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Abstract 

Organic light-emitting-diode (OLED) materials have exhibited a wide range of 

applications. However, further development and commercialization of OLEDs requires 

higher-quality OLED materials, including high thermal stability associated with the 

glass transition temperature (Tg) and decomposition temperature (Td). Experimental 

determinations of the two important properties genernally involve a time-consuming 

and laborious process. Thus, it is highly desired to develop a quick and accurate 

prediction tool. Motivated by the changelle, we explored machine learning by 

constructing new dataset with more than one thousand samples collected from a wide 

range of literaturesm, through which ensemble learning models were explored. Models 

trained with the LightGBM algorithm exhibit the best prediction performance, where 

the values of MAE, RMSE, and R2 are 17.15 K, 24.63 K, and 0.77 for Tg prediction, 

24.91 K, 33.88 K, and 0.78 for Td prediction. The prediction performance and the 

generalization of the machine learning models are further tested by out-of-sample 

dataset, also exhibiting satisfactory results. Experimental verification further 

demonstrates the reliability and the practical potential of the ML-based model. In order 

to extend the practice application of the ML-based models, an online prediction 

platform was constructed, including the optimal predition models and all the thermal 

stability data under study, which are freely available at http://oledtppxmpugroup.com. 

We expect that they will become a useful tool for experimental investigations on Tg and 

Td, in turn accelerating the design of the OLED materials with high performance. 
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1. Introduction 

Organic light-emitting diodes (OLEDs) have attracted considerable attentions in recent 

years due to their great promises in flat-panel displays, solid-state lighting, and white 

lighting technologies.1-3 The commercialization of OLEDs requires high quality OLED 

devices, in particular for a long lifetime.4 There are intrinsic and extrinsic factors that 

affect the lifetime of OLED devices.5, 6 One of the main external factors is temperature. 

As known, the temperature of OLED devices can increase due to Joule heating during 

operation and exposure to high-temperature external environments.7 Accordingly, 

enhancement in the thermal stability of OLED materials can improve the device 

performance. Recently, a large number of researchers have paid attention to the OLED 

materials with high thermal stability.8  

The glass transition temperature (Tg) and decomposition temperature (Td, 

corresponding to 5% weight loss) are the two most important thermal properties of 

OLED materials, and exert significant influence on the performance of OLED devices.9 

In particular, the Tg of OLED materials is one of the most important factors that 

influences device stability and lifetime since OLED devices irreversibly deteriorate 

when heated above their Tg.
7, 10 High Tg and Td values can reduce heat-induced 

morphology changes, thus enhancing the stability of device performance.11, 12 On 

experiments, the Tg and Td values of the OLED materials are generally measured by 

differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). 

However, before DSC and TGA determination, OLED materials need to be purified by 

column chromatography or sublimation,13, 14 which are complicated and time-



consuming. Thus, it is highly desired to develop a quick and accurate method to predict 

Tg and Td. As accepted, the thermal stability of the OLED material is closely related to 

their molecule structures.15 However, the relationship between the molecular structure 

and the thermal stability like Tg and Td is complex and has not been elucidated so far. 

Machine learning (ML), as a key technique of artificial intelligence, can map the 

complex relationshiop underlying a large amoun of data, which has been succesfully 

applied in the fields of medicinal chemistry, environmental risk assessment, organic 

synthesis, and materials science.16-21 To our best knowledge, only two previous studies 

already used the machine learning method to predict the Tg of OLED materials,22, 23 but 

there has been lack of Td prediction. In 2003, Yin et al. performed a study on the 

quantitative structure-property relationship (QSPR) based on the Tg of 88 OLED 

materials with R2= 0.963, MAE = 17.9 K for test set, using a multilinear regression 

method (MLR) 22. In 2013, Silva et al. developed a QSPR model to predict the Tg of 66 

OLED materials with R2 = 0.963, MAE = 0.97 K for test set (not independent test set) 

by using support vector machines (SVM) 23. The two studies look like high prediction 

accucracy, which comes from so small amount of data (fewer than 100 molecules). In 

fact, the prediction ability is not reliable and unstable, in particular for its generalization 

on unknow compounds due to the dependence of ML on the dataset size. Unfortunately, 

there has been lack of the database involving the two important properties Tg and Td so 

far. However, in the past decade, a significant amount of thermal stability data for 

OLED materials has been published, in particular for thermally activated delayed 

fluorescence (TADF) materials that are pure organic molecules showing a potential 100% 



internal quantum efficiency without the aid of heavy metals.24 Desipte these published 

data dispersive in different literatures, they still provide a possible data source for 

constructing robust machine learning model. 

