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Modeling complex energy materials such as solid-state electrolytes (SSEs) realis-

tically at the atomistic level strains the capabilities of state-of-the-art theoretical

approaches. On one hand, the system sizes and simulation time scales required are

prohibitive for first-principles methods like density functional theory (DFT). On the

other hand, parameterizations for empirical potentials are often not available and

these potentials may ultimately lack the desired predictive accuracy. Fortunately,

modern machine learning (ML) potentials are increasingly able to bridge this gap,

promising first-principles accuracy at a much reduced computational cost. However,

the local nature of these ML potentials typically means that long-range contributions

arising, e.g., from electrostatic interactions are neglected. Clearly, such interactions

can be large in polar materials like electrolytes, however. Herein, we investigate the

effect that the locality assumption of ML potentials has on lithium mobility and de-

fect formation energies in the SSE Li7P3S11. We find that neglecting long-range elec-

trostatics is unproblematic for the description of lithium transport in the isotropic

bulk. In contrast (field-dependent) defect formation energies are only adequately

captured by a hybrid potential combining ML and a physical model of electrostatic

interactions. Broader implications for ML based modelling of energy materials are

discussed.
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I. INTRODUCTION

The development of new analytical approximation frameworks is currently leading to

an unparalleled surge of machine learning (ML) approaches in all areas of chemistry and

materials science.1–6 Here, ML is typically considered a universal approach for learning

(fitting) a complex relationship y = f(x) without explicitly knowing the physical (analytic)

form of f .7,8 In the context of interatomic potentials, this means establishing the relationship

between a system’s atomistic structure and its total energy E = f({Z,R}), where Z are the

atomic numbers and R the position vectors of the constituting atoms. The expectation here

is that flexible ML potentials can overcome long-standing limitations of empirical potentials

that use simple fixed functional forms.8

Such limitations are especially acute when covalent bonds are formed or broken, when

atoms vary their hybridization or charge state and generally when large changes in chemical

environments occur. All these aspects apply prominently to the simulation of operando

energy conversion systems in general and battery materials in particular.3,9–16 With the

structural and compositional complexity of contemporary battery materials severely limiting

direct first-principles based simulations, there is thus considerable hope that ML potentials

trained with first-principles data will enable simulations at unprecedented length and time

scales and a predictive quality matching electronic structure methods.17–24

To achieve size-extensivity and create a general ML potential that can be employed for

systems of varying size and composition, just as with many empirical potentials (e.g. EAM,

Tersoff) a locality assumption is typically made.7,25–28 The system’s total energy is thus

approximated as a sum of local (atomic) contributions:

E =
N∑
i

ε(Zi, χi) (1)

where the sum runs over the N atoms in the system and each atom i contributes with an

energy ε that only depends on its atomic number Zi and its local chemical environment

χi (which is itself a function of {Z,R}). This local environment is suitably encoded into

a representation that (like the total energy) obeys general symmetries like invariance to

translation, rotation and permutation of atoms of the same element.7,27,29–31 Importantly, to

allow for efficient training and scalability to large simulation cells, these representations are

almost always short-ranged, i.e. they only describe the environment within a few Ångstrom
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around each atom.

In recent years, a large variety of ML potentials using kernel or neural network based

regression has been developed for molecular and condensed systems, heralding the great

potential of this new data-driven approach.4,7,27,32 Notably, such short-ranged ML potentials

have also been applied to polar systems like water.33–36 Though naively one would expect

long-range electrostatic interactions to play a significant role here, these potentials provide a

remarkably accurate description of the structural and dynamic properties of bulk liquid water

and different ice phases.37 This is presumably because these systems are highly isotropic,

so that long-range interactions average out.38 Consequently, short-ranged ML potentials are

now commonly applied to study polar and even ionic systems.34,39–41

However, the importance of long-range effects will clearly depend on the material and

property of interest and thus demands more systematic scrutiny.42 For example, ionic diffu-

sion in electrolytes may lead to the transient local accumulation and depletion of charges,

which can break the isotropy of the electrostatic environment. Even more critically, grain-

boundaries, interfaces, and defects may lead to a permanent localized polarization of ma-

terials. Finally, the effect of applied electric fields, e.g. in batteries, can obviously only be

studied if an electrostatic description is part of the model.

