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Abstract1

Molecular simulation is a mature and versatile tool set widely utilized in many subjects2

with more than 30,000 publications each year. However, its methodology development has3

been struggling with a tradeoff between accuracy/resolution and speed, significant improve-4

ment of both beyond present state of the art is necessary to reliably substitute many expensive5

and laborious experiments in molecular biology, materials science and nanotechnology. Pre-6

viously, the ubiquitous issue regarding severe wasting of computational resources in all forms7

of molecular simulations due to repetitive local sampling was raised, and the local free energy8

landscape approach was proposed to address it. This approach is derived from a simple idea of9

first learning local distributions, and followed by dynamic assembly of which to infer global10

joint distribution of a target molecular system. When compared with conventional explicit11

solvent molecular dynamics simulations, a simple and approximate implementation of this12

theory in protein structural refinement harvested acceleration of about six orders of magnitude13

without loss of accuracy. While this initial test revealed tremendous benefits for addressing14

repetitive local sampling, there are some implicit assumptions need to be articulated. Here, I15

present a more thorough discussion of repetitive local sampling; potential options for learning16
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local distributions; a more general formulation with potential extension to simulation of near17

equilibrium molecular systems; the prospect of developing computation driven molecular sci-18

ence; the connection to mainstream residue pair distance distribution based protein structure19

prediction/refinement; and the fundamental difference of utilizing averaging from conventional20

molecular simulation framework based on potential of mean force. This more general devel-21

opment is termed the local distribution theory to release the limitation of strict thermodynamic22

equilibrium in its potential wide application in general soft condensed molecular systems.23

Introduction24

Molecular simulation has been utilized in a wide variety of disciplines, including but not limited25

to chemistry, physics, biology and materials science. Its increasing importance is clearly demon-26

strated by steady growth of relevant publications as shown in Fig. 1. However, atomistic molecu-27

lar dynamics (MD) simulations, while being effective in revealing underlying atomic mechanisms28

for many molecular processes, are extremely computationally intensive.1,2 Historically, scientists29

have developed two lines of algorithms to accelerate molecular simulations, with one being coarse30

graining (CG)3–12 and the other being enhanced sampling (ES).13–16 Realizing that there is severe31

wasting of computational resources due to repetitive local sampling (RLS) in all molecular simu-32

lations, the local free energy landscape (LFEL) approach was proposed to eliminate such wasting,33

and its effectiveness was subsequently demonstrated in an approximate implementation in protein34

structural refinement.17 The connection among CS, ES and LFEL as various forms of applying “di-35

viding and conquering” and “caching” principle in molecular modeling was summarized.18 In our36

initial testing of this new theory, LFEL for amino acid packing in proteins was constructed based37

on a simple neural network implementation of generalized solvation free energy (GSFE) theory.19
38

Further, a computational graph was established through combination of automatic differentiation,39

coordinate transformation and LFEL cached in trained neural networks. This computational graph40

was successfully utilized to achieve the only end-to-end and the most efficient protein structural re-41

finement pipeline17 up to date. Like all present protein structure prediction, design and refinement42
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studies,20–29 there is an implicit and extremely crude assumption that all high resolution experimen-43

tal structures were solved under similar environmental (thermodynamic) conditions. Alternatively,44

differences in thermodynamic and environmental conditions are deemed not important for all high45

resolution structural data utilized to train models. Such assumptions are apparently not true. Addi-46

tionally, the LFEL approach as it stands only applies to equilibrium conditions. Here, I explicitly47

articulate these issues, develop a more general form of the LFEL idea and termed it the local distri-48

bution theory (LDT). Meanwhile, more concrete discussions of RLS, more options for fitting local49

distributions, extension of LDT to near-equilibrium scenarios, connection of LDT to present AI-50

based protein structural studies, and the difference of LDT from conventional molecular simulation51

framework based on potential of mean force are presented. It is hoped that this work will intrigue52

more interest in further development of LDT in general chemical and biomolecular systems, and53

facilitate advancement of computation driven molecular science.54

Repetitive local sampling55

In molecular simulations, we have a long history of utilizing RLS in analysis of MD trajecto-56

ries. For example, when computing pair distribution function g(r) between oxygen atoms of water57

molecules, instead of counting a specific pair of water molecules or water molecules within a58

given small space and binning distances of oxygen atom pairs, statistics is usually accumulated by59

counting all pairs of water molecules within half simulation box distance to obtain a more smooth60

curve. Similar tricks are routinely utilized in various analyses of molecular simulation trajectories.61

The basis of these manipulations is the belief that all molecules of the same chemical identity and62

composition are indistinguishable, and ensemble average converges to time average for ergodic63

systems. From a different perspective, all above practice clearly demonstrates that we have been64

carrying out RLS in essentially all our simulations, except not carefully thinking about its potential65

utility in saving computational resources in the simulation/sampling stage. This issue was raised66

previously17,18 without sufficiently detailed discussions. Some typical examples of RLS in various67
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simulation and/or modeling applications are discussed below.68