Motivated by the challenge, we construct a new dataset containing the experimental Tg 

data of 1944 small organic molecules and the experimental Td data of 1182 small 

organic OLED compounds collected from a large amount of literature. Based on the 

new dataset, we ulitized ensemble learning approach LightGBM algorithm, rather than 

single machine learning methods in previous works, to build comprehensive models 

between molecular structure and the two properties by constructing and combining base 

learners. The optimal Tg prediction model could provide an accurate prediction with 

RMSE = 24.63 K, MAE = 17.15 K, and R2 = 0.77 for the test set. For Td prediction, the 

optimal model could provide an accurate prediction with RMSE = 33.88 K, MAE = 

24.91 K, and R2 = 0.78 for the test set. In addition, the optimal models could accurately 

predict the Tg and Td for out of sample including recently reported OLED host and guest 

materials, organic electron-transport materials and hole-transport materials. Then, we 

used the optimized models to predict the Tg and Td of 50 unknown OLED molecules 

designed by us and selected the compound TPA-2 (with high Tg and the highest Td) to 

experimentally synthesis and determine its thermal stability. The experimental 

verification further confirm the prediction reliability of our ML models. In addition, we 

explore a websit including the optimized Tg and Td prediction models coupled with the 

new dataset, which is freely available at http://oledtppxmpugroup.com. We expect that 

the website will serve as a useful tool to help experimental investigators quickly 



estimate Tg and Td. 

2. Materials and methods 

2.1 Construction of dataset 

Unfortunately, there is no existing database that organizes OLED materials and their 

properties. Currently, the thermal stability data of OLED materials are scattered 

throughout the literature. Therefore, experimental glass transition temperatures (Tg) for 

a diverse set of 1944 molecules were collected from a large number of literature using 

the SciFinder database. These Tg values were measured by DSC. For molecules with 

multiple recorded entries, an average Tg was used as the output if the variation was less 

than 40 K. Molecules with a Tg variation larger than 40 K were not included in the 

dataset. Experimental thermal decomposition temperatures (Td, corresponding to 5% 

weight loss) for a diverse set of 1182 OLED molecules also were collected from the 

literature. The Td data for these OLED molecules were measured by TGA. For 

molecules with multiple Td values, we compare the TGA curves in the literature and 

take the Td measured by the smoother TGA curve as the final value (Fig. S1). Table S1 

lists 13 OLED compounds with multiple recorded entries. As can be seen, the deviation 

in Tg for compounds reported in different papers is often within 40 K. However, the Td 

values of the same compounds reported in different papers have a large deviation, often 

greater than 40 K. This is because the purity of a compound has a significant influence 

on the experimental value of Td (corresponding to 5% weight loss). It should be noted 

that there are very few compounds with multiple Td records in our dataset. 

The Tg distribution of 1944 molecules and Td distribution of 1182 OLED molecules are 

shown in Fig. 1. The Tg values span a range from 273 to 600 K, with the majority of 



values between 325 and 475 K. Fig. 1 shows that compounds with a Tg higher than 400 

K (127 °C) account for almost half of the reported compounds. The Td values span a 

range from 400 to 900 K, with the majority of values between 550 and 800 K. This 

indicates that the Td of most OLED materials is greater than 550 K (277 °C). The 

molecular structures include the atomic elements C, H, B, N, O, F, Si, P, S, Cl, and Br, 

containing most of the elements of pure organic functional materials.  

 

Fig. 1 (a) Tg distribution of 1944 molecules. (b) Td distribution of 1182 OLED molecules. 