Notably, several groups have recently proposed ML models that explicitly include long-

range electrostatics.43–50 This ranges from simple point-charge models, to polarizable models

to full self-consistent approximations of the charge density. While these approaches offer a

route to overcome the locality constraints of current ML potentials, they also lead to an

increased computational cost, both in terms of training and evaluation. In particular, they

break the favourable linear scaling of computational cost with system size. This makes it

crucial to understand when such explicit treatments of electrostatics are necessary and when

a local ML potential can be used instead.

The goal of this paper is to analyze the effect of electrostatic contributions to ML based

simulations of battery materials, using the Li mobility and interface stability of the crys-

talline phase of the solid-state electrolyte (SSE) Li7P3S11 as an example.51,52 Li7P3S11 ex-

hibits an exceptionally high Li ion conductivity and has been suggested as a promising

candidate for all-solid-state lithium batteries51,52. Large scale simulations of this material,

possible e.g. through Gaussian Approximation Potentials (GAPs), can provide critical in-

sight towards solving open challenges in connection with this material.
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We develop two GAP models where one is strictly short-ranged (GAP) while the other

includes a simple electrostatic baseline (ES-GAP). We find that the inclusion of long-range

ES interactions only benefits the description of non-isotropic chemical environments, while

diffusion properties in the homogeneous bulk material are well captured by both potentials.

In contrast, the stability of Frenkel defects in the presence of electric fields (which influence

the material’s stability at the inhomogeneous electrode/electrolyte interface) can only be

captured with a model that includes long-range interactions.

II. METHODS

Computational Details Reference DFT calculations are performed with the PBE func-

tional, default ’light’ integration grids and a ’tier 1’ basis set of numerical atomic orbitals,

as implemented in FHI-aims.53,54 The Brillouin zone is sampled with a 2x2x2 k-grid. Initial

training configurations are generated with ab initio molecular dynamics (MD) using the

Γ-point approximation for the k-grid. GAP-based MD and Nudged-Elastic-Band (NEB)

simulations are performed using the LAMMPS55 code and the corresponding interface to

QUIP.56 Pairwise electrostatic interactions in the ES-GAP model are included via a fixed

charge model. To avoid the divergence of point-charge Coulomb interaction at short dis-

tances, atomic charge densities are modeled by s-type Slater orbitals as, e.g., in the QEq

charge equilibration model.57,58 Further details on the ES-GAP are noted in section A of

the SI. For training set construction and data analysis, the atomic simulation environment

ASE, SciPy and scikit-learn are used.59–61

GAP training: To train the GAP models, a simple iterative procedure is used. Briefly, an

initial model is trained on a set of 80 crystalline Li7P3S11 configurations, taken from a short

DFT-based MD simulation and Monte Carlo sampled Li-ion distributions on crystal and

interstitial sites. This potential is then used to generate new configurations via molecular

dynamics (MD) simulations at 800 K, which are added to the training set. This procedure

is repeated for several iterations (termed ”generations”) until the force and energy errors on

new configurations no longer improve. The thus obtained models provide an increasingly

accurate description of high-temperature crystalline Li7P3S11. GAP and ES-GAP models

are trained on identical configurations and the ES-GAP model was used to generate new

configurations in the iterative procedure. Further Details can be found in the SI section C.
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III. RESULTS

A. GAP and ES-GAP Models

As discussed above, a hallmark of many-body ML potentials is the assumption that the

total energy can be described as a sum of local atomic contributions, which corresponds to

a complete neglect of long-range interactions. The locality of these interactions is thus often

tacitly assumed when ML potentials are generated. However, it can also be quantified more

rigorously by analyzing the force induced on a reference atom by perturbations of other

atoms in the distance beyond a given cutoff radius.62 This ”locality” analysis is shown for

Li7P3S11 in Fig. 1A (see SI for details).

