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Abstract 

Transcription factors associated with quorum sensing in P. aeruginosa are promising targets for developing 

new adjuvants against infection by this pathogen. Regulation of these transcription factors offers the 

possibility of controlling multiple virulence factors related to them, as the development of biofilm, proteases, 

hydrogen cyanide, and others. Numerous molecules have been tested against those targets, but the keys 

responsible for antagonistic activity against these targets are unknown. In this work, we analyze the 

structure-activity relationships of active molecules tested against LasR, PqsR, and RhlR transcription 

factors to establish the structural characteristics associated. The compounds were classified as agonist, 

antagonist, and inactive. As part of the analysis, we conducted molecular complexity, scaffold analyses, 

activity cliffs analyses, and chemical space visualization to find characteristics associated with the biological 

activity. Several structural features were identified as important to antagonist activity in this study, 

highlighting molecular size and hydrogen bond acceptors. 
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Abbreviations: 

● DS: Datasets.  

● QS: Quorum sensing. 

● TF's: Transcription factors. 

● AI's: Autoinducers. 

● SAR: Structure-activity relationships 

● 3OC12-HSL: N-3-oxo-dodecanoyl homoserine lactone. 

● C4-HSL: Butyryl homoserine lactone. 

● PQS: 2-heptyl-3-hydroxy-4-quinolone. 

● IQS: 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde. 

● EC50: Half maximal effective concentration. 

● IC50: Half maximal effective concentration. 

● Fsp3: Fraction of sp3 atoms. 

● FCC: Fraction of chiral centers. 

● SD: Standard deviation. 

● MACCS: Molecular access system keys. 

● ECFP: Extended connectivity fingerprints. 

● MCS: Maximum common substructure. 

● MOA: Mechanism of action. 

● t-SNE: T-distributed stochastic neighbor embedding. 
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Introduction 

Infection by P. aeruginosa is a challenge in therapeutic management. These bacteria can adapt to a hostile 

environment, resist the immune system, and block the action of broad-spectrum antibiotics such as third-

generation cephalosporin, carbapenems, and others [1, 2]. For that reason, the World Health Organization 

has classified P. aeruginosa with a critical priority for the development of new drugs [3]. 

One of the critical mechanisms related to the augmented antibiotic resistance of P. aeruginosa is Quorum 

sensing (QS), which is a communication system where each bacteria can detect an existent population in a 

given environment [4]. Small molecules called autoinducers (AI's) regulate the QS through their binding to 

specific receptors. They activate the genetic machinery to produce multiple virulence factors [5]. 

Nowadays, there are known twenty transcription factors (TF's) involved in QS; all of them having multiple 

interactions with each other [6]. Las, Rhl, PQS, and IQS are related to the activation of QS and the 

production of multiple virulence factors (elastase, protease, rhamnolipids, pyocyanin, hydrogen cyanide) [7, 

8]; Las and Rhl are systems of the Lux type, while PQS is a quinolone dependent system. 

Las and Rhl systems are important for QS activation. These systems have an inductor protein (LasI and 

RhlI) and a receptor protein (LasR and RhlR); inductors synthesize AI's and receptors recognize them [9]. 

Lux type systems work with acyl-homoserine lactone molecules like AI's. These molecules are composed of 

a lactonic ring and a carbonate chain of variable size connected by an amide. N-3-oxo-dodecanoyl 

homoserine lactone (3OC12-HSL) is the autoinducer of the Las system, while butyryl homoserine lactone 

(C4-HSL) is an autoinducer of the Rhl system [4, 10] (Figure 1). 

2-heptyl-3-hydroxy-4-quinolone (PQS) is the associated autoinducer to PQS system. PQS is recognized by 

PqsR and synthesized by multiple proteins, as PqsB, PqsC, PqsD, and others [12, 13]. 2-(2-

hydroxyphenyl)-thiazole-4-carbaldehyde (IQS) is an autoinducer for IQS system. Previous studies 

established the activation of QS by IQS in deficiency of Las system, generating interest for its study [7, 14]. 

LasR, RhlR, and PqsR AI's are shown in Figure 1. 
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Figure 1. Molecular structures of autoinducers associated with quorum sensing in P. aeruginosa. N-3-oxo-

dodecanoyl homoserine lactone (3OC12-HSL), butyryl homoserine lactone (C4-HSL) and 2-heptyl-3-hydroxy-4-

quinolone (PQS) [4]. 