RLS consumes overwhelming majority of computational resources in regular molecular sim-69

ulations and exist both within a single simulation task and across different ones. As shown in70

Fig. 2a, there is a simulation of aqueous solution comprising a few different types of ions and71

water molecules, with gas-liquid and liquid-solid interfaces under given thermodynamic condi-72

tions. After a sufficiently long simulation run, if all snapshots were utilized to analyze distribution73

of molecules and ions in a bulk spherical space A, one would have obtained a converged LFEL,74

which is a complex high dimensional distribution that gives correct statistical weight for each75

thermally reachable structural ensemble (or free energy local minimum) on the one hand, and all76

possible transition paths connecting these minima with respective statistical significance on the77

other hand. The exactly same LFEL would have been obtained if another bulk spherical space B78

with the same volume was taken. As a matter of fact, the exactly same LFEL would be obtained79

for all possible bulk spherical spaces with the same volume. However, for each such separate local80

space, significant computational resource was consumed to obtain the exactly same result! This is81

a typical case of RLS in the same simulation task.82

While local spaces near various interface certainly have LFELs different from that of bulk,83

there are regularities that can be learned as well. Such RLS may be effectively described from84

a slightly different perspective according to the GSFE theory as shown in Fig. 2b. In GSFE85

theory, each comprising unit of a molecular system is on the one hand a solute unit solvated by86

its surrounding units, and on the other hand a comprising solvent unit for each of its surrounding87

units. As all units with the same chemical identity/structure are indistinguishable, so should be88

LFEL of their local solvent under given thermodynamic conditions if a simulation trajectory is89

sufficiently long. When our focus is on LFEL surrounding a central unit, different scenarios of90

interfaces are simply different solvent configurations with corresponding statistical weights and91

no special treatment is required. More specifically, for a water molecule absorbed on wall of a92

tube filled with water, its solvent units include both water molecules and molecules belong to93

the wall surrounding it. To eliminate difficulty of defining interfaces at molecular scales is the94
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very initial motivation for development of the GSFE theory. Additionally, defining local spaces95

with local coordinates originated from individual molecule is a convenient, efficient and natural96

choice with two advantages. Firstly, it reduces data requirement and improves accuracy during97

training/learning of local distributions, and secondly, it facilitates assembly by eliminating the98

uncertainty of selecting from infinite possible origins for local spaces during inference for global99

joint distribution (GJD) of a target molecular system.100

Beyond the illustration in Fig. 2, there are other less obvious forms of RLS. For example,101

in protein structure prediction, design and refinement with implicit representation of aqueous so-102

lution, each residue in a chain has more or less unique surroundings and no direct RLS seems103

existing. However, in these tasks, each residue experiences many rounds of adjustment or repack-104

ing, sampled collisions, favorable and unfavorable configurations from each round is partially or105

completely discarded and performed on the fly in the next round, engendering significant RLS.106

Much more computational resource are consumed by RLS across different tasks. Imagine how107

many times simulations of local packing for water molecules of each popular water force fields108

have been carried out by thousands of scientists globally! Similarly, packing of amino acids sur-109

rounding each of 20 natural amino acids have been carried out numerous times by computational110

structural bioinformaticians around the world. Such RLS is apparently ubiquitous for simulations111

of all molecular systems.112

Sufficient sampling of complex molecular system has long been our pursuit in our simulation113

studies. The very fact that we almost always collect statistics from different local spaces and/or114

utilize indistinguishable property of molecules for better statistics indicates that we rarely achieve115

sufficient sampling for a given small space or surrounding of a given single molecule. Therefore,116

it is likely that more accurate global correlations would have been obtained if sufficient statistics117

was available for all local regions. Since construction of global distributions by assembly of LFEL118

realizes this very condition, the ability to cache and utilize LFEL properly would not only tremen-119

dously reduce amount of computational resources, but also potentially improve accuracy due to120

effectively more sufficient “local sampling”. This is in strong contrast to decades of trade-off in121
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molecular simulation that improved efficiency being always accompanied more or less by reduced122

accuracy, and increased efficiency being always accompanied by more or less reduction of ac-123

curacy! When compared with conventional molecular mechanical force fields30–33 or knowledge124

based potentials,34–36 the ability of accounting for many-body correlations is another advantage of125

LFEL that is likely to contribute to improved accuracy. It is important to note that many neural126

network based force fields (NNFF) methodologies have been developed up to date.37,38 Essentially,127

development of NNFF and other machine learning based force fields is the mainstream of research128

bridging artificial intelligence (AI) and molecular simulations with many great successes. NNFF129

tackles many body correlations and demonstrates improved accuracy while sacrifice some effi-130

ciency, and remains in the established framework of “force fields + sampling” without considering131