As can be seen, the induced forces are quite large (between 0.1 and 0.5 eV/Å) and

decay slowly with the cutoff radius. This is particularly evident for the phosphorous atoms,

which bear the largest formal charge in this system (+5). Since these forces originate from

perturbations outside of a given radius, they cannot be described by an ML potential with

the corresponding cutoff. The locality test therefore provides a lower bound for the residual

force errors that a ML potential can achieve.

In Fig. 1B, the same locality test is performed after subtracting the fixed-charge ES

baseline model from the DFT forces (see SI for details). For cutoffs larger than 5 Å, this

significantly lowers the locality error, most prominently for phosphorous. Counterintuitively,

the phosphorous and sulfur errors are actually increased at shorter distances. On one hand,

this is because the charges of this model were parameterized to minimize the locality error at

6 Å, and are thus not ideal for shorter cutoffs. On the other hand, a fixed-charge ES model

is generally inaccurate for short-range interactions, where polarization, charge-transfer and

induction effects become important. To capture such effects with a baseline model one

would require the use of more complex polarizable models. Nonetheless, cutoffs of 6 Å are

commonly used in state-of-the-art ML potentials so that a fixed charge ES baseline can be

used here, though residual errors remain and are discussed below.

The convergence of the iterative training procedure can be seen in Fig. 1C-D. This shows

that the energy and force errors of the ES-GAP model show no further improvement be-

tween the fifth and sixth generation. Importantly, the final force errors fall into the expected

range estimated from the locality test (see Fig. 1B). This indicates convergence of the train-
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FIG. 1. A) Force locality in crystalline Li7P3S11. B) Force locality in crystalline Li7P3S11 after

subtracting the electrostatic baseline model. Convergence of Energies (C) and Forces (D) through-

out the generations for both models (GAP: blue and ES-GAP: red). Solid lines correspond to

test errors, dashed lines to training errors. The grey shading corresponds to the expected force

accuracy according to the locality test.

ing process, meaning that the remaining error will not be significantly reduced by further

training, but is instead related to the locality of the model and/or potential inadequacies of

the representation.

Interestingly, the root mean squared errors (RMSE) for predicted energies and forces

are actually slightly lower for the short range GAP model. By analyzing the errors of the

individual elements separately (see SI), we find that the ES-GAP displays somewhat higher

errors for sulfur but lower errors for lithium and especially phosphorous. Since sulfur is

the most abundant element in Li7P3S11, this leads to the better average performance of the

short range GAP.
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This points to a disadvantage of the fixed charge approach used here: Li7P3S11 features

two distinct sulfur species, namely in bridging and terminal positions. Hirshfeld population

analysis (see SI) indicates that these species correspond to different charge states, while

they are treated equivalently by the ES baseline. This introduces an error, which needs to

be compensated by the GAP potential. In principle, this could be mitigated by assigning

different charges to these sulfur species. However, such atom-typing would run counter to

one of the main advantage of ML potentials relative to classical force-fields, namely the fact

that they can break and form bonds. A more satisfying solution would be the use of floating

charge models and this will be explored in future work.47,63

From a different perspective, these unbalanced force errors also illustrate a weakness in

average error metrics like the RMSE (or the least-squares loss function minimized by GAP)

for multi-species systems: If the stoichiometry of a material is not balanced, more abundant

species are implicitly weighted more strongly by the metric. In the present case, sulfur has

the largest weight, although lithium is arguably more important. Nevertheless, the accuracy

of both models is actually quite satisfying overall considering the magnitudes of the force

components in the training and test sets, which range up to ca. 10 eV/Å. Note however, that

in principle it would be possible to use different weightings in the loss function for forces on

different elements.

B. Lithium Ion Mobility

Both potentials introduced in the previous section are trained on the same data and have

approximately the same force error, though small differences can be seen when looking at the

description of individual elements. Do these differences affect the prediction of observables

relevant to battery performance? As a first case in point, we investigate Li ion mobility in

the (isotropic) bulk material. To this end we consider lithium diffusion barriers obtained

via the nudged elastic band (NEB) method (see Fig. 2) and Li-ion mobilities obtained from

MD simulation.