 

Find new antagonists for these TF's gives a new pathway for the P. aeruginosa infection management, but 

the structure-activity relationship of these targets doesn't know at the moment. For that reason, in this work, 

we search for characteristics or structural patterns associated with agonist activity, antagonist activity, or 

inactivity. To achieve this goal, we built a dataset of 310 molecules with reported biological activity in major 

public repositories from LasR, PqsR, and RhlR and performed cheminformatics studies. Here we propose 

some relevant keys to contribute to solving this problem. 

 

Methods  

Construction and preparation of compound datasets 

Compound datasets (DS) were built with ChEMBL, version 26, PubChem, and scientific articles. For 

ChEMBL, the following identifiers were used: LasR - CHEMBL1075207, PqsR - CHEMBL2424500, and 

RhlR - CHEMBL3112386. In PubChem Bioassay, the search was done directly with the AI's. Additionally, 

for the previous search, only molecules IC50 and EC50 values were taken into account. Keywords' LasR', 

'PqsR', 'RhlR', 'Quorum Sensing' were used to search for molecules in scientific articles in SciFinder. Then 

all papers were filtered by their biological activity values 'IC50' or 'EC50', taking into account all articles 

published between1998 and 2020. This search was carried out between January 2020 and July 2020.   

All molecules in DS were classified as "active" and "inactive" using a cutoff value of 10 μM for LasR and 

PqsR, while 12 μM was used for RhlR. These cutoff values were chosen based on the mean minus one 

standard deviation of biological activity. Then, the following steps were applied to prepare the molecules: 1) 

the largest fragment in each molecule was selected; 2) non-organic molecules were removed; 3) charges 
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were neutralized by adding and/or removing hydrogens where possible; 4) it was ensured that the most 

potent acid groups were ionized first in partially ionized molecules; 5) stereochemistry was removed; 6) the 

most populated tautomer was selected; 7) duplicate molecules were discarded. This curation was done with 

RDKit [23] and MolVS [24] library. 

 

Molecular complexity      

Molecular complexity has been associated with target selectivity and success in clinical stages [25–27], 

here we inspect the relation between active compounds and molecular complexity. For this study, the 

fractions of sp3 atoms (Fsp3) and chiral centers (FCC) were used as complexity metrics based on 

topological and physicochemical descriptors [28]. Also, Complexity by Bertz [29] and DataWarrior [30] 

based on graph-theoretical methods were used. All metrics were calculated with RDKit [23] and 

DataWarrior 5.0.0 [30].  

 

Scaffolds analysis 

Scaffolds can be defined as the core of a molecule used in drug design [32–34].  For this reason, scaffolds 

are intuitive and informative to explore SAR and Structure-Multiple Activity Relationships (SmART) [35] of 

compounds data sets, identifying them supports drug design. This work explores the relationship between 

scaffolds and the biological activity for LasR, PqsR, and RhlR datasets. For scaffold generation, we use the 

definition proposed by Bemis and Murcko [36] as implemented in RDKit [23], in which a scaffold is defined 

as the core structure of the compound consisting of all of its rings and connecting linkers. According to their 

origin molecule, scaffolds were classified into three groups: agonist, antagonist, and inactive according to 

their origin molecule, in all DS. A maximum common substructure analysis was done on the most frequent 

scaffold in each DS [37, 38]. The data were collected using RDKit [23]. 

 

Activity cliffs analysis 

Activity cliffs are small changes in the structure associated with unexpected large changes in biological 

activity [39–41]. Identification of activity cliffs is a relevant and informative analysis of the SAR because they 

point to specific and minor structural modifications that strongly influence biological activity. One must be 
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aware, however, that there might be "artificial" cliffs in compound data sets, for instance, the biological 

activity is not measured correctly [42]. In this work, to identify the possible presence of activity cliffs in the 

DS, we calculated consensus activity cliffs between multiple 2D fingerprints (MACCS Keys 166-bits, 

ECFP4, ECFP3, ECFP2, and path length), founding the activity cliff common in all fingerprints through of 

Tanimoto coefficient as is proposed by Medina-Franco and coworkers [43]. RDKit [23] and MayaChemTools 

[44] were employed for this analysis. 

