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ber, Pressure, Temperature thermodynamic ensemble (NPT) ensemble, using
the Berendsen barostat and modified Berendsen thermostat. Production runs
followed, using the NVT ensemble with the Nosé-Hoover thermostat. The pro-
duction runs had a duration of 2 nanoseconds, except where noted otherwise.
In all analysis steps, electrostatic interactions were evaluated using the Particle
Mesh Ewald (PME) method [32, 33]. The dynamic runs used a time-step of 2
femtoseconds, with hydrogen bonds converted to constraints maintained by the
LINCS algorithm [34].

The harmonic restraining potential applied to the methane molecule used
a K of 3.00× 102 kJ mol−1 nm−2, for each direction. To prevent global trans-
lations, rotations, or deformations of the silicate bodies within the simulation
unit cell, each atom of the silicate material was placed in a harmonic restrain-
ing potential with K of 1.000× 103 kJ mol−1 nm−2, for each direction. This
includes the hydrogen atoms on the surficial silanol groups, which have affected
the solvent-surface interactions.

6.1.2 Processing methods

Simulations of the solvated silicate channel without methane were used to calcu-
late the spatial variation of water density within the channel. Water density was
calculated from the water molecule trajectories using the MDAnalysispackage
[35, 36] (which uses numpy [37]). The production runs for the water density
calculations were 128 nanoseconds in duration.

Based on the water density results, portions of the channel were selected for
detailed measurement of the local diffusion coefficient and PMF for methane.
An x-plane was chosen, with dimensions in the z-direction fully extending across
the channel from one silicate face to the other. The selected area also extended
0.6 nanometers in the y-direction. A different region was selected for each
channel geometry and deprotonation level. The regions were chosen so as to
include areas of both high and low water density at the channel boundaries.

PMF values were computed using the two-dimensional version of WHAM
[38] (Version 2.0.10.1), which implements the WHAM [39–41]. The y and z
coordinates of the methane or sodium molecule were used as the reaction coor-
dinates in this approach.

The PMF values resulting from WHAM are relative values, with the min-
imum value in the data set originally chosen as zero. Instead, the analysis
conducted here requires that a PMF value of zero represent the conditions of
bulk water. Assuming that all studied channels are sufficiently wide that bulk
behavior is recovered in the middle of the channel, this location can be used
as a reference value for the PMF. After generation by WHAM, the values were
shifted such that the average of the PMF values at the middle of the channel
would be zero. Also, numerical difficulties were encountered in the homogeniza-
tion simulations when using the PMF values directly from the MD simulations,
even after adjusting to the gauge condition. To allow the simulations to com-
plete successfully, the average value of the PMF was taken in the y-direction,
such that the PMF used in the homogenization simulations varied only in z,
which is the direction perpendicular to the silicate faces.

Local diffusion coefficients were calculated using the approach described in
Sect. 5.2. PACFs were calculated by GROMACS, which returns the PACF function
normalized by the MSD as illustrated in Equation 13.

normalized PACF(t) =
1

〈x2〉
〈x(0)x(t)〉 (13)

Observations of typical normalized PACF results showed that, in addition to
the exponential decay predicted by Equation 7, there was also an short-duration
Gaussian superimposed on the PACF for small values of time. Accordingly, the
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functional form in Equation 14 was selected as being a generally representative
form, with fitting constants A, α, and σ. The analytical integral of this form is
shown in Equation 15.

normalized PACFfit(t) = Ae−t/σ + (1−A)e−αt
2

(14)

τ =

∫ ∞
0

dt (normalized PACFfit(t)) = Aσ +
1−A

2

√
π

α
(15)

Following calculation of a normalized PACF from methane trajectory data,
a python script using the numpy package [37] fit the analytical function of
Equation 14 to the normalized PACF data. The analytical integration of the
normalized PACF was then calculated from Equation 15. To confirm a successful
fit, the integral of the normalized PACF was also obtained numerically using
the trapezoidal rule over the first 25 picoseconds. Cases where the numerical
and analytical integrations differed by more than 25% were discarded from the
data set.

The diffusion coefficients computed from the methane PACFs were generally
consistent for the x and y directions, but different in the z direction. Ultimately,
the effective diffusion coefficient for only the x and y directions is desired, as the
z direction would be impervious. Furthermore, the channel itself is identical in
the x and y directions, so the expected results for these two directions would
be identical. Accordingly, the homogenization process used an isotropic local
diffusion coefficient, which was computed as the arithmetic average of the x and
y results from the MD simulations.