RLS.132

The local distribution theory133

It is well understood that the folding process and conformational distributions for a given protein

depend upon both its sequence and environmental conditions. However, due to lack to data, in

both establishment of traditional knowledge based potentials34–36 and deep learning studies21,22

of protein folding, design and structural refinement, it is widely assumed that all experimen-

tal structural data may be deemed as obtained under similar conditions, and details of which

may be safely ignored in such tasks. Such simplification was similarly utilized in implement-

ing the LFEL approach in protein structure refinement17 with focus being on coordinates with-

out attending to thermodynamic and solvent conditions. Should detailed modeling of the vari-

ation of interested molecular systems under different environmental and/or thermodynamic con-

ditions is desired, inclusion of these variables was essential. Here, previous simplified formula-

tion is extended to deal with such scenarios. Denote environmental and thermodynamic variables

(e.g. temperature, pressure, concentrations of relevant molecular species, special restraints) as

Φ = (φ1, φ2, · · · , φk), molecular coordinates as X = (x1, x2, · · · , xn) and local regions of molecular
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systems as R = (R1,R2, · · · ,Rm)(m ≤ n,m = n is preferred), the global joint probability density

may be expressed by local distributions P(Φ,Ri) and their correlations as:

P(Φ, X) = P(Φ,R)

=
P(Φ,R)∏m

i=1 P(Φ,Ri)

m∏
i=1

P(Φ,Ri) (1)

It is important to note that each Ri(i = 1, 2, · · · ,m) represents a dynamic collection of molecular134

coordinates for the ith specified region and its composing units may change with propagating tra-135

jectories. When (m = n) or m is close to n, since each local region contains dozens of or more136

particles, overlapping among such regions are extensive. Local distributions are essentially LFEL137

for equilibrium systems. The fraction term P(Φ,R)∏m
i=1 P(Φ,Ri)

includes all complex global correlations138

among various local regions Ri(i = 1, 2, · · · ,m) and is denoted the global correlation factor (GCF)139

previously.18 The product term (hereafter “local term”)
∏m

i=1 P(Φ,Ri) is simply to treat all local re-140

gions as if they were independent. If the GCF was ignored, then overlapping parts of different Ri141

may have distinct states. In reality, regardless of how many different local regions a molecule xi142

participates, it has a unique physical state at any given instant. So all possible configurations with143

contradicting molecular states for any molecule participating different local regions have probabil-144

ity density zero. Such correction and additional modification of probability density is achieved by145

the GCF term. However, direct calculation of GCF is intractable for any realistic complex molec-146

ular system. Therefore, equation 1 is not directly useful for understanding and predicting behavior147

of molecular systems. How to approximately and effectively utilize this equation in practice is an148

open problem, and likely with many potential approximate solutions.149

Probability density (free energy in equilibrium) of a specific configuration may be decomposed150

into three approximately independent contributions. The first is the short range contribution (FS R)151

that measures the extent of structural stability/compatibility within each local region and is quanti-152

fied by the local term in equation 1. The second contribution is from mediated interactions (FMED153

Fig. 3ab) that measures the extent of compatibility among all overlapping local regions, and the154
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third contribution measures direct long range (FLR, Fig. 3b) compatibility within the whole molec-155

ular system. Both the second and the third contributions are contained in the GCF term. With the156

assumption that mediated interactions are independent from long-range interactions, the GCF may157

be approximately split into FMED and FLR as shown below.158

P(Φ,R)∏m
i=1 P(Φ,Ri)

≈ exp(−
∑

FMED(Φ,R))exp(−
∑

FLR(Φ,R)) (2)159

The summation is over all mediated and long-range interactions in the given configuration R. In160

practical computation, separation of FS R and FMED is challenging on the one hand and inefficient161

on the other hand. In the previous implementation FS R and FMED were merged. Specifically, As162

shown in Fig 3b, at any given instant, a molecule (particle) in the system experiences free energy163

driving force additively from local distributions centered on each of its directly interacting neigh-164

bors within a preset cutoff. This is in strong contrast to regular MD simulations in which a particle165

experience direct forces from its directly interacting neighbors. While FLR was not accounted for166

previously, it may be added in for each particle in each or every few propagation step(s). So in167

equation 1, local interactions are separated from the GCF, which may be approximately decom-168

posed into mediated and long range interactions. However, local and mediated interactions were169

computed together in the previous implementation. This choice is somewhat counter intuitive but170

is feasible and efficient. Since an analytically clean mathematical factorization of the GCF is not171

available, it is likely that the above approximation is just one of many possible ways to realize172

practical computation. Distinct molecular systems may have different correlation characteristics173

and the optimal approximation is likely to be system specific. Nonetheless, the overall idea is quite174

clear, that is to first train local distributions, which are subsequently to be assembled to compose175

the GJD according to suitable approximation of the equation 1. The core idea of the LDT is to use176

local distributions to eliminate RLS.177

In a proper implementation of LDT, a target molecular system may be propagated similarly as178