2.2 Descriptors and fingerprints 

In the work, molecular descriptors and fingerprints were considered to characterize the 

molecular structure. Molecular descriptors and fingerprints were calculated by PaDEL-

Descriptor version 2.21.25 The 1D and 2D descriptors and molecular fingerprints were 

generated by taking into consideration their general applicability as well as their 

computation cost. The PaDEL-Descriptor software is open source and free, and the 

calculation of 1D and 2D descriptors and molecular fingerprints is simple and fast. This 

facilitates the further promotion and use of our thermal stability prediction models.  

2.2.1 Molecular descriptors 

1D molecular descriptors were generated based on molecular formulas and 2D 

molecular descriptors were generated based on the atom connection table. 1D and 2D 



molecular descriptors belong to the class of molecular property-based descriptors. Each 

molecular descriptor represents a certain feature of a molecule, such as topology or 

weight. As each molecular descriptor only depicts a specific property of a molecule, a 

combination of a large number of molecular descriptors can provide more information. 

Using information encoded in canonical SMILES (simplified molecular input line entry 

system), the PaDEL software offered 1444 1D and 2D descriptors. However, not all the 

descriptors were used for modeling, such as the descriptors which were not computable 

for all the compounds. The remaining 665 parameters were used for model definition 

(including aromatic atom count, aromatic bond count, atom count, bond count, estate 

atom type, extended topochemical atom indices, ring count, topology, topological 

charge, topological distance matrices, topological polar surface area, XLogP, and 

weight descriptors). 

2.2.2 Molecular fingerprints 

Five types of fingerprints (a total of 2741 parameters) were calculated for this research, 

including CDK fingerprints (1024 bits), CDK extended fingerprints (1024 bits), E-

States fingerprints (79 bits), substructure fingerprints (307 bits), and substructure 

fingerprints count (307 bits). Molecular fingerprints are a subclass of molecular 

descriptors that can be obtained without quantum-mechanical calculations. They belong 

to the class of fragment-based descriptors,26 and they were used in this study due to 

their high potential for the high-throughput screening of materials. These fragment-

based descriptors are represented as a Boolean array, indicating the existence of the 

corresponding fragments in the molecule. The descriptions of the molecular 



fingerprints used in this study are listed in Table S2. CDK fingerprints, CDK extended 

fingerprints, and E-state fingerprints are a good expression of the molecular backbones. 

Substructure fingerprints and substructure fingerprints count provide differentiation for 

an array of functional groups. 

2.3 Machine learning algorithms 

LightGBM is a recent modification of the gradient boosting (GB) algorithm.27 It 

improves the efficiency and scalability of the GB algorithm without sacrificing its 

inherited effective performance. This approach results in a faster and less resource-

intensive implementation of gradient boosting, suitable for frequent retraining and rapid 

evaluation of larger high-dimensional datasets. The LightGBM algorithm uses 

ensemble learning, which aims to build a comprehensive model by constructing and 

combining base learners. Ensemble learning not only produces a more stable global 

model, but also guarantees diminishing uncertainty. In particular, LightGBM uses 

Exclusive Feature Bundling (EFB) to reduce feature dimensions and improve 

calculation efficiency, and it can handle a large number of data instances and a large 

number of data features without overfitting problems.27 As a decision tree based model, 

LightGBM has an additional advantage of being robust against multicollinearity. In this 

work, we first used the LightGBM algorithm for modeling and then compared its model 

with other algorithms. These include Support Vector Machine (SVM), partial least 

squares (PLS), least absolute shrinkage and selection operator (LASSO), Kernel Ridge 

Regression (KRR), k-Nearest Neighbors (kNN), Random Forest (RF). All except 

LightGBM can be found in Scikit-learn package. The LightGBM code is available at 



https://github.com/Microsoft/LightGBM. 

2.4 Experimental synthesis 

1,2-bis(4-(diphenylamino)phenyl)ethane-1,2-dione (1) 

Anhydrous aluminum trichloride (1.33 g, 9.8 mmol), oxalyl chloride (0.43 mL，4.9 

mmol) and triphenylamine (2.94 g 12 mmol) were dissolved in anhydrous CH2Cl2 (10 

mL) and refluxed at 40 oC for 2 h. After cooled down to room temperature and poured 

into ice water. Hydrochloric acid (10 mL, 37%) was added and the mixture was 

extracted with CH2Cl2 (30 mL × 2). The combined organic layers were washed with 

water (30 mL × 3) and dried over anhydrous Na2SO4. After removing the solvent, the 

residue was purified using column chromatography on silica gel employing CH2Cl2/PE 

(1/1) as an eluent to afford a yellow solid with a yield of 28%. 1H NMR (400 MHz, 

CDCl3) : δ = 7.77 (d, J = 8.8 Hz, 1H), 7.33 (t, J = 8.0 Hz, 2H), 7.16 (m, 3H), 6.95 ppm 

(d, J = 8.8 Hz, 1H). 