 

Chemical space visualization  

The representation of a set of molecules in a two- or three-dimensional plot based on a set of pre-defined 

descriptors is usually known as visualization of the chemical space. In this work, the statistical analysis 

called t-distributed stochastic neighbor embedding (t-SNE) was done to represent chemical space occupied 

by datasets, with a perplexity equal to 10, a learning rate equal to 100, using to Jaccard metric and 

descriptor-based in fingerprint ECFP4. Also, constellation plots recently developed [45] were built for the 

datasets; this plot integrates a methodology of analogs series with the visualization of the chemical space, 

associate the molecular analogs to several molecules and their biological activity.  

 

Results and discussion 

Table 1 summarizes the number of compounds found in ChEMBL and PubChem Bioassays. In ChEMBL 

can be found molecules with activity against LasR, PqsR, and RhlR. LasR has 173 molecules reported, but 

only 82 have values of IC50 and EC50, 29 molecules are reported for PqsR, of which 8 have values of EC50, 

while RhlR possesses 31 compounds with activity being have 4 with values of IC50. In comparison, 

PubChem Bioassay has 87, 10, and 17 compounds with activity for LasR, PqsR, and RhlR, respectively. 

The rest of the molecules were found in scientific articles. More than 70 percent of molecules are shared 

with ChEMBL. LasR is TF with a higher number of molecules. Furthermore, the LasR dataset has the 

highest proportion of active molecules between all datasets.  
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Table 1. TF's Datasets 

 Total 
Agonist Antagonist Inactive 

n % n % n % 

LasR 188 52 27,7 41 21,8 95 50,5 
PqsR 54 10 18,5 15 27,8 29 53,7 
RhlR 47 12 25,6 7 14,9 28 59,5 

  

Molecular complexity 

Target selectivity is a major issue in drug discovery. It has been proposed the association between greater 

molecular complexity and less target promiscuity. Here we found an association between DataWarrior 

complexity and biological activity, showed in Figure 2.  

The majority of molecules active against PqsR have the highest DataWarrior complexity and some of them 

show pIC50 upper than 7. In contrast, RhlR compounds are concentrated in the lower left of figure 2, where 

molecules with low activity and poor complexity are showed. Finally, LasR active compounds could not be 

associated with specific complexity values because this dataset has a high molecular diversity as are 

evidenced in posterior analysis. Antagonist molecules in all datasets don't have a clear behavior associated 

with complexity in metrics studied. 

 

 

Figure 2 Distribution of biological activity values against DataWarrior complexity.  In blue, red and green are 

represented molecules with activity against LasR, PqsR and RhlR respectively while light colors represent 

agonist compounds and dark colors represent antagonist compounds.    
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Figure 3 First five Bemis - Murcko Scaffold frequency in datasets, a) represent LasR dataset, b) PqsR dataset 

and c) RhlR dataset; activity type is showed by colors, inactivity (blue), agonist (green), and antagonist molecules 

(yellow). 
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Scaffold analysis  

Figure 3 shows scaffolds frequency in DS on the left side, while the scaffolds structure is shown on the 

right. The frequency of scaffolds found for DS varies according to DS size (Figure 3). Nevertheless, the first 

five most frequent scaffolds represent around seventy percent of the total, highlighting a variety of types of 

biological activity in that scaffolds. In LasR scaffolds, it is found that five first have molecules with activity, 

being the most frequently agonist activity, which is shown in figure 3 a); rings of six members connected 

between them through a small chain with amide, are the most relevant for this DS. 

Three phenyl system is present in the second and fourth most populated scaffolds in figure 3a but the 

position of amide in chain allows antagonistic activity for the fourth scaffold. Meanwhile, the first and fifth 

scaffolds are based in the lactonic ring common in autoinducer and present all of the activities; being 

inadequate for similarity searching, but the rest of them would be useful.      

 
Figure 4 Representative examples of maximum common substructures. n represents the number of molecules 

with this scaffold.  
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Scaffolds of PqsR DS are composed of two rings fused of six members, characteristics of natural 

autoinducer. All the molecules with quinoline ring (SC2) have an activity less than 10µM (see figure 3 b)), 

making it a suitable candidate for the similarity searching of new molecules with biological activity; another 

characteristic of this scaffolds is that the first two represent more than fifty percent of molecules, exposing a 

few diversity in this DS. The biological activity of the first five scaffolds found in RhlR DS is lower than the 

activity of scaffolds in the rest of DS, here all scaffolds have a lactonic ring, but the scaffold (SC4) with the 

largest percent of antagonist molecules, also presents a chain with an amide, an ether, and a phenyl.  