As noted in Section 3.3, the local diffusion coefficient results from MD were
normalized to the bulk value predicted by the same method. In any cases where
the normalized result was greater than 2.0, the result was limited to this value.

Homogenization theory is intended for application to periodic functions. Be-
cause the local diffusion coefficients and PMF values from the MD simulations
were not periodic, they were reflected about both their right and upper bound-
aries to produce a symmetric unit cell for homogenization.

6.2 Finite element modeling
6.2.1 Continuum level modeling of aqueous methane diffusion in sil-

ica material
Diffusion is represented in the continuum model by Fick’s law [42] which can be
written as

∂c

∂t
=

∂

∂xi
Dij

∂c

∂xj
(16)

where

• c represents the concentration of methane as a function of space and time
• t represents time
• xi represents one of the three spatial coordinates
• the summation convention is used (a repeated index in any term implies
summation over all three dimensions for that index)

• Dij represents the diffusion matrix, with three rows and three columns

When the diffusive medium is isotropic and spatially invariant, the diffusion
matrix is simply the identity matrix scaled by a diffusion constant, D, and Fick’s
law can be written as
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∂c

∂t
= D∇2c (17)

Eq. 17 can be generalized to reflect the influence of a time-independent
and spatially-heterogeneous mean potential field, V (x), using the Smoluchowski
equation shown in Eq. 18. The Smoluchowski equation can be derived from the
Langevin equation of Eq. 5 under appropriate assumptions [43, 44].

∂c

∂t
= ∇ ·

(
De
− V

kBT ∇
(
ce

V
kBT

))
(18)

This can be written in the Slotboom formulation [45, 46] as
∂c

∂t
= ∇ ·

(
D∇ (c)

)
(19)

where

D = De
− V

kBT

c = ce
V

kBT
(20)

Following this transformation, the steady-state diffusion equation has the
same form as the Fickian diffusion equation, with a spatially varying diffusion
coefficient.

6.2.2 Homogenized model of continuum and atomistic scale methane
diffusion

Homogenization [11, 12] is a procedure for separating scales in a partial differ-
ential equation for a periodic geometry. The equation used as an input to the
procedure describes the processes that takes place at the smaller scale. The pro-
cedure produces an equation appropriate for analysis at the larger scale, which
contains a parameter found by integrating over the unit cell at the smaller scale.
For the homogenization approach to be valid, the relevant length scales must
be well-separated. For notational clarity, we denote spatial coordinates at the
larger scale by xi and at the smaller scale by yi. The volume of the unit cell is
denoted as |Y |.

Using the procedure described in Chapter 1 of Bensoussan, Lions, and Pa-
panicolaou [12], the homogenization of Fick’s law indicates that the diffusion
matrix for the larger scale is:

Dmacro
ij =

1

|Y |

(∫
Y

(
Dij −Dik

∂χj
∂yk

)
dny

)
(21)

where the vector χ is defined as the solution to
∂

∂yi

(
Dik

∂χj
∂yk

)
=

∂

∂yi
Dij (22)

Homogenization of the Smoluchowski equation was accomplished by using
the Slotboom transformation, followed by using the homogenized Fickian equa-
tion with a spatially varying diffusion coefficient. In this case, the integral over
the unit cell provides a value of D for the larger scale. For the inverse Slotboom
transformation to obtain the Fickian diffusion coefficient, D, for the larger scale,
the potential to be used is a constant value representing the potential of the sur-
roundings at the larger scale. This potential must use the same gauge condition
as the smaller-scale potential.
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6.2.3 Flux-based calculation of effective diffusion coefficient
For sufficiently pore simple geometries, such as the channel through the sili-
cate, an effective diffusion coefficient can be obtained without the use of ho-
mogenization theory. This approach is based on solution of the steady-state
diffusion equation, which is either the Fickian diffusion equation or the Smolu-
chowski equation herein. After the steady-state concentration field has been
obtained from solution of the Partial Differential Equation (PDE), using the
Smoluchowski definition of the flux:

~j = −De−
V

kBT ~∇
(
e

V
kBT c

)
(23)