in the case of MD simulations except for the two differences. The first difference is that empirical179
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potentials driving MD is replaced by approximate GJD assembled from LDTs. The second is that180

a learning rate αa, which is implicitly related to temperature, needs to be given. It is important to181

note that LDTs are utilized to replace RLS, not global sampling. To accelerate global sampling of182

a given molecular system, the propagation may be carried out in different temperatures other than183

the one corresponding to the training data. Methodologies such as simulated annealing39 may be184

realized just as in regular MD or MC simulations simply by assign a proper scheme of temperature185

cycles specified by corresponding gaussian noise term with variance αb. In practice, αa and αb186

need not be identical in the following Langevin equation:187

Xt+1 = Xt − αa
∂(
∑

FS R +
∑

FMED +
∑

FLR)
∂X

+ ε, ε ∼ N(0, αb) (3)188

Challenges and options for fitting local distributions189

Training/learning of local terms is by no means trivial. In reality, strictly normalized local distribu-190

tions is beyond reach and we may approximate them by complex high dimensional unnormalized191

potential functions. The direct consequence of lacking normalization is that resulting free energy192

unit is arbitrary and is different for different molecular systems. When direct long range interac-193

tions are to be added, or comparison of results among different molecular systems are essential,194

this uncertainty has to be resolved. If long-range interactions with fixed unit may be calculated195

accurately, then it can serve as a unit-defining quantity among different molecular systems.196

Construction of local distributions is essentially a density estimation problem in high dimen-

sional space. Firstly, each local region need to be represented mathematically in a translation, rota-

tion and permutation invariant way for its probability density to be effectively fit. Such processing

of molecular coordinates is accomplished by descriptor functions, which have accompanied devel-

opment of neural network force fields (NNFF),38,40 and are quite well understood. One possible

way of defining a local region is to utilize the position of an given particle as origin for the local

coordinates, so Ri = (xi−c, yi−s), with xi−c being the origin of the local coordinates defined by a
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given unit and yi−s being the coordinates of all surrounding molecules within a preset cutoff. It

is important to note that the number of molecules may fluctuate and so is dimensionality of yi−s,

and padding is a feasible way to address it. The distribution of a local region within a molecular

system under environmental conditions Φ may be decomposed into local prior P(Φ, yi−s) and local

likelihood P(Φ, xi−c|Φ, yi−s) as shown below:

P(Φ,Ri) = P(Φ, xi−c, yi−s)

= P(Φ, xi−c|Φ, yi−s)P(Φ, yi−s) (4)

The likelihood term measures extent of match between the particle at the origin (xi−c) and its197

surroundings. The prior term represent structural stability of the surrounding under given environ-198

mental conditions. In the protein structure refinement implementation,17 identities of the central199

amino acids were utilized as labels to train a simple neural network representing likelihood terms,200

and prior terms were approximated with simple weights. This strategy is likely to be not very201

useful for general molecular systems. For example, in a typical molecular system of dilute aque-202

ous solution, the fraction of water molecules is the overwhelming majority. Training with identity203

will face extremely unbalanced data and important differences among minority molecular/ionic204

species are likely to be lost. To improve fitting of local distributions, accurate description of both205

likelihood and prior terms are essential.206

Like any density estimation application, fitting of local distributions may be carried out di-207

rectly without decomposing into likelihood and prior terms. As a matter of fact, density estimation208

problem is of fundamental importance in both statistics and machine learning. Not surprisingly,209

many neural network architectures have been developed to tackle density estimation in high di-210

mensional space where conventional methods (e.g. kernel density estimators41) are not effective.211

The most widely utilized two types are autoregressive models42 and normalizing flows.43,44 The212

former decompose a target joint density into product of conditional densities, which are modeled213

by parametric densities (e.g. mixture of gaussians) with trainable parameters. The later utilizing214
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invertible neural network architectures to realize a direct quantitative map from a known density215

(e.g. uniform or gaussian) to the target density space. Establishment of proper correlations among216

different parametric densities is a highly challenging task for autoregressive models. The invert-217

ibility requirement in normalizing flow methodology imposes heavy restrictions on neural network218

architecture and hence its representation power. One outstanding application example of normal-219

izing flow in modeling molecular system is the Boltzmann generator (BG).45 However, application220

of BG in complex molecular system remain to be tested. The fundamental difference between221