2,3-bis(4-(diphenylamino)phenyl)naphtho[2,3-f]quinoxaline-7,12-dione (TPA-2) 

1 (500 mg, 0.92 mmol) and 1,2-diaminoanthraquinone (220 mg, 0.912 mmol) was 

dissolved in AcOH (15 mL) and heated to 120 °C and stirred for 12 h. After cooled 

down to room temperature and then poured into 30 mL water and extracted with CH2Cl2 

(20 mL × 3). The resultant organic phase was washed with brine, and dried over 

anhydrous Na2SO4. After removing the solvent, the residue was purified using column 

chromatography on silica gel employing CH2Cl2/PE (1/1) as an eluent to give a red 

solid with a yield of 37%. 1H NMR (400 MHz, CDCl3) : δ = 8.59 (d, J = 8.8 Hz, 1H), 

8.45 (d, J = 8.8 Hz, 1H), 8.32 (d, J = 7.6 Hz, 1H), 8.30 (d, J = 8.8 Hz, 1H), 7.77 (m, 



4H), 7.64 (d, J = 8.4 Hz, 2H), 7.17 (m, 8H), 7.07 ppm (m, 16H). 13C NMR(100 MHz, 

CDCl3) δ(ppm):183.8, 183.5, 155.3, 153.8, 149.5, 147.1, 147.0, 143.3, 138.4, 135.2, 

134.9, 134.7, 134.5, 133.5, 132.3, 131.4, 131.4, 130.9, 130.8, 129.5, 129.4, 129.1, 127.4, 

126.6, 126.2, 125.4, 123.9, 123.8, 121.5, 121.4. 

3. Results and discussions 

3.1 Machine learning models for Tg and Td 

90% of the Tg and Td dataset was used for model training and the remaining 10% was 

used for an independent test set. In order to establish robust machine learning models 

to predict the thermal stability of OLED materials, 10-fold cross-validation was used to 

reduce the randomness of sample division and enhance the stability of the obtained 

machine learning models. Performance was measured with the squared correlation 

coefficient (R2), the mean absolute error (MAE), and the root mean squared error 

(RMSE). 

Selecting suitable descriptors is crucial for Tg and Td prediction tasks. We started with 

the choice of molecular fingerprints. The LightGBM algorithm was used to evaluate 

their prediction performance. A potential challenge exists due to the multifold 

molecular features involved in the thermal stability of OLED materials, because a single 

molecular fingerprint does not cover all of these features. However, combining different 

molecular fingerprints may solve this problem. Table S3 and Table S4 show the training 

and testing results of different Tg and Td prediction machine learning models with 

different fingerprints as inputs. Joint fingerprints including CDK fingerprints (1024 

bits), CDK extended fingerprints (1024 bits), and substructure fingerprints count (307 

bits) show the best performance, implying that the representation of molecular 



structures by the molecular backbone and functional groups is potentially better for Tg 

and Td prediction than the use of other fingerprints. Therefore, the three molecular 

fingerprints (CDK, CDK extended, substructure count, 2355 bits) were combined as an 

input, denoted SC_2CDK. 