NEB calculations allow investigating minimum energy paths of individual Li hops between

two equilibrium positions (an initial and final state).64 Choosing these states is actually non-

trivial, since Li7P3S11 contains a large variety of possible Li interstitial positions, reflecting

the highly dynamic nature of the Li sublattice. This was previously demonstrated by Chang
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et al., who reported a number of Li configurations with nearly the same ground-state energy

as the equilibrium crystal structure.65,66 It is therefore important to focus on Li hopping

events that actually contribute to conductivity and not just dynamic rearrangements of Li

positions.

To obtain these relevant pathways, we therefore analyzed the training MD trajectories to

isolate individual Li hopping events. In this manner, a variety of diffusion pathways were

obtained. Further information on all pathways is given in the SI (section G). In the following,

the lowest barrier pathway is discussed in more detail. Here, a Li ion diffuses in a channel

formed by the PS−
4 and P2S

−
7 anion complexes (positions tabulated in the SI G), along the

b lattice vector, as shown in Fig. 2. It can be seen that the 1x2x1 supercell is traversed

with two consecutive Li ion hops (obtained from two NEB calculations Fig. 2 I.+II.). These

NEB calculations were performed based on both the GAP and ES-GAP potentials, leading

to slightly different minimum energy paths.

Notwithstanding, the optimized lowest energy paths display similar characteristics of

a correlated ion migration where lithium ions diffuse, while neighboring ions are slightly

displaced from the diffusion path (highlighted in the figure with solid and dashed arrows

for the migrating and displaced atoms, respectively). For the first hop an almost identical

path is found while the second hop yields a slightly different path when optimized with

the two potentials (I. and II. in Fig. 2, respectively). The deviating paths should not

be understood as different mechanisms favored by the respective potentials, however, but

merely two feasible paths found by the NEB. We confirm this assumption by evaluating the

energies along the short-range GAP path with the ES-GAP (and vice-versa). This analysis

reveals almost identical barrier heights for a given potential on both its own NEB path and

the one from the other potential. It is further noteworthy that the ES-GAP consistently

predicts somewhat higher barriers than the short-range GAP. For both paths, reference

DFT single-point values tend to lie between the GAP and ES-GAP values. In other words,

GAP somewhat underestimates the barriers, while ES-GAP overestimates them to a similar

degree. The deviation in energies is also not perfectly uniform along the paths, so that the

agreement with DFT can be excellent for both potentials, at different points of the potential

energy surface.

Despite the overall similar performance of the models, we thus find small systematic

differences between the predictions of the two models. Interestingly, the short range GAP is
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FIG. 2. Left: Illustration of minimum energy paths for lithium diffusion through Li7P3S11 ob-

tained with short range GAP (light blue) and ES-GAP (red) interatomic potentials (Li-green,

Thiophosphates-orange tetrahedron). Solid and dashed arrows highlight the main migration path

and displacements of neighboring lithium atoms, respectively. I. and II. correspond to two con-

secutive NEB calculations. Initial and final positions are obtained by analyzing hopping events

from MD trajectories (see SI G). Right: Energies for DFT, GAP and ES-GAP potentials on the

minimum energy paths calculated with the short range GAP (top) and the ES-GAP (bottom).

Solid lines indicate the potential with which the path was obtained, dashed line to single point

calculations.

actually slightly more accurate in predicting the lowest barrier heights. This indicates that

the static charge model used for the ES-GAP does not faithfully reflect the electrostatics of

the full DFT calculation, and the ES baseline represents an overcorrection: it correctly raises

the barriers, but by too much. As a sidenote, we emphasize that both models are mainly

trained on high-temperature MD data, while the NEB corresponds to the minimum energy

path at 0 K. Presumably, even higher accuracy for NEB calculations could be achieved for

both potentials by training on the corresponding data.