BG and LDT is that the former aims to directly model GJD for target molecular systems while222

the later decompose the problem into fitting and assembly of local distributions. Therefore RLS223

across different tasks is not addressed by BG, which as a results loses transferability of computed224

results among different molecular systems. A recent more general approach, Roundtrip,46 was225

proposed to overcome weakness of these two density estimation methodology. However, it takes226

an expensive sampling step to finalize the density estimation. Each available class of methods has227

its pros and cons, and no theory is available for selection of proper density estimation methodology228

presently. It might well be that better methods will arise in future. For fitting local distributions229

in specific complex molecular system, many tests are likely necessary to construct a proper neural230

network model. Different molecular systems may have distinct structural distributions and case by231

case exploration is probably necessary to achieve high accuracy.232

Energy based models (EBM)47,48 are good candidates for fitting local distributions, either as a233

whole or when decomposed into priors and likelihood terms. In EBM, an energy is trained to be as-234

sociated with a given configuration, thus eliminating the need of a normalization constant, which is235

a core challenge in fitting local distributions. Present tests of EBMs are mainly in conventional ma-236

chine learning application scenarios such as computer vision or natural language processing.49–52
237

Density distributions for such systems are quite different from complex molecular systems of con-238

densed matter. Since LDT is a new development, significant effort is necessary to search for both239

proper loss functions, neural network architectures, optimization algorithms and their combina-240

tions for EBM to facilitate fitting local distributions in our interested molecular systems.241
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While neural networks have been black boxes with exceptional fitting capability up to date, and242

have been utilized with a wide variety of architectures. Efforts are undergoing for building white243

box neural networks.53 To realize more physically interpretable and mathematically elegant fitting244

of local distributions transparently is certainly an attractive potential direction to explore.245

Connection to conventional AI driven protein structure studies246

Contact map has played a critical role in development of protein structure prediction.29 Earlier247

contact was a simple binary assignment (contact or not) defined by a cutoff distance based mostly248

on Cβ atoms,29 later on it evolved into residue pair distance distributions (RPDD).20,24,25,27 Sig-249

nificant effort has been invested in investigating impact of various input information and neural250

network architectures on RPDD prediction with great progress in understanding. As the only251

known fully end-to-end and the most efficient protein structure refinement and dynamic simula-252

tion pipeline, GSFE-refinement17 has a distinct overall pipeline from RPDD based algorithms of253

protein structure prediction/refinement. With the common goal of describing protein structures,254

these seemingly very different procedures have to be somehow connected. Fundamentally, all255

methodologies targeting protein structures reflect their underlying free energy landscape from cer-256

tain perspective. In GSFE-refinement, the GJD assembled from local distributions (or LFEL) lacks257

direct long-range correlations beyond spatial range of mediated interactions (Fig. 3) as the method258

stands now. Certainly, addition of long-range correlations is feasible as already discussed above,259

and is in fact one important task in our future development plan. Sequence information is limited260

to the target protein itself in contrast to RPDD based methods, where multiple sequence align-261

ment (MSA) information is usually included as input. In AlphaFold,20 AlphaFold255 and many262

other RPDD based studies,21,22,24–29,54,56 the core information obtained is explicit protein ( family263

) specific RPDD, which are in fact marginalization of the GJD after integrating away all other264

variables except the distance between the concerning residues. While marginalization in general265

is an extremely difficulty task in high dimensional space, it is trivial for any known GJD confined266
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within corresponding manifold. Complex neural networks in RPDD based methods essentially re-267

alize a fitting from input information (protein sequence and MSA) to these marginal distributions268

without explicit construction of the GJD, approximation of which is the very goal of LDT based269

methods/models. As shown in Fig. 4, mapping from GJD to RPDD is readily achievable through270

marginalization. It is important to note that it takes some number of propagation steps (depending271

upon ruggedness of the underlying FEL) to obtain approximate GJD of sufficient accuracy assum-272

ing the underlying local distributions are sufficiently accurate. Marginalization is a deterministic273

procedure with significant loss of information, specifically correlations among different RPDD.274

Conversely, with RPDD, one may in principle construct GJD with sufficient sampling and opti-275

mization with necessary restraints. However, since correlations among different RPDD are absent,276

resulting GJD is highly dependent upon parameters and algorithms utilized in the corresponding277

reconstruction process. Present mainstream AI-based protein structural prediction/refinement neu-278

ral networks implicitly cache some projections of local distributions and rules for assembling them279

into RPDD, each comes with its own loss of information that is hard to retrieve. LDT theory aims280

to first directly and explicitly learn local distributions, which are subsequently dynamically assem-281

bled to construct the most comprehensive GJD. LDT thus has the full potential to perform dynamic282

modeling of relevant molecular processes as long as local distributions were fit for corresponding283

conditions. However, extending GSFE-refinement for accurately modeling dynamic protein fold-284

ing is certainly not trivial as data on intermediate states are scarce presently. Nevertheless, LDT285

is a general theory applicable to any soft condense matter as long as fitting of corresponding local286

distributions is accomplished.287

Potential extension to near equilibrium scenarios288

At molecular scale, temperature, pressure and concentration of comprising molecules have signifi-

cant fluctuations. In conventional MD simulations, temperature and pressure are usually controlled

by various thermostats and barostats57 with equilibrium assumption. If we have a heterogeneous
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cell being heated at one side, specifying temperature and pressure within it is a challenge. It might