Table 1 summarizes the Tg and Td prediction results of the LightGBM models. As can 

be seen, the machine learning model with 1D and 2D molecular descriptors has better 

Tg prediction performance than the corresponding machine learning model with 

fingerprints. Therefore, the 1D and 2D molecular descriptors provide more important 

information relevant for Tg prediction compared with fingerprints. However, 

information contained in property-based descriptors (molecular descriptors) and 

fragment-based descriptors (fingerprints) can complement each other.26 Table 1 shows 

the performance improvement achieved by combining molecular descriptors and 

fingerprints for Tg prediction. The best Tg prediction result was obtained with RMSE = 

24.63 K, MAE = 17.15 K, and R2=0.77 for the independent test set. A plot of Tg values 

predicted by the best model vs. the experimental Tg values for independent test set is 

shown in Fig. 2a. A reasonable agreement between the predicted and experimental Tg 

values can be seen. Considering that the Tg values of the 1944 organic molecules in the 

dataset are mainly distributed between 325 K and 475 K, RMSE = 24.63 K and MAE 

= 17.15 K are acceptable values.  

Table 1 shows that machine learning model with fingerprints has better Td prediction 

performance than the corresponding machine learning model with 1D and 2D molecular 

descriptors, indicating that fingerprints (fragment-based descriptors) can provide more 



important information relevant to Td compared with 1D and 2D molecular descriptors 

(property-based descriptors). This is because the thermal decomposition of OLED 

materials often starts at a specific molecular fragment, usually the weak bond in a 

functional group. Therefore, fragment-based descriptors can provide more important 

information relevant to Td prediction. The combination of molecular descriptors and 

SC_2CDK only slightly improves the performance of Td prediction. The best result for 

Td prediction was obtained with RMSE = 33.88 K, MAE = 24.91 K, and R2 = 0.78 for 

the independent test set. A plot of Td values predicted by the best model vs. the 

experimental Td values for the independent test set is shown in Fig. 2b, confirming that 

the predicted and experimental Td values are reasonably consistent. Considering that 

the Td values of the 1182 OLED molecules in the dataset are mainly distributed between 

550 K and 800 K, RMSE = 33.88 K and MAE = 24.91 K are acceptable values. 

Therefore, our Tg and Td LightGBM prediction models are sufficient for applications 

such as pre-screening of high Tg and Td OLED materials. 

The LightGBM prediction results reveal the most relative features with pronounced 

effects on the predicted Tg and Td in the dataset. Fig. 4 shows the feature importance for 

predictions of Tg and Td obtained with the LightGBM-based optimal models. The 10 

most important features for Tg prediction are maxwHBa, JGI5, JGI9, JGI4, hmax, JGI10, 

VE1_D, ETA_dBetaP, JGI6, and ETA_EtaP_F. The feature with the highest 

contribution is maxwHBa (maximum E-States for weak hydrogen bond acceptors), 

indicating that hydrogen bonds have an effect on Tg. Tg is a reversible transition in 

amorphous materials which allows rapid molecular motion under heating. The presence 



of hydrogen bonds can affect Tg because they change the rigidity of molecules and play 

an important role in preventing molecular rotation. In addition, the topological charge 

(JGI4, JGI5, JGI6, JGI9, JGI0) and topological distance (VE1_D) of molecules have a 

significant influence on Tg. ETA_EtaP_F (the functionality index EtaF relative to 

molecular size), ETA_dBetaP (a measure of the degree of unsaturation relative to 

molecular size), and hmax (maximum H E-State) also play a role in influencing Tg, 

indicating that molecular size and the presence of H atoms affect the Tg of molecules.  

The top 10 most important features for Td are minaaCH, SpMAD_D, JGI10, JGI8, 

maxaaCH, JGI7, ETA_Psi_1, JGI9, JGI4, and XLogP. The features of the highest 

contributing factor (minaaCH: minimum atom-type E-State: :CH:) and fifth-highest 

contributing factor (maxaaCH: maximum atom-type E-State: :CH:) indicate that the 

atom-type :CH: has a significant influence on the value of Td. The topological charge 

(JGI4, JGI7, JGI8, JGI9, JGI10) and topological distance (SpMAD_D) of molecules 

also have a significant influence on Td. ETA_Psi_1 (a measure of molecular hydrogen 

bonding propensity and/or polar surface area) indicates that hydrogen bonds also 

influence Td. Descriptions of the 10 most important features for Tg and Td prediction 

are shown in Table S5 and Table S6. 