Next, we turn to the Li ion conductivity σ at finite temperature, predicted from MD sim-

ulations via the Nernst-Einstein equation (see SI for details).67 Here we shift the focus from

a microscopic property (the Li migration barrier height) to a macroscopic observable (Li-ion
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conductivity). In principle, the two are closely related, since the barrier height determines

the rate of the Li transport in transition state theory. However, MD simulations sample

a multitude of different diffusion events. These are often dominated by the lowest barrier

mechanism, but may also be influenced by higher barrier pathways (e.g. because they are

entropically favoured). In this sense the NEB and MD simulations provide complementary

information.

The corresponding conductivities within the two potentials (at 800 K) are shown in Fig.

3, as a function of the MD trajectory length. After sufficient sampling, the conductivities

converge to 190 mS/cm for the GAP and 120 mS/cm for the ES-GAP, respectively. This

trend in conductivities perfectly reflects the the NEB barrier differences discussed above (i.e.

slightly higher mobility and lower barriers for the short-range GAP model).

FIG. 3. Convergence of the Li ion conductivity σ at 800 K during an MD simulation. The red

curve corresponds to the ES-GAP model, blue to the GAP model.

Figure 3 also highlights the benefit of using ML potentials for battery research more

generally: To obtain fully converged conductivities from these simulations, MD trajectory

lengths far beyond the tractability of typical AIMD simulations are necessary. Hence, AIMD

simulations of Li ion conductivities should generally not be considered converged and yield,

at best, a qualitative indicator of relative performance between closely related materials.

Even at longer timescales in the low ns range (< 5 ns), conductivity differences predicted

by both models vary from 10 - 80%.

While we do find some differences between the predicted Li mobilities of ES-GAP and
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GAP, these should be put into perspective. Ion mobilities of potential SSE materials can

vary by several orders of magnitude, and the small differences in observed barrier heights

are certainly within the margin of the DFT error. From a practical perspective there is thus

no significant difference between the two models.68 At this point, one could conclude from

a practitioner’s point of view that a short-ranged ML potential would be fully sufficient to

treat a complex battery material like Li7P3S11.

C. Applied Fields and Defects

Having established the similar behavior of GAP and ES-GAP for bulk Li mobilities, we

now turn to their description of an anisotropic environment. Specifically, we consider a

model system that mimics the effect of the potential drop in the interphase region at the

solid/solid interface between an electrode and a SSE, as depicted in Fig. 4.69 In a real battery,

this potential drop reaches several nanometers into the bulk region before it is completely

screened by displaced ions. To model the effect of this potential drop on the SSE near the

interface, we apply electric fields to a 2×3×2 Li7P3S11 supercell and investigate how the field

strength and direction affects the stability of a Frenkel defect (i.e. a Li vacancy/interstitial

pair).

Defects have been argued to play an important role in the kinetics of the decomposition

processes at SSE interfaces.70 This kinetic stability is of high relevance to the applicability of

SSEs.71–73 Here we consider a Frenkel defect in particular, as it allows keeping the simulation

cell overall charge neutral and lies within the phase space covered by the training set of the

GAP potentials. Clearly, the effect of an electric potential drop can only be captured by

the ES-GAP model, which contains charges that are able to respond to the applied field.

In contrast, the short range GAP model can only model the “zero-field” scenario. We also

compare the “zero-field” defect stability in both models with that in DFT.
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FIG. 4. Schematic of the spatially dependent potential variation U in a prototypical Li‖SSE‖C

solid-state Li ion battery.69 Since grain orientation varies throughout the SSE, the field dependent

defect stability is studied by applying electric fields along different crystallographic axes of the

simulation cell.

We construct the Frenkel defect by shifting a Li atom into an interstitial position and

relaxing the resulting structure using the two GAP models (see Fig. 5, SI I). For comparison,

single-point DFT calculations are also performed on both the GAP and ES-GAP geometries.