Integrating this flux over a cross-section of the pore gives a total flux, J . By
continuity requirements the total flux must be the same at all cross-sections of
the pore. From the perspective of a larger scale, this total flux must also satisfy
a one-dimensional Fick’s First Law using the effective diffusion coefficient for
the silicate:

J = −Dmacro
∆c

∆x
(24)

where ∆c/∆x is the large-scale concentration gradient applied to the silicate.
This gradient is obtained from the boundary conditions applied to the finite
element model. Solving Equation 24 for Dmacro allows the effective diffusion co-
efficient to be determined from the integrated flux obtained from the simulation
and the applied boundary conditions. While this approach is only applicable to
simple geometries, the homogenization approach described in Sect. 6.2.2 can be
applied to more complicated geometries.

6.2.4 Computational details

The finite element meshes for homogenization were created in GMSH [47]. The
Finite Element Method (FEM) analysis was conducting with python code rely-
ing on version 2019.1.0 of the FEniCS package [48, 49].

In homogenization, the boundary conditions for the unit cell are that the cor-
rector function should be periodic, with period matching the unit cell [12]. The
python scripts using FEniCS were able to implement periodic boundary condi-
tions for two-dimensional problems. While FEniCS supports periodic boundary
conditions in three-dimensions, the programming effort required is considerably
greater. Consequently, periodic boundary conditions were implemented for two-
dimensional unit cells only. For three-dimensional unit cells, Dirichlet boundary
conditions were used instead, with the corrector set to zero at the boundaries.
While this is technically a periodic condition, it may be too restrictive for the
corrector functions in some cases. Generally, this boundary condition is appro-
priate for situations where barriers to diffusion within the unit cell are located
away from the cell boundaries.

All code written in support of this publication is publicly available at https://github.com/huskeypm/pkh-
lab-analyses. Simulation input files and generated data are available upon re-
quest.
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Supplementary Information (SI)

S1 Supplementary Tables

Table S1: MSD results from simulations of unrestrained methane in bulk water.
The theoretical result is based on the simulation temperature and the applied
harmonic potential.

Direction
Theoretical

Result
(nm2)

Jorgensen/SPC
Force Field

(nm2)

GROMOS 53A6
Force Field

(nm2)
x 0.0083 0.0081 0.0081
y 0.0083 0.0079 0.0081
z 0.0083 0.0083 0.0079

S2 Supplementary Figures

Figure S1: Calculation of the diffusion coefficient from the MSD of unrestrained
methane, for three different trials. Each simulation had a duration of 16 ns.
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Figure S2: Water density near the silicate face from the MD simulation with a
channel width of 1.6 nm. Top left: rendering of the silicate face. Top right: water
density results for the plane at z = 4.775 nm, which is approximately where the
water density values reach a local maximum in some areas. Bottom: scaled
overlay of the silicate structure and the water density data. The water molecule
positions are referenced to the center of their oxygen atoms, so the density
is highest around the silanol terminations of the silicate surface. The water
density was calculated at a spatial resolution of 0.5 Å, from 128 nanoseconds of
simulation data.
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Figure S3: Spatial variation of water density, Potential of Mean Force (PMF),
and local diffusion coefficients for all five combinations of channel width and pro-
tonation level investigated in the molecular dynamics (MD) simulations. These
results are averaged over the y direction to show variation across the channel.
Bulk values are shown as black dashed lines. The quadratic potentials used
for the validation described in Sect. 3.2 are shown on the PMF plots where
applicable, as dashed lines with the same color as the PMF data from MD.
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S3 Analytical Solution for a Quadratic Potential
S3.1 Problem description
The problem is defined in two spatial dimensions. The unit cell is shown in
Figure S4. Two scales of analysis are present: y for the smaller scale, with
characteristic length matching the size of the unit cell, and x for the larger
scale.

a

L

y1

y2

y2 = −a2

y2 = +a
2

y 1
=
−
L 2

y 1
=

+
L 2

Figure S4: Unit cell geometry.