well be that both temperature and pressure are heterogeneous in a live cell (sometimes or always)

and we just have no proper way of measuring. To specify temperature and pressure with ther-

mostats and barostats is difficult in such scenarios since we have no information on heterogeneous

temperature in the first place. The probabilistic description of both molecular coordinates and ther-

modynamic/environmental variables can be of great utility. Assume the target molecular system

is near-equilibrium. More specifically, all local distributions in target molecular system are well

approximated by local distributions trained from equilibrium data while global molecular system

is off equilibrium (e.g. having temperature/pressure gradient). In such scenario, we need thermo-

dynamic variables to be associated with each local distributions. If the number of local regions was

defined as the same as number of molecules/particles, we would have a set of relevant variables

associated with each particle Φi = (φi1, φi2, · · · , φik) and denote the environmental conditions as

Φ = (Φ1,Φ2, · · · ,Φn) The equation 1 may be expanded as shown below:

P(Φ,R) =
P(Φ,R)∏m

i=1 P(Φi,Ri)

m∏
i=1

P(Φi,Ri) (5)

With near-equilibrium assumption, we may safely learn local distributions from data collected in289

equilibrium states and relevant environmental conditions. However, propagation of global molec-290

ular systems by dynamic assembly of such local distributions is significantly more challenging.291

Continuity restraints of relevant Φ variables is probably necessary, this may be realized through292

smoothing within certain spatial range. For equilibrium system, propagation of a molecular sys-293

tem under thermal fluctuation may be carried out with Langevin equation (equation 3) with a294

white noise term associated with a given temperature. However, in near equilibrium scenario, two295

choices maybe need to be made for propagating the molecular system. The first is utilize either296

maximum likelihood or bayesian approach to determine control variable at each molecule, with297

later being significantly more expensive. The second choice is to select a proper smoothing pro-298

cedure to prevent large variance in control variables during the inference process. Assuming that299
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local distributions P(Φi,Ri) has been learned with high accuracy, similar assembly and propagation300

procedures may be utilized as in the equilibrium case except withΦ included and stochastic forces301

added according to corresponding temperature at each molecule. Large variance of parameters302

such as temperature and pressure may derail such simple treatment. Significant exploration and303

development is necessary in these regards. Nonetheless, this opens a potential highly efficient and304

probabilistic pathway for treatment of near equilibrium massive complex molecular systems (e.g.305

a cell).306

Rapid automatic search for implicit manifold307

Due to both local and long range interactions/correlations in condensed molecular systems, the308

real dimensionality of which is significantly smaller than that corresponds to nominal number of309

degrees of freedom (DOF). For example, considering 1000 rigid water model molecules in a rigid310

box, each with 6 DOFs. Its nominal number of DOF for the molecular system is 5997 but its real311

dimensionality is an unknown but significantly small number dependent upon environmental vari-312

ables (e.g. temperature, pressure, container material). Local excluded volume interactions, Van313

der Waals interactions, hydrogen bonding networks, dipolar and multipolar interactions all con-314

tribute to correlations and dimensionality reduction in water. Conventional way of understanding315

underlying manifolds for molecular systems is to perform dimensionality reduction analysis on316

sufficiently sampled trajectories. However, popular principal component analysis (PCA) does not317

treat nonlinear correlations properly, and many nonlinear algorithms have their own limitations.38
318

More importantly, these dimensionality reduction methodologies are usually utilized as a post pro-319

cessing step for understanding molecular systems after expensive sampling dominated by RLS has320

been performed. So the goal is to understand manifolds as one of terminal goals, rather than utiliz-321

ing manifolds to reduce computational cost. Dynamic assembly of local distributions is, however,322

fundamentally an implicit manifold search process on the one hand, and utilizes manifolds to re-323

duce consumption of computational resources on the other hand. Learned local distributions are324
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essentially implicit local manifolds under relevant conditions. Upon assembly of local distribu-325

tions in propagation driven by derivatives of approximate instantaneous GJD density with respect326

to coordinates, a molecular system either stay on its manifold (free energy valleys) with fluctua-327

tions dependent upon temperature or rapidly return to the manifold when being away from it. To328

state alternatively, construction of GJD by assembly of local distributions according to equation 1329

is equivalent to construction of global manifold by stitching together local manifolds embedded in330

local distributions without any manual intervention.331

It is interesting to note that when viewed from the manifold perspective, LDT is effectively332

a completely automatic, significantly more accurate and efficient implicit counterpart of Metady-333

namics when local distributions were fit accurately and assembled properly. In Metadynamics,334

one first guess or compute for guiding collective variables (CVs), which is essentially an explicit335

and significantly simplified representation of the manifold for a target molecular system in a given336

coordinate system. This is a highly challenging task, usually some iterative process is necessary337

but accuracy of resulting CVs has no guarantee, and no systematic theory is available for explicit338

searching of CVs. Subsequently explicit biases are accumulated to compute probability density of339

visited segments along CVs. In a properly implemented LDT, a target molecular system in propa-340

gation is automatically and implicitly maintained on its manifold, so the challenge of searching for341