Analysis of the maximum common substructure (MCS) allows finding a small structural difference between 

molecules with different types of activity. All the molecules shown in Figure 4 for LasR DS were reported by 

O'Reilly and collaborators [19], they have a triphenyl scaffold showing the activity related to a specific ring 

substitution, the inactive molecule is ortho and meta disubstituted by fluorine in the first ring, the agonist and 

antagonist are monosubstituted in the ortho position by the chlorine in the first ring, but the antagonist is 

also monosubstituted in the para position in the third ring. These substitutions can change the inductive 

effect generating different interactions in the active site [46]. 

Ilangovan et al. reported the compounds associated with biological activity for PqsR DS in 2013 [47]. These 

compounds differ from each other only in the substitution of nitrogen in the quinazoline ring: the inactive 

compound has a hydroxyl, the agonist has ethyl, and the antagonist has an amine; finding the association of 

biological activity related to several acceptors and donors of hydrogen bonds in this position. For molecules 

of this analysis linked to RhlR DS, it is possible to establish a steric effect in the active site with the type of 

activity, as is showed in Figure 4. This analysis allows establishing for these scaffolds a mechanism of 

action cliffs (MOA-cliffs) [48].  

 

Activity cliffs 

Figure 5 shows the structure of representative activity cliffs in DS, for all TF's, it is evident the relation of 

agonist and antagonist molecules, supported by previous analysis. Regarding LasR agonist, it is possible to 

see a change of EC50 value by a variation in one-carbon of a lateral chain, BO1 has eleven carbons, while 

CH202 has ten carbons, but the potency decreases in ten orders of magnitude; furthermore, natural 

autoinducer possesses a lateral chain with twelve carbons; all of these allow us to understand the 
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importance of size for the agonist activity. The molecular pair found for LasR antagonist, MA3 and CH184, 

differ between them in the final halogen, MA3 has chlorine while CH184 has bromine; but antagonist activity 

for CH184 is a ten percent respect to MA3; relating the size of the atoms in a chain with the activity; a 

smaller atomic size generates more antagonist activity. 

LU3-1 and IL4 are the molecular pair found for PqsR agonist, LU3-1 has a chain with seven carbons while 

IL4 has a chain with nine carbons, but agonist activity is around one hundred and seventy times greater for 

LU3-1, finding relationships between the chain size and the agonist activity. In another perspective, 

compounds with code LU2 and LU10 were activity cliffs related to antagonist activity, these have a lateral 

chain with six carbons, but LU2 has oxygen in position four, while for LU10 all are carbons; this variation 

generates a loss of potency in sixteen orders of magnitude; this loss should be explained by the lack of a 

hydrogen bond acceptor. 
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Figure 5 Activity cliffs found in datasets, here the agonist has shown at left and the antagonist at the right. 

 



13 

Activity cliffs for RhlR agonist are molecules with a thiolactone ring and a lateral chain, here the chain 

change in methyl group in position four for BO2-4 while BO11 does not have it, activity for BO2-4 is eight 

times greater than BO11; furthermore, the natural autoinducer of RhlR has an EC50 (8,95μM) lower than 

these compounds, and its difference is a lactonic ring versus thiolactone ring, as reported by Boursier and 

coworkers [49]. The substitution of the phenyl ring in molecular pairs found for antagonist activity generates 

a change of this activity, while EI29 is disubstituted by two chlorines, EI24 is monosubstituted by a methyl 

group, linking the size and inductive effects with this activity [18]. 

 

Chemical space 

Through visualization of the distance between molecules using structural parameters as a method of 

classification, give a full vision of molecular datasets. For this reason, we represent a chemical space of DS 

relating to a type of biological activity generating a global view of molecules.   

Chemical space visualization occupied by compounds in DS, based on ECFP4 fingerprints (being this 

chosen because have a better resolution than others), show agonist and antagonist molecules to be close 

in space, due to that type of compounds are similar between them, according to the results previously 

shown [48]. In the lower right corner of the plot, molecules with five-membered rings are shown, usually 

lactonic and thiolactone rings. In this region of the chemical space, can be found compounds of LasR and 

RhlR DS, agonist and antagonist of LasR are closer to each other than molecules of RhlR since the spatial 

location is given by the structure. 
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Figure 6 Structural space of databases. Visual representation of the chemical space obtained by t-distributed 

stochastic neighbor embedding (t-SNE). All molecules are classified as activity, inactive (gray), LasR agonist 

(light green), LasR antagonist (dark green), PqsR agonist (pink), PqsR antagonist (red), RhlR agonist (light blue), 

RhlR antagonist (dark blue). 