Within the unit cell, there is a quadratic potential of mean force:

ψ = ψ(y) = Ay2
2 +B (S1)

where A and B are scalar constants. Note that this potential is periodic, but
its gradient is not:

∂
∂y1

ψ = 0
∂
∂y2

ψ = 2Ay2
(S2)

Particles are allowed to diffuse through the unit cell subject to the Smoluchowsi
equation:

ji = −D
(
∂

∂yi
c+ βc

∂

∂yi
ψ

)
(S3)

where
c = c(x, y), the concentration
ji = ji(x, y), the flux vector
D = isotropic and spatially invariant local diffusion coefficient for the smaller scale
β = inverse of kBT , spatially invariant

The Smoluchowski equation can be written in the following equivalent form,
with the equivalence easily verified by applying the product rule for the gradient
operator:

ji = −De−βψ ∂

∂yi

(
ceβψ

)
(S4)
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This form allows the application of the Slotboom transformation:

D = De−βψ

c = ceβψ
(S5)

With this transformation, the Smoluchowski equation simply becomes:

ji = −D ∂

∂yi
c (S6)

For the quadratic potential described above,

D = De−βAy
2
2e−βB (S7)

∂
∂y1

D = 0
∂
∂y2

D = −2βAy2D
(S8)

In addition to the Smoluchowski equation, continuity is also satisfied, and
steady-state conditions are assumed. These two conditions together impose
the requirement:

∂

∂yi
ji = 0 (S9)

(Summation is implied by the repeated index.) Combining this with the Smolu-
chowski flux:

∂

∂yi

(
D

∂

∂yi
c

)
= 0 (S10)

The flux for the larger scale is defined by the averages of the smaller-scale flux:

J1 = 1
a

∫ a
2

− a
2
dy2 j1

J2 = 1
L

∫ L
2

−L
2

dy1 j2
(S11)

Finally, it is necessary to define the value of the potential at the larger scale.
This is a static constant, and must use the same gauge condition as the small-
scale potential.

Ψ = potential value at the large scale, a constant (S12)

The objective is to obtain the effective diffusion coefficient, D̂, for the larger
scale, for Fickian diffusion:

Ji = −D̂ij
∂

∂xj
c (S13)

Both a flux-based calculation and homogenization analysis will be used to derive
the same analytical result.

S3.2 Flux-based calculation
S3.2.1 General approach

The components of D̂ij can be found by imposing two different concentration
gradients on the unit cell. These two different concentration gradients are or-
thogonal to one another, and imposed separately.

First, a concentration difference, ∆1c, is applied between the left and right
edges of the unit cell. No gradient is applied in the orthogonal direction. The
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upper-scale gradient is approximated as:
∂

∂x1
c ≈ ∆1c

L
(S14)

The Fickian diffusion equation at the upper scale for this situation expands as:[
J1
J2

]
= −

[
D̂11 D̂12

D̂21 D̂22

] [
∆1c
L
0

]
(S15)

This is equivalent to:
J1 = −D̂11

∆1c
L

J2 = −D̂21
∆1c
L

(S16)

These expressions can be re-arranged to obtain two components of the effective
diffusion coefficient:

D̂11 = −J1
L

∆1c

D̂21 = −J2
L

∆1c

(S17)

Thus, if a solution for c can be obtained for the boundary value problem, the
fluxes j1 and j2 can be computed. Then the fluxes J1 and J2 can obtained from
integration, and then D̂11 and D̂21 can be obtained as well.

Similarly, a concentration difference ∆2c is imposed between the upper and
lower boundaries of the unit cell:

∂

∂x2
c ≈ ∆2c

a
(S18)

And so, [
J1
J2

]
= −

[
D̂11 D̂12

D̂21 D̂22

] [
0

∆2c
a

]
(S19)

This is equivalent to:
J1 = −D̂11

∆2c
a

J2 = −D̂22
∆2c
a

(S20)

Re-arranging:

D̂12 = −J1
a

∆2c

D̂22 = −J2
a

∆2c

(S21)

And so, by imposing two separate concentration boundary conditions on the
unit cell, all four components of D̂ij can be obtained.

S3.2.2 Imposed gradient from left to right

To satisfy the steady-state condition, the concentration at the boundary must
be related to the potential by a Poisson-Boltzmann distribution. This can be
achieved by setting a constant value of c. To impose a left-right concentration
gradient, the boundary conditions are:

c
(
y1 = −L2

)
= cL

c
(
y1 = +L

2

)
= cR

(S22)
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For these boundary conditions, the governing PDE (Equation S10) is solved by:

c (y1, y2) = c (y1) =
cR − cL

L
y1 +

cR + cL
2

(S23)

The fluxes resulting from this solution are:

j1 = −D cR−cL
L

j2 = 0
(S24)

The larger-scale fluxes are:

J1 =
1

a

∫ a
2

− a
2

dy2 j1 = −DcR − cL
aL

∫ a
2

− a
2

dy2 e
−βψ(y2) (S25)

J2 =
1

L

∫ L
2

−L
2

dy1 j2 = 0 (S26)

Before components of D̂ can be obtained by Equation S17, the value of ∆1cmust
be defined. Because of the Poisson-Boltzmann distribution, the concentration
varies along the left and right boundaries. The large-scale concentration at the
boundary is computed from c at the boundary and the constant value of the
potential at the large scale.