In addition to the LightGBM algorithm, the performance and efficiency of other models 

including SVM, PLS, LASSO, KRR, kNN, and RF algorithms were examined. A 

comparison of the predictive powers of these seven machine learning methods was 

undertaken based on the MAE and RMSE of Tg and Td prediction (where the input was 

descriptors + SC_2CDK). The MAE and RMSE of the independent test set for the 



different machine learning methods are shown in Fig. 5. As can be seen, the LightGBM 

regressor exhibits the lowest MAE and RMSE for Tg and Td prediction. Based on these 

results, the LightGBM algorithm was selected as the optimal algorithm for thermal 

stability prediction of OLED materials. 

Table 1. Prediction summary for the Tg and Td of OLED materials based on LightGBM models. 

  Training Testing 

 Input R2 MAE (K) RMSE (K) R2 MAE (K) RMSE (K) 

 

Tg 

Descriptors 0.99 1.54 2.59 0.74 17.73 26.15 

SC_2CDK 0.97 5.13 8.10 0.72 17.62 26.72 

Descriptors + SC_2CDK 0.99 1.34 2.34 0.77 17.15 24.63 

 

Td  

Descriptors 0.99 0.31 1.05 0.75 27.92 36.66 

SC_2CDK 0.99 5.06 8.26 0.78 26.46 34.19 

Descriptors + SC_2CDK 0.99 1.26 3.26 0.78 24.91 33.88 

 

Fig. 2 Correlation plots of (a) Tg and (b) Td for the independent test set based on LightGBM-based 

optimal models. 

 

Fig. 3 Feature importance for the prediction of (a) Tg and (b) Td obtained from the LightGBM-

based optimal models. 



 

Fig. 4 MAE and RMSE for the prediction of (a) Tg and (b) Td of the independent test set with 

different machine learning methods. 

3.2 Model application and verification 

The goal of machine learning model construction is enabling the use of the model in 

practical applications. The obtained Tg and Td prediction models based on the 

LightGBM algorithm were further tested in out-of-sample predictions and experimental 

verification. Three representative applications are shown herein. 

3.2.1 Independent testing for Tg and Td predictions of OLED materials 

To verify the effectiveness of the machine learning models, they were further tested in 

out-of-sample predictions. The optimal models were applied to the prediction of Tg for 

40 OLED compounds and the prediction of Td for 40 OLED compounds reported in 

recent literature.14, 28-55 These compounds are mainly used in host-guest emissive layer 

for OLED devices. More detailed information about these compounds can be found in 

the supporting information (Table S7 and Table S8). Meanwhile, these compounds were 

not included in the original dataset. A plot of the predicted Tg and Td values vs. the 

experimental Tg and Td values is shown in Fig. 5. The R2, MAE, and RMSE of the Tg 

predictions are 0.89, 8.81 K, and 11.15 K, respectively. The R2, MAE, and RMSE of 

the Td predictions are 0.82, 14.95 K, and 20.00 K, respectively. These results show that 



our models can accurately predict the Tg and Td of out-of-sample OLED compounds. 

However, one compound demonstrated a very large Td prediction error (3CzCNPyz, 

with an error of 75.00 K). 

In order to clarify the reasons for this large prediction error, 3CzCNPyz can be 

compared with two other compounds that appear in the literature.50 The TGA curve of 

3CzCNPyz is shown in Fig. 6 and the TGA curves of 2Cz2CNPyz and 4CzPyz are 

shown in Fig. S2. The compounds 2Cz2CNPyz and 4CzPyz have prediction errors of 

2.81 K and -1.79 K, much smaller than the prediction error of compound 3CzCNPyz. 

Fig. 6 shows that the weight of compound 3CzCNPyz slightly decreases below 500 K 

(227 °C). This can be attributed to the presence of impurities in 3CzCNPyz which cause 

the experimental Td value of 3CzCNPyz to decrease. To investigate if the Td prediction 

model has problems with inaccurate predictions, the compound 4CzCNPy was selected 

for Td prediction. 4CzCNPy is a compound similar in structure to 3CzCNPyz. In Ref.56 

56 and Ref.57 57, the Td of 4CzCNPy was tested to be 712 K and 681 K. The Td prediction 

of 4CzCNPy by our machine learning model is 708 K, showing an error of -4 K and 27 

K. This is in good agreement with the experimental values. Therefore, it is likely that 

our model is accurate for the Td prediction of 3CzCNPyz. This example demonstrates 

that the purity of a compound must be high for the accurate measurement of Td. Because 

the experimental determination of Tg and Td requires high purity OLED compounds and 

is time-consuming and labor-intensive, the prediction of Tg and Td based on a machine 

learning approach is much more convenient.  