Without an applied field, this leads to a predicted defect formation energy of ca. 0.8 eV with

ES-GAP and DFT and ca. 0.6 eV with the short-range GAP model. Since the interstitial

Li ion has a net positive charge and the ion vacancy a net negative charge, the defect forms

a dipole. The observed 0.2 eV deviation of the defect formation energies between GAP and

DFT can thus be attributed to the absence of long-range dipole-dipole interactions in the

former. Nonetheless, all models predict defect formation to be highly unfavorable. When

applying an electric field, this picture changes. We find an anisotropic response to the field

where both destabilization and stabilization can occur (Fig. 5). This anisotropy reflects the

fields’ orientation relative to the defect dipole. Structural relaxation effects then lead to an

unsymmetric stabilization/destabilization of the defect in either field direction.

While this is a rather simple model system, it already yields insights into the stability

of Li7P3S11 at the SSE/electrode interface. As shown in Fig. 5, field strengths typically

occurring at this interface (which can reach up to 0.3 V/Å69) are sufficient to make the

formation of this defect energetically favorable. Consequently, one would expect an accu-

mulation of such defects towards the interface. As recently suggested71, the kinetic processes
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in electrolyte decomposition can be related to the delithiation of the solid state electrolyte.

Intermediate to this delithiation process are local concentration gradients by Frenkel de-

fects. We can therefore hypothesize from our findings that local fields play a crucial role

in the evaluation of interphase stabilities. Further, we find that the defect stabilization is

anisotropic to crystallographic orientation. This finding might explain previous observations

that the SSE/anode interface stability of Li7P3S11 was dependent on the crystallographic

orientation of the latter.74

FIG. 5. Frenkel defect formation energies against applied field. The electric field is applied along

the different crystallographic axes (x, y, z). Solid lines (green and orange) correspond to ES-GAP

calculations with different applied field directions. Defect positions are given in the SI I.

From a methodological perspective, this example shows that the explicit inclusion of elec-

trostatic interactions will be indispensable for the computational study of battery materials

under operating conditions. Indeed, even the contact between two different materials will

cause a potential drop across the interface, albeit at a smaller lengthscale.14The good perfor-

mance of the short range GAP model in the previous section is thus not because long-range

electrostatic interactions are small, but because they are reasonably isotropic in a periodic

calculation. Breaking this symmetry with an interface or by applying an electric field clearly

shows the importance of electrostatics which, by design, cannot be incorporated into a model

with a short range cutoff.
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We note that the response of the ES-GAP model to the applied field relies on the ionic

partial charges of the baseline ES model. Hence, we exploited the corresponding a priori

knowledge. Ideally, these charges could instead be determined in the training procedure

including model structures of the full interface which, however, is beyond the scope of this

conceptual study.

IV. CONCLUSION

In this paper, we have systematically explored the influence of explicitly including elec-

trostatic interactions in ML potentials for battery materials. Using the same ML approach

and training data, we find significant differences between a short range GAP model and the

ES-GAP model that uses a electrostatic baseline when studying isotropic vs. non-isotropic

systems. In standard isotropic simulation tasks, such as determining Li diffusion barriers

and ionic conductivities, both models yield similar results. In contrast, simulations on non-

isotropic systems show the importance of ES contributions and provide new insights into

interphase stability of Li7P3S11.

Specifically, we studied Frenkel defects in an applied field mimicking the potential drop

at a solid/solid interface. In this setup we found that a stabilization of the defects can

occur already at moderate fields. This would favor the accumulation of defects towards

the interphase, which could influence the kinetic stability of Li7P3S11/electrode interfaces.

Additionally, such stabilizations are anisotropic to crystallographic orientation making grain

shape and orientation an additional parameter to be considered in battery engineering and

beyond.75

More generally, our results confirm that short-ranged ML potentials can be surprisingly

accurate for polar and ionic materials in the absence of non-isotropic chemical environments

like interfaces or electric fields. In contrast we found important qualitative deviation between

our GAP models in non-isotropic systems. The further development of ML potentials with

an explicit description of electrostatics therefore represents an important research goal, on

the way to the computational study of battery materials in operando conditions.
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34A. M. Cooper, J. Kästner, A. Urban, and N. Artrith, Npj Comput. Mater. 6, 1 (2020).