∆1c = (cR − cL) e−βΨ (S27)
And so, from Equation S17,

D̂11 = De+βΨ 1

a
e−βB

∫ a
2

− a
2

dy2 e
−βAy22 (S28)

D̂21 = 0 (S29)

The influence of the potential on the effective diffusion coefficient reflects
the change in the potential between the unit cell and the surroundings at the
large scale.

S3.2.3 Imposed gradient from bottom to top

To impose a vertical concentration gradient, the boundary conditions are:

c
(
y2 = −a2

)
= cB

c
(
y2 = +a

2

)
= cT

(S30)

For these boundary conditions, the governing PDE (Equation S10) is solved by:

c (y1, y2) = c (y2) = K

∫ y2

0

ds eβψ(s) + k (S31)

where K and k are constants depending on the boundary conditions. The value
of k will not be relevant for the flux calculations. For the given boundary
conditions, K is:

K =
cT − cB∫ a

2

− a
2
dy2 eβψ(y2)

=
cT − cB

eβB
∫ a

2

− a
2
dy2 eβAy

2
2

(S32)
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The fluxes resulting from this solution are:
j1 = 0
j2 = −DKeβψ(y2) = −DK (S33)

The larger-scale fluxes are:
J1 = 0
J2 = −DK (S34)

The larger-scale concentration difference is

∆2c = (cT − cB) e−βΨ (S35)
to be consistent with the steady-state solution of the Smoluchowski equation at
the larger scale. And so, from Equation S21,

D̂12 = 0 (S36)

D̂22 = De+βΨ a

eβB
∫ a

2

− a
2
dy2 eβAy

2
2

(S37)

Even though the result now depends on both A and B, it is still gauge-
invariant, because a gauge shift in the value of B would be offset by a gauge
shift in the value of Ψ.

S3.2.4 Summary

Combining the results of both flux calculations, the entire matrix for D̂ has
been obtained.

D̂ij = De+βΨ


1

a

∫ a
2

− a
2

dy2 e
−βψ(y2) 0

0
1

1
a

∫ a
2

− a
2
dy2 e+βψ(y2)

 (S38)

This result is consistent with Fickian diffusion in layered media: the results
in one direction are the average of the layer properties, and in the other direction
are the inverse of the average of the inverses. Here, the sums over individual
layers are replaced with integrals over a single dimension.

As noted above, the results are gauge-independent so long as the large-scale
potential Ψ and the small-scale potential ψ use the same gauge condition.

S3.3 Homogenization analysis
S3.3.1 Corrector problem

As the problem is two-dimensional, there are two components of the corrector
function, χ, to be found. For isotropic Fickian diffusion, the corrector problem
is:

∂

∂yi

(
D

∂

∂yi
χj

)
=

∂

∂yj
D (S39)
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For the Slotboom-transformed Smoluchowski equation, this becomes
∂

∂yi

(
D

∂

∂yi
χj

)
=

∂

∂yj
D (S40)

For the quadratic potential described above, this expands to
∂

∂yi

∂

∂yi
χj − 2βAy2

∂

∂y2
χj = −2βAy2δj2 (S41)

The two components of χ are therefore defined by the following PDEs:

∂2

∂y2
1

χ1 +
∂2

∂y2
2

χ1 − 2βAy2
∂

∂y2
χ1 = 0 (S42)

∂2

∂y2
1

χ2 +
∂2

∂y2
2

χ2 − 2βAy2
∂

∂y2
χ2 = −2βAy2 (S43)

These problems only define the corrector functions up to the addition of an
arbitrary constant. The partial derivatives of the corrector functions are the
only results required for the unit cell integrals.