CVs is met implicitly. Additionally, no bias is necessary and an unnormalized probability density342

is directly computed for each visited configuration.343

Toward computation driven molecular sciences344

Recent NNFF has demonstrated significant improvement in accuracy,38,58–60 albeit with accompa-345

nying reduction of efficiency when compared with conventional atomistic MD simulations. With346

further development of density estimation/fitting, local distributions may be built from near quan-347

tum accuracy of NNFF based all atom simulations, and subsequently utilized to compose global348

distributions via dynamic assembly of local distributions as described by the LDT. Such combi-349
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nation may realize long-desired near-quantum accuracy and superior efficiency beyond conven-350

tional coarse grained models. With corresponding dramatic improvement of efficiency brought by351

LDT, nanotechnology research may experience a transition from experiment driven to computation352

driven as spatial and time scales will be accessible by present and computational facility expected353

in a few years.354

For computational molecular biology, lack of data is apparent as exemplified by AI based355

protein structure prediction, design and refinement studies where solvent and thermodynamic con-356

ditions need to be ignored. Deficiency of structural data is even more severe for denatured states357

of proteins, nucleic acids and other biomolecular systems (e.g. membranes). Presently, model-358

ing of diverse thermodynamic and solvent conditions and denatured states relies heavily on all359

atom MD simulations, which are limited to micro-second time scales in routine investigations of360

typical proteins for small research groups, and simulation of large complexes and more extensive361

biomolecular systems is much more challenging. Development of LDT for efficient and accurate362

construction of local distributions, when combined with one-time near quantum level MD simu-363

lations for general biomolecular systems has the potential of bridging this gap, and realize rou-364

tine simulations of large molecular complexes on realistic time scales (mini-seconds and longer).365

Many present experiment dominated molecular biology research (e.g. protein-protein interactions366

and protein-drug interactions) may experience transition to computation driven with dramatically367

improved efficiency. This is especially true for proteins and other biomolecules that are marginally368

stable and hard to express and store under regular experimental conditions.369

Establishment of a chain of tools from high level first principle calculations to simulation of370

large complex molecular systems has been long standing wish for molecular simulation commu-371

nity. Conventionally, coarse-graining has been the only available option and has made great contri-372

butions. Development and implementation of LDT in various general molecular systems provides373

a potential alternative pathway in this regard. However, to realize the potential, significant effort is374

necessary for development of algorithms in fitting local distributions for a wide variety of molec-375

ular systems. Condensed matter in general, and biological systems in particular, are organized in376
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hierarchical structures with distinct correlation patterns over different length and time scales. Such377

characteristics was well summarized by Anderson61 decades ago and significant efforts have been378

invested in multi-scale algorithm development in many subjects.62–65 As discussed above, local dis-379

tributions are essentially manifolds of local regions under various composition and environmental380

conditions. The specific meaning of “local” is dependent upon definition of comprising unit on the381

one hand , and upon length scales on the other hand. Implementation of LDT on multiple scales,382

and how should it interact with CG or evolve independently, is a fully open field awaits intensive383

exploration.384

Two distinct ways of averaging385

Conventional FF parameterization is fundamentally a construction of potential of mean force386

(PMF)66,67 by integration/averaging as shown below:387

U(x) =

∫
U(x, y)dy (6)388

For fitting of atomistic FF from ab initio calculations, y correspond to electronic DOF, for fitting389

of CG FF from atomistic simulations, y correspond to all atomic DOFs other than CG sites. PMF390

accurately reproduce behavior of variable x when a time scale separation exists between x and y.391

Therefore, conventional molecular simulation framework is based on the idea of PMF.392

Local distributions are clearly results of statistical averaging based on data obtained from ex-393

pensive local sampling, either through experimental or computational approaches. Essentially,394

relative frequency of visiting many different configurations are recorded. However, there is no395

explicit reduction of variables in this process as in the case of PMF integration in FF parameteri-396

zation (i.e. resolution is maintained). These statements seem to be contradictory as the process of397

averaging inevitably results in annihilation of some details. One would certainly like to know what398

is annihilated during the averaging process of fitting local distributions. It is important to note that399

in computers there is no strictly “continuous” variables anymore as everything is stored by discrete400
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“boxes” in CPU registers, memory chips and hard drives. So all modeling in computer is per-401

formed on lattices defined by float point number discretization! In fitting of local distributions via402

neural networks, while input of molecular configurations has the resolution of lattices defined by403

selected float point digits, there is probably further implicit merging (coarse graining) of different404

lattice boxes not necessarily uniformly both on different dimensions and on different positions of405

the same dimension. Such implicit and adaptive annihilation of resolution on various places of the406

configurational space by the fitting machinery (neural networks) is schematically illustrated in Fig.407