 

In the upper right corner of Figure 6, molecules with triphenyl scaffold are found, characteristic of LasR DS. 

Here to found activity cliffs, nevertheless, a group of antagonist molecules is displayed separated from the 

leading group, being these a critical starting point for optimization of antagonist activity or similarity 

searching in big databases. Compounds of PqsR DS are displayed in the center of the plot, quinolinic and 

quinazolines rings are usual scaffolds by this activity. 

In the visualization of the chemical space in Figure 6, all DS close in the space, especially LasR and RhlR 

DS. This is an indication that it is possible to find a molecule with antagonist activity against both TF's. But it 

is important to see the close relationship between agonist and antagonist in all DS, hence the challenge to 

find molecules with a specific activity on these TF's. 
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Constellation plots 

A Constellation plot is a hybrid approach of visualization of chemical space and substructure analysis. As 

described in detail elsewhere, the main analog series of a compound data set are generated. The structural 

similarity of the analogs series is represented in a two-dimensional representation of chemical space such 

as t-SNE. Constellation plots represent a method to visualize and analyze StARs (Structure-Activity 

Relationships) in chemical space [50, 51]. 

      

 

Figure 7 General constellation plot for a dataset of LasR. Here the most representative cores are shown. This 

plot has the same parameters of figure 5 (t-SNE, ECFP4, Tanimoto Matrix), each point represents a core, the 

size of circles indicates the "n" number of compounds annotated, connected circles are cores sharing 

compounds, grids represents analog series every point, and color shows the average of pIC50.  

 

Following the methodology proposed by Naveja and Medina-Franco, constellation plots were built [45]. 

These analyses gave us the relation of standard cores in the DS with biological activity and the number of 

compounds they have. Figure 7 shows the constellation plot for LasR DS, here are represented nineteen 

cores grouped in ten analog series they contained one hundred and six compounds (around half of the 

dataset). 
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The first three analog series display small structural changes in diphenyl rings, both the first and third series 

show diphenyl rings connected by a chain of three members with an amide group in the middle of them. The 

second series has diphenyl rings connected by a chain of two members with an ester group in the middle of 

them, that series has a better activity profile that cores an excellent base for searching other compounds or 

a useful scaffold for the optimization of biological activity. 

Other essential cores for this activity are a carbonate chain of twelve members and a lactonic ring, the 

carbonate chain has an excellent mean activity for this target, but the lactonic ring does not; this is because 

the lactonic ring has multiple compounds with a harmful activity while carbonate chain has a significant 

number of compounds with functional activity. PqsR and RhlR DS could not be analyzed with this method 

because the rules of fragmentation used, does not involve carbonate chains or rings [43]. 

 

Conclusions 

Although antagonist molecules in all DS don't was associated with molecular complexity, nevertheless, 

actives compounds have a relation with this analysis. PqsR actives molecules shown a high DataWarrior 

complexity, in RhlR DS all molecules were correlated with low DataWarrior Complexity, of contrast LasR 

actives compounds were associated with high and low values of complexity, making impossible a specific 

association with DataWarrior complexity. 

For LasR antagonist compounds, it was identified that the side chain size should range between 10 and 12 

members in homoserine lactone scaffolds. In contrast, in triphenyl scaffolds, the substitution of rings 

generates a specific type of activity. In the molecules active against PqsR the size of the side chain in 

quinazoline rings and substitution in the nitrogen of the third position derive in a determinate type of activity. 

Active homoserine lactone scaffolds for RhlR show that phenyl or ethyl substitution in the side chain gives a 

type of activity. 

Analysis of maximum common substructure and visualization of the chemical space indicated that there is 

no scaffold associated with an exclusive type of activity in all TFs. Still, they are a good starting point since 

most of them are active. The LasR constellation plot allowed selecting a diphenyl scaffold as one of the best 

scaffolds to optimize because more than 25 molecules with biological activity on this target contain it. 
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Nevertheless, it is important to highlight the ambiguity of these characteristics because, in some cases, it 

should generate a change in the mode of action, as described in MOA-cliffs, making it difficult to optimize 

these compounds. To establish the structural keys with a type of activity, it is recommended to extend 

several molecules tested against TF's and to use molecular docking and dynamics for a deeper 

understanding at the molecular level. 
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