S3.3.2 Solution for χ1

The solution for χ1 is of the form

χ1 = Q

∫
dy2 e

βAy22 (S44)

where Q is a scalar constant determined by the requirement that χ1 be periodic.
Specifically,

χ1

(
y2 = −a

2

)
= χ1

(
y2 =

a

2

)
(S45)

This may be expressed as

Q

∫ − a
2

0

dy2 e
βAy22 = Q

∫ a
2

0

dy2 e
βAy22 (S46)

Q

∫ a
2

− a
2

dy2 e
βAy22 = 0 (S47)

which requires Q = 0. Consequently,

∂

∂y1
χ1 = 0

∂

∂y2
χ1 = 0

(S48)

S3.3.3 Solution for χ2

The solution for χ2 is of the form

χ2 = y2 −G
∫
dy2 e

βAy22 (S49)
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where G is a scalar constant determined by the requirement that χ2 be periodic.
Specifically,

χ2

(
y2 = −a

2

)
= χ2

(
y2 =

a

2

)
(S50)

This may be expressed as

−a
2
−G

∫ − a
2

0

dy2 e
βAy22 =

a

2
−G

∫ a
2

0

dy2 e
βAy22 (S51)

which reduces to
G =

a∫ a
2

− a
2
dy2 eβAy

2
2

(S52)

And so the partial derivatives are

∂

∂y1
χ2 = 0

∂

∂y2
χ2 = 1−GeβAy22

(S53)

S3.3.4 Unit cell integrals

For isotropic Fickian diffusion, the effective diffusion coefficient is given by the
following integral over the unit cell:

D̂ij =
1

|Y |

∫
Y

dY D

(
δij −

∂

∂yi
χj

)
(S54)

For the Slotboom-transformed Smoluchowski equation, this becomes

D̂ij =
1

|Y |

∫
Y

dY D

(
δij −

∂

∂yi
χj

)
(S55)

For the unit cell in question, this is

D̂ij = De−βB
1

aL

∫ a
2

− a
2

dy2 e
−βAy22

∫ L
2

−L
2

dy1

(
δij −

∂

∂yi
χj

)
(S56)

This integral is evaluated to find all four components of D̂.

D̂11 = De−βB
1

aL

∫ a
2

− a
2

dy2 e
−βAy22

∫ L
2

−L
2

dy1

(
1− ∂

∂y1
χ1

)
= De−βB

1

a

∫ a
2

− a
2

dy2 e
−βAy22

(S57)

D̂12 = De−βB
1

aL

∫ a
2

− a
2

dy2 e
−βAy22

∫ L
2

−L
2

dy1

(
0− ∂

∂y1
χ2

)
= 0 (S58)

D̂21 = De−βB
1

aL

∫ a
2

− a
2

dy2 e
−βAy22

∫ L
2

−L
2

dy1

(
0− ∂

∂y2
χ1

)
= 0 (S59)
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D̂22 = De−βB
1

aL

∫ a
2

− a
2

dy2 e
−βAy22

∫ L
2

−L
2

dy1

(
1− ∂

∂y2
χ2

)
= DGe−βB = D

ae−βB∫ a
2

− a
2
dy2 eβAy

2
2

(S60)

S3.3.5 Summary

From the unit cell integrals above, the matrix for D̂ has been obtained.

D̂ij = De−βB


1

a

∫ a
2

− a
2

dy2 e
−βAy22 0

0
a∫ a

2

− a
2
dy2 eβAy

2
2

 (S61)

S3.4 Conclusion

Comparing the results above for the components of D̂ and D̂:

D̂11 = D̂11e
+βΨ

D̂22 = D̂22e
+βΨ

(S62)

In fact, this is exactly the result needed for consistency with the Slotboom-
transformed Smoluchowski equation at the larger scale:

Ji = −D̂ij
∂

∂xj
c (S63)

Expanding the Slotboom-transformed concentration, this becomes:

Ji = −D̂ij
∂

∂xj
ce+βΨ (S64)

And Ψ is invariant at the larger scale, so this is also:

Ji = −D̂ije
+βΨ ∂

∂xj
c (S65)

Comparing this to the Fickian diffusion equation at the larger scale,

Ji = −D̂ij
∂

∂xj
c (S66)

it is clear that the solution for D̂ is

D̂ = D̂e+βΨ (S67)

exactly as noted above for the nonzero components.
Finally, note that in a situation where the gauge condition is such that Ψ = 0,

this result implies that D̂ = D̂.
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