 

Fig. 5 Correlation plots of (a) predicted and experimental Tg values of 40 OLED compounds and 

(b) predicted and experimental Td values of 40 OLED compounds in recent literature. 

 

Fig. 6 TGA curve of 3CzCNPyz. Inset: experimental and predicted Td values of 3CzCNPyz, 

2Cz2CNPyz, and 4CzPyz. 

3.2.2 Independent testing of Tg and Td predictions for hole-transport materials and 

electron-transport materials  

Organic electron-transport materials (ETMs) and hole-transport materials (HTMs) are 

widely used in OLEDs and perovskite solar cells (PSCs), mainly for the electron 

transport layer or hole transport layer of OLED and PSCs devices. Because electron 

transport layer and hole transport should be thermally stable to improve the overall 

lifetime of devices, both materials require high thermal stability. Realizing accurate Tg 

and Td prediction of organic ETMs and HTMs prior to experimental synthesis will be 

useful for the development of ETMs and HTMs with expected properties. Therefore, to 

verify the practicality of this study’s models, the models were used for Tg prediction of 



40 organic ETMs and HTMs and Td prediction of 40 organic ETMs and HTMs used in 

OLEDs and perovskite solar cells.58-86 More detailed information on these organic 

ETMs and HTMs can be found in Table S9 and Table S10. These compounds were not 

included in the original dataset. 

A plot of predicted vs. experimental Tg values for 40 organic ETMs and HTMs is shown 

in Fig. 7a. A reasonable agreement exists between the predicted and experimental Tg 

values. The R2, MAE, and RMSE of the Tg predictions are 0.76, 14.39 K, and 16.18 K. 

Fig. 7b shows a plot of predicted vs. experimental Td values for 40 organic ETMs and 

HTMs. The predicted and experimental Td values also show reasonable agreement. The 

R2, MAE, and RMSE of the Td predictions are 0.71, 17.27 K, and 21.26 K. These results 

show that the optimal models can give satisifactory accuracy for the prediction of Tg 

and Td of small-molecule organic ETMs and HTMs. In the future, other machine 

learning models (such as an electron mobility prediction model) could be combined 

with these models for the high-throughput screening of small-molecule organic 

functional materials with expected properties. 

 
Fig. 7 Predicted vs. experimental (a) Tg and (b) Td values for 40 organic electron-transport 

materials and hole-transport materials used in OLEDs and perovskite solar cells. 



3.2.3 Experimental verification 

In order to verify that these models can be used for the Tg and Td prediction of unknown 

OLED compounds and for the screening of OLED materials with high thermal stability, 

the models were used to predict the Tg and Td of 50 molecules. These 50 molecules 

were designed to have donor-acceptor (D-A) and donor-acceptor-donor (D-A-D) type 

structures. D-A and D-A-D type structures are very common in OLED materials and 

are also convenient for subsequent synthesis studies. The chemical structures and 

predicted Tg and Td values of these designed compounds are shown in Table S11. The 

compound with the third highest Tg and the highest Td (TPA-2) was selected for 

synthesis verification. 

Density functional theory (DFT) simulations were performed for TPA-2 before the 

compound was synthesized. HOMO/LUMO distributions of TPA-2 in the ground state 

are shown in Fig. S3. The LUMO of TPA-2 is predominantly located on the acceptor, 

whereas the HOMO is located on the donor. The separated frontier molecular orbitals 

lead to extremely small theoretical ΔEST values for TPA-2 calculated using time-

dependent density functional theory (TDDFT). The theoretical calculation parameters 

of TPA-2 were compared with TPA-PZCN, which is a high efficiency red-TADF 

material with an external quantum efficiency close to 30%.87 The theoretical calculation 

parameters of TPA-PZCN and TPA-2 are shown in Table S11. TPA-2 has a narrower 

bandgap (Egap) than TPA-PZCN (2.08 eV vs. 2.32 eV). The calculated S1 of TPA-2 is 

also smaller than that of TPA-PZCN. This reveals that TPA-2 may show a longer 

emission wavelength than TPA-PZCN in the same solvent. The ΔEST of TPA-2 (0.22 



eV) is smaller than that of TPA-PZCN (0.25 eV). The SOC was also calculated between 