5. Therefore, LDT opens a distinctive path of averaging based on implicit adaptive configurational408

space discretization (CSD) instead of explicit integrating out selected DOFs adopted by PMF.409

Ultimately specifics of such heterogeneous CSD are likely to be determined by details of loss410

function, network architecture, optimization process and their interactions. However, presently,411

how such implicit process relates to corresponding neural networks is not transparent. There is412

no published research on neural networks regarding this topic to the best of my knowledge. Un-413

derstanding such implicit CSD is likely an essential step to be accomplished in constructing trans-414

parent white box neural networks. Manual configuration space discretization has been performed415

to facilitate free energy analysis.68 However, proper CSD strategy is usually different for distinct416

molecular systems and is not necessarily achievable even after significant human efforts. There-417

fore, to develop explicit, easy-to-manipulate and automatically adaptive schemes for CSD in fitting418

behavior of neural networks is an important open field to explore.419

Conclusions and prospects420

RLS in molecular simulations consumes large amount of computational resources on the one hand421

and slow down exploration of relevant research fields dramatically on the other hand. The LFEL422

approach was developed to address RLS previously. However, the formulation and its exemplary423

implementation in protein structural refinement, while demonstrated tremendous potentials, is lim-424

ited to a single set of given environmental conditions. Here I propose the local distribution theory425
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to generalize LFEL to address variable environmental conditions and near-equilibrium application426

scenarios. As a matter of fact, essentially all biological systems are off equilibrium to various ex-427

tent. Despite the simple theoretical proposal presented here, extending implementation of LDT to428

near-equilibrium poses great challenges and significant exploratory efforts are necessary. Theoret-429

ical connection and fundamental differences of LDT with metadynamics, RPDD based AI-driven430

protein structural research, and PMF based framework of conventional molecular simulation in431

general are discussed. It is hoped that discussions and speculations herein stimulate more interest432

and attract more scientists in further development and application of the local distribution theory.433
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Figure 1: The number of publications retrieved from web of science on Jun. 1st 2021 with subject
word "molecul* simulation" and "molecul* simulation & bio" respectively. The corresponding
time frame is every two years starting from 1999. The first data point is the number of papers
published in year 1999 and 2000.
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Figure 2: Schematic illustration of RLS. Left: the spatial perspective. A) and B) are two different
spherical bulk spaces. We expect the same local distributions after sufficiently long simulations
of the whole molecular system. In such cases, spherical and partial spherical spaces near or on
interfaces have different local distributions from that of the bulk, special treatment of such spherical
spaces engenders significant difficulty. Right: indistinguishable particle and GSFE perspective.
All particles of the same species are indistinguishable, so should be local distributions of local
regions defined by spherical spaces with such a particle as the origin. This removes the need for
special treatment of all interfacial issues as different interfaces may be simply defined as more cases
of particle packing surrounding a given particle with well defined statistical weight under given
thermodynamic and environmental conditions. A), B), C) and D) are examples of surrounding
local regions of different particle species.
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Figure 3: Schematic representation of the short range, mediated interactions and long range inter-
actions as implemented in ref. Left: particles (1,2,3), (2,3,4) and (6,7,9) are directly interacting
with short range interactions. (1,4) are interacting through mediation by (2,3), (2,7) and (3,9)
have direct long range interactions. Right: here the focus is the central red particle, which define
a region with boundary being shown as dotted partially transparent blue line. Each of all other
particles within this region defines a local distribution, six of the most further of such regions are
represented as purple circles. The central red particle experience forces from all of local distri-
butions surrounding each of its neighbors. In this way, short range and mediated interactions are
effectively accounted for simultaneously. In summary, for the central red particle, it experiences
short range interactions from particles within the dotted partial transparent blue circle, mediated
interactions from particles between the dotted blue circle and large solid blue circle, long range
interactions from the region outside the large blue circle.
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Figure 4: Schematic comparison between LDT based end-to-end protein structure modeling (top
orange boxes) and mainstream RPDD based protein structure prediction and refinement schemes
(bottom blue boxes). It is important to note that LDT based modeling aims to generate the GJD,
which is the most comprehensive information for any complex molecular system and is generally
applicable. The marginalization from the GJD to pairwise residue distance distributions is an irre-
versible process with deterministic results and significant information loss on correlations among
different pairwise distances. The converse process is a highly expensive process with sampling
and optimization involved, due to complexity of correlations among different distances, resulting
global distribution is highly dependent both on initialization and the optimization procedures.
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Figure 5: Schematic illustration of CSD. Left: natural discretization of two dimensional config-
urational space by float point digits. Right: a imagined heterogeneous CSD resulted from fitting
of neural network on local distributions, and the highest density is supposedly in the white region
where CSD is as fine as lattices determined by float point digits. Qualitatively, finer discretization
corresponds to region with high data density and coarser discretization corresponds to region with
lower data density.
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