35C. Schran, J. Behler, and D. Marx, J. Chem. Theory Comput. 16, 88 (2020).

36C. Schran, F. Brieuc, and D. Marx, J. Chem. Phys. 154, 051101 (2021).

37B. Cheng, E. A. Engel, J. Behler, C. Dellago, and M. Ceriotti, PNAS 116, 1110 (2019).

38S. J. Cox, PNAS 117, 19746 (2020).

39J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M. Kolpak, and B. Kozinsky,

Npj Comput. Mater. 6, 1 (2020).

40R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, and M. Bokdam, Phys. Rev. Lett.

122, 225701 (2019).

41S. Tovey, A. N. Krishnamoorthy, G. Sivaraman, J. Guo, C. Benmore, A. Heuer, and

C. Holm, J. Phys. Chem. C 124, 25760 (2020).

42S. Yue, M. C. Muniz, M. F. Calegari Andrade, L. Zhang, R. Car, and A. Z. Panagiotopou-

los, J. Chem. Phys. 154, 034111 (2021).

43A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, and C. Corminboeuf, Chem. Sci. 10, 9424

16

http://dx.doi.org/ 10.1038/s41598-018-23852-y
http://dx.doi.org/ 10.1038/s41598-018-23852-y
http://dx.doi.org/10.1063/5.0015872
http://dx.doi.org/ 10.1063/1.5016317
http://dx.doi.org/ 10.1063/1.5016317
http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/10.1103/PhysRevB.37.6991
http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1002/syst.201900052
http://dx.doi.org/10.1103/PhysRevB.99.014104
http://dx.doi.org/10.1063/1.5020710
http://dx.doi.org/10.1063/1.5020710
http://dx.doi.org/10.1063/1.5126701
http://dx.doi.org/10.1063/1.5126701
http://dx.doi.org/10.1137/15M1054183
http://dx.doi.org/ 10.1038/s41524-020-0323-8
http://dx.doi.org/10.1021/acs.jctc.9b00805
http://dx.doi.org/10.1063/5.0035438
http://dx.doi.org/ 10.1073/pnas.1815117116
http://dx.doi.org/10.1073/pnas.2005847117
http://dx.doi.org/10.1038/s41524-020-0283-z
http://dx.doi.org/ 10.1103/PhysRevLett.122.225701
http://dx.doi.org/ 10.1103/PhysRevLett.122.225701
http://dx.doi.org/ 10.1021/acs.jpcc.0c08870
http://dx.doi.org/ 10.1063/5.0031215
http://dx.doi.org/ 10.1039/C9SC02696G
http://dx.doi.org/ 10.1039/C9SC02696G


(2019).

44S. Faraji, S. A. Ghasemi, S. Rostami, R. Rasoulkhani, B. Schaefer, S. Goedecker, and

M. Amsler, Phys. Rev. B 95, 1 (2017).

45S. A. Ghasemi, A. Hofstetter, S. Saha, and S. Goedecker, Phys. Rev. B 92, 045131 (2015).

46A. Grisafi, A. Fabrizio, B. Meyer, D. M. Wilkins, C. Corminboeuf, and M. Ceriotti, ACS

Cent. Sci. 5, 57 (2019).

47T. W. Ko, J. A. Finkler, S. Goedecker, and J. Behler, Nat. Comm. 12, 1 (2021).

48O. T. Unke and M. Meuwly, J. Chem. Theory Comput. 15, 3678 (2019).

49X. Xie, K. A. Persson, and D. W. Small, J. Chem. Theory Comput. 16, 4256 (2020).

50K. Yao, J. E. Herr, D. W. Toth, R. McKintyre, and J. Parkhill, Chem. Sci. 9, 2261 (2018).

51M. R. Busche, D. A. Weber, Y. Schneider, C. Dietrich, S. Wenzel, T. Leichtweiss,
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