S1 and T1 in the geometry of T1. The <S1|Hso|T1> of TPA-2 (0.27 cm-1) is larger than 

that of TPA-PZCN (0.13 cm-1), indicating that TPA-2 has a good T1→S1 reverse 

intersystem crossing (RISC) efficiency. A large oscillator strength (0.1886) of TPA-2 is 

maintained which benefit radiative transition from S1 to S0. On the basis of these 

calculation results, TPA-2 is a good candidate for a red-TADF material, providing a 

further reason for its selection for synthesis verification. 

The chemical structure and synthetic route of TPA-2 are presented in Scheme 1. Before 

testing, the compound was purified by column chromatography and temperature-

gradient vacuum sublimation. The structure of TPA-2 was characterized by 1H NMR 

and 13C NMR (Fig. S4, Fig. S5 and Fig. S6). Experimental test results show that TPA-

2 can be used as a red-TADF OLED material (Fig. S7 and Table S12). The thermal 

properties of TPA-2 were investigated by differential scanning calorimetry (DSC) and 

thermogravimetric analysis (TGA) under a nitrogen atmosphere. A (Tg) of 411 K 

(138 °C) and (Td) of 697 K (424 °C) were observed (Fig. 8), in good agreement with 

the predicted values by machine learning. The predicted Tg value is 426 K, 

demonstrating an error of 15 K, while the predicted Td value is 738 K, demonstrating 

an error of 41 K. As expected, the TPA-2 compound has good thermal stability. These 

results show that it is feasible to apply our machine learning models to predict the 

thermal stability of unknown OLED materials. Our machine learning models also have 

the potential to screen high thermal stability OLED materials. 

https://pubs.rsc.org/en/content/articlelanding/2021/tc/d0tc05662f#sch1


 

Scheme 1 Chemical structure and synthetic route of TPA-2. 

 

Fig. 8 DSC and TGA curves for TPA-2. 

3.3 Website for Tg and Td Predictions 

Currently, hundreds of articles on OLED materials are published every year 8. There 

are a lot of useful data in the literatures, but there is no existing database that organizes 

OLED materials data. With the aim of storing the thermal stability data of OLED 

materials and helping experimental scientists to utilize the model in designing new 

OLED compounds with desired Tg and Td, an online tool was developed. The website 

to share the available models for the prediction of Tg and Td is accessible at 

http://oledtppxmpugroup.com. Users can make predictions by inputting canonical 

SMILES, the outputs include Tg (K) and Td (K). The Tg and Td data in this article are 

also placed on this website. In the future, we will continue updating the dataset and 

optimal model on the website in order to predict Tg and Td more accurately. The 

screenshot of the interface our website homepage are shown in Fig. 9. More details can 



be found by visiting the website. 

 

Fig. 9. Screenshot of the interface of our website homepage 

4. Conclusion 

Motivated by the challenge in the quick and accurate prediction on Td and Tg 

charactering the thermal stability of OLED materials, we developed ensemble machine 

learning models coupled with the combined descriptors. 1944 experimental Tg data and 

1182 experimental Td data were collected from experimental literature to construct a 

new dataset in order to support the data-driven machine learning models. With the 

dataset and the combined descriptors, the optimal LightGBM models give satisifactory 

accuracy for the prediction of Td and Tg, higher than other six classific ML models 

(SVM, PLS, LASSO, KRR, kNN, and RF ML models). The model is further validated 

by two types of out-of-sample predictions (including recently reported host and guest 

materials, organic ETMs and HTMs), exhibiting good robustness and universality. 

Finally, the expermimental validation on a high thermal stability OLED material further 

confirms the reliability of our models and application potential in practice. In addition, 

we constructed a website including all the data and the optimized ML models in order 

to provide a simple and quick tool for estimating the two important properties of 



unknown compounds, in turn assisting the design of the OLED materials